1
|
Silva FM, Guerra-Fuentes RA, Blackburn DC, Prudente ALC. Embryonic development of the neotropical pit viper Bothrops atrox (Serpentes: Viperidae: Crotalinae), with emphasis on pit organ morphogenesis and its evolution in snakes. Dev Dyn 2024; 253:606-623. [PMID: 38157161 DOI: 10.1002/dvdy.677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Bothrops atrox is a pit viper with a loreal pit organ, and its embryological development remains undescribed. Here, we provide a comprehensive description of the embryology of B. atrox, focusing on the loreal pit organ and cephalic scales. RESULTS We characterized 13 developmental stages of B. atrox based on external features consistent with the embryogenesis of previously described snake species. The loreal pit organ originates from the circumorbital region and migrates to its final position. In Crotalinae, the pit organ first becomes visible at stage 28, whereas in Pythonidae labial, pit organs appear at Stage 35. Pit organs evolved independently three times in Serpentes, encompassing Boidae, Pythonidae, and Crotalinae. Boidae lacks embryological information for pit organs. Furthermore, we observed that head scalation onset occurs at Stage 33 in B. atrox, with fusion of scales surrounding the loreal pit organ. CONCLUSIONS The embryology of pit organs in Pythonidae and Boidae species remains poorly understood. Our detailed embryological descriptions are critical for proposing developmental scenarios for pit organs and guiding future research on these structures.
Collapse
Affiliation(s)
- Fernanda Magalhães Silva
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará e Museu Paraense Emílio Goeldi, Belém, Brazil
| | - Ricardo Arturo Guerra-Fuentes
- Faculdade de Ciências Naturais, Campus Universitário do Tocantins-Cametá, Universidade Federal do Pará, Cametá, Brazil
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Ana L Costa Prudente
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará e Museu Paraense Emílio Goeldi, Belém, Brazil
| |
Collapse
|
2
|
Xia L, Li C, Zhao Y, Zhang W, Hu C, Qu Y, Li H, Yan J, Zhou K, Li P. Expression analysis of alpha keratins and corneous beta-protein genes during embryonic development of Gekko japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101116. [PMID: 37567027 DOI: 10.1016/j.cbd.2023.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Epidermal appendages of birds and reptiles, including claws, feathers, scales, and setae, are primarily composed of alpha keratins (KRTs) and corneous beta-proteins (CBPs). A comprehensive and systematic knowledge of KRTs and CBPs in Schlegel's Japanese gecko (Gekko japonicus) is still lacking. In this study, 22 candidate Gecko japonicus keratin (GjKRT) family genes (12 type I genes, 10 type II genes) were identified in the G. japonicus genome. The majority of GjKRT genes across various subgroups had undergone a prolonged and highly conservative evolutionary process. Through a combination of morphological observation, RNA-seq analysis, and qRT-PCR assay, it was possible to discern the dynamic alterations in the expression of GjKRTs and Gecko japonicus corneous beta-proteins genes (GjCBPs). These findings strongly indicate that GjKRTs gradually accumulate to constitute an α-layer, which is subsequently succeeded by the formation of the corneous beta layer containing GjCBPs at late stages (40-42) of embryonic development. The epidermal appendages in G. japonicus may result from the joint accumulation of KRTs and CBPs, with stages 40-42 being critical for their development. These findings provide novel insights into KRTs and CBPs of G. japonicus and offer a foundation for investigating the functions of GjKRT and GjCBP gene families. Furthermore, this knowledge contributes to unraveling the molecular mechanisms underlying the formation of epidermal appendages in G. japonicus.
Collapse
Affiliation(s)
- Longjie Xia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yue Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Wenyi Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
3
|
Tang CY, Zhang X, Xu X, Sun S, Peng C, Song MH, Yan C, Sun H, Liu M, Xie L, Luo SJ, Li JT. Genetic mapping and molecular mechanism behind color variation in the Asian vine snake. Genome Biol 2023; 24:46. [PMID: 36895044 PMCID: PMC9999515 DOI: 10.1186/s13059-023-02887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Reptiles exhibit a wide variety of skin colors, which serve essential roles in survival and reproduction. However, the molecular basis of these conspicuous colors remains unresolved. RESULTS We investigate color morph-enriched Asian vine snakes (Ahaetulla prasina), to explore the mechanism underpinning color variations. Transmission electron microscopy imaging and metabolomics analysis indicates that chromatophore morphology (mainly iridophores) is the main basis for differences in skin color. Additionally, we assemble a 1.77-Gb high-quality chromosome-anchored genome of the snake. Genome-wide association study and RNA sequencing reveal a conservative amino acid substitution (p.P20S) in SMARCE1, which may be involved in the regulation of chromatophore development initiated from neural crest cells. SMARCE1 knockdown in zebrafish and immunofluorescence verify the interactions among SMARCE1, iridophores, and tfec, which may determine color variations in the Asian vine snake. CONCLUSIONS This study reveals the genetic associations of color variation in Asian vine snakes, providing insights and important resources for a deeper understanding of the molecular and genetic mechanisms related to reptilian coloration.
Collapse
Affiliation(s)
- Chen-Yang Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaohu Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shijie Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng-Huan Song
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Huaqin Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingfeng Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
4
|
Lin Z, Yu K, Shen L, Zhang Y, Liu Y, Hou M, Peng Z, Tang X, Chen Q. A staging table of embryonic development for a viviparous (live-bearing) lizard Eremias multiocellata (Squamata: Lacertidae). Reprod Fertil Dev 2021; 33:782-797. [PMID: 34663492 DOI: 10.1071/rd21082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022] Open
Abstract
As the only viviparous reptile in China that has both temperature-dependent sex determination (TSD) and genetic-dependent sex determination (GSD) mechanisms, Eremias multiocellata is considered as an ideal species for studying the sex determination mechanism in viviparous lizards. However, studies on embryonic stage of viviparous lizards and morphological characteristics of each stage are limited. In the present study, the embryonic development process of E. multiocellata is divided into 15 stages (stages 28-42) according to the morphology of embryos. Embryos sizes are measured and continuous dynamic variation of some key features, including limbs, genitals, eyes, pigments, and brain scales are color imaged by a stereoscopic microscope. Furthermore, based on these morphological characteristics, we compare the similarities and differences in the embryonic development of E. multiocellata with other squamate species. Our results not only identified the staging table of E. multiocellata with continuous changes of external morphological characteristics but also developed a staging scheme for an important model species that provides a necessary foundation for study of sex determination in a viviparous lizard.
Collapse
Affiliation(s)
- Zhaocun Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Kaiming Yu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Leyao Shen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yu Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Mei Hou
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhennan Peng
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| |
Collapse
|
5
|
Kuriyama T, Murakami A, Brandley M, Hasegawa M. Blue, Black, and Stripes: Evolution and Development of Color Production and Pattern Formation in Lizards and Snakes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Tokita M, Watanabe H. Embryonic Development of the Japanese Mamushi, Gloydius blomhoffii (Squamata: Serpentes: Viperidae: Crotalinae). CURRENT HERPETOLOGY 2019. [DOI: 10.5358/hsj.38.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2–2–1 Miyama, Funabashi, Chiba 274–8510
| | - Hiroki Watanabe
- Department of Biology, Faculty of Science, Toho University, 2–2–1 Miyama, Funabashi, Chiba 274–8510
| |
Collapse
|