1
|
Montoya‐Sanhueza G, Bennett NC, Šumbera R. Functional and morphological divergence in the forelimb musculoskeletal system of scratch-digging subterranean mammals (Rodentia: Bathyergidae). J Anat 2024; 245:420-450. [PMID: 38760952 PMCID: PMC11306765 DOI: 10.1111/joa.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024] Open
Abstract
Whether the forelimb-digging apparatus of tooth-digging subterranean mammals has similar levels of specialization as compared to scratch-diggers is still unknown. We assessed the scapular morphology and forelimb musculature of all four solitary African mole rats (Bathyergidae): two scratch-diggers, Bathyergus suillus and Bathyergus janetta, and two chisel-tooth diggers, Heliophobius argenteocinereus and Georychus capensis. Remarkable differences were detected: Bathyergus have more robust neck, shoulder, and forearm muscles as compared to the other genera. Some muscles in Bathyergus were also fused and often showing wider attachment areas to bones, which correlate well with its more robust and larger scapula, and its wider and medially oriented olecranon. This suggests that shoulder, elbow, and wrist work in synergy in Bathyergus for generating greater out-forces and that the scapula and proximal ulna play fundamental roles as pivots to maximize and accommodate specialized muscles for better (i) glenohumeral and scapular stabilization, (ii) powerful shoulder flexion, (iii) extension of the elbow and (iv) flexion of the manus and digits. Moreover, although all bathyergids showed a similar set of muscles, Heliophobius lacked the m. tensor fasciae antebrachii (aiding with elbow extension and humeral retraction), and Heliophobius and Georychus lacked the m. articularis humeri (aiding with humeral adduction), indicating deeper morphogenetic differences among digging groups and suggesting a relatively less specialized scratch-digging ability. Nevertheless, Heliophobius and Bathyergus shared some similar adaptations allowing scratch-digging. Our results provide new information about the morphological divergence within this family associated with the specialization to distinct functions and digging behaviors, thus contributing to understand the mosaic of adaptations emerging in phylogenetically and ecologically closer subterranean taxa. This and previous anatomical studies on the Bathyergidae will provide researchers with a substantial basis on the form and function of the musculoskeletal system for future kinematic investigations of digging behavior, as well as to define potential indicators of scratch-digging ability.
Collapse
Affiliation(s)
- Germán Montoya‐Sanhueza
- Department of Zoology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - Radim Šumbera
- Department of Zoology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
2
|
Sahd L, Doubell N, Bennett NC, Kotzé SH. Muscle architecture and muscle fibre type composition in the forelimb of two African mole-rat species, Bathyergus suillus and Heterocephalus glaber. J Morphol 2023; 284:e21557. [PMID: 36630620 DOI: 10.1002/jmor.21557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The scratch-digging Cape dune mole-rat (Bathyergus suillus), and the chisel-toothed digging naked mole-rat (Heterocephalus glaber) are African mole-rats that differ in their digging strategy. The aim of this study was to determine if these behavioural differences are reflected in the muscle architecture and fibre-type composition of the forelimb muscles. Muscle architecture parameters of 39 forelimb muscles in both species were compared. Furthermore, muscle fibre type composition of 21 forelimb muscles were analysed using multiple staining protocols. In B. suillus, muscles involved with the power stroke of digging (limb retractors and scapula elevators), showed higher muscle mass percentage, force output and shortening capacity compared to those in H. glaber. Additionally, significantly higher percentages of glycolytic fibres were observed in the scapular elevators and digital flexors of B. suillus compared to H. glaber, suggesting that the forelimb muscles involved in digging in B. suillus provide fast, powerful motions for effective burrowing. In contrast, the m. sternohyoideus a head and neck flexor, had significantly more oxidative fibres in H. glaber compared to B. suillus. In addition, significantly greater physiological cross-sectional area and fascicle length values were seen in the neck flexor, m. sternocleidomastoideus, in H. glaber compared to B. suillus, which indicates a possible adaptation for chisel-tooth digging. While functional demands may play a significant role in muscle morphology, the phylogenetic differences between the two species may play an additional role which needs further study.
Collapse
Affiliation(s)
- Lauren Sahd
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Evolutionary Developmental Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Narusa Doubell
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sanet H Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Division of Anatomy, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
3
|
Mpagike FH, Makungu M. Osteology and radiographic anatomy of the thoracic limb of the greater cane rat (
Thryonomys swinderianus
). Anat Histol Embryol 2022; 52:393-402. [PMID: 36537285 DOI: 10.1111/ahe.12898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The greater cane rat (Thryonomys swinderianus) is mainly distributed in the humid and sub-humid regions of the sub-Saharan Africa. It is believed to be the second largest African rodent. The aim of this study was to describe the normal osteology and radiographic anatomy of the thoracic limb of the greater cane rat as a reference for teaching, clinical use, anatomical studies and biomedical research. Five intact dead greater cane rats were used for radiographic examination. Radiographic findings were correlated with bone specimens. The clavicle was seen in all animals. The scapula was wide with well-developed acromion and coracoid process. The major and minor tubercles did not extend higher than the head of the humerus. The deltoid tuberosity was very prominent. The medial epicondyle was larger than its lateral counterpart, and the supratrochlear foramen was present. The radial tuberosity was further distally located. The ulnar head was well-developed, and the olecranon tuber was square-shaped. The distal physes for the radius and ulna appeared transverse. The carpus had eight bones. The manus presented with five widely spread digits. The first digit was reduced in size and placed such that the dorsal and palmar surfaces face almost medial and lateral, respectively. Additionally, two rudimentary digits were seen. Variations exist in the normal osteology and radiographic anatomy of the thoracic limb in different species. Knowledge of the normal osteology and radiographic anatomy of the thoracic limb of individual species is important for species identification and diagnosis of musculoskeletal diseases involving the thoracic limb.
Collapse
Affiliation(s)
- Faraja Hosea Mpagike
- Department of Veterinary Surgery and Theriogenology College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture Morogoro Tanzania
| | - Modesta Makungu
- Department of Veterinary Surgery and Theriogenology College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture Morogoro Tanzania
| |
Collapse
|
4
|
Montoya-Sanhueza G, Bennett NC, Chinsamy A, Šumbera R. Functional anatomy and disparity of the postcranial skeleton of African mole-rats (Bathyergidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.857474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The burrowing adaptations of the appendicular system of African mole-rats (Bathyergidae) have been comparatively less investigated than their cranial adaptations. Because bathyergids exhibit different digging modes (scratch-digging and chisel-tooth digging) and social systems (from solitary to highly social), they are a unique group to assess the effects of distinct biomechanical regimes and social organization on morphology. We investigated the morphological diversity and intraspecific variation of the appendicular system of a large dataset of mole-rats (n = 244) including seven species and all six bathyergid genera. Seventeen morpho-functional indices from stylopodial (femur, humerus) and zeugopodial (ulna, tibia-fibula) elements were analyzed with multivariate analysis. We hypothesized that scratch-diggers (i.e., Bathyergus) would exhibit a more specialized skeletal phenotype favoring powerful forelimb digging as compared to the chisel-tooth diggers, and that among chisel-tooth diggers, the social taxa will exhibit decreased limb bone specializations as compared to solitary taxa due to colony members sharing the costs of digging. Our results show that most bathyergids have highly specialized fossorial traits, although such specializations were not more developed in Bathyergus (or solitary species), as predicted. Most chisel tooth-diggers are equally, or more specialized than scratch-diggers. Heterocephalus glaber contrasted significantly from other bathyergids, presenting a surprisingly less specialized fossorial morphology. Our data suggests that despite our expectations, chisel-tooth diggers have a suite of appendicular adaptations that have allowed them to maximize different aspects of burrowing, including shoulder and neck support for forward force production, transport and removal of soils out of the burrow, and bidirectional locomotion. It is probably that both postcranial and cranial adaptations in bathyergids have played an important role in the successful colonization of a wide range of habitats and soil conditions within their present distribution.
Collapse
|
5
|
Montoya-Sanhueza G, Šaffa G, Šumbera R, Chinsamy A, Jarvis JUM, Bennett NC. Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats. Commun Biol 2022; 5:526. [PMID: 35650336 PMCID: PMC9159980 DOI: 10.1038/s42003-022-03480-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Life underground has constrained the evolution of subterranean mammals to maximize digging performance. However, the mechanisms modulating morphological change and development of fossorial adaptations in such taxa are still poorly known. We assessed the morpho-functional diversity and early postnatal development of fossorial adaptations (bone superstructures) in the appendicular system of the African mole-rats (Bathyergidae), a highly specialized subterranean rodent family. Although bathyergids can use claws or incisors for digging, all genera presented highly specialized bone superstructures associated with scratch-digging behavior. Surprisingly, Heterocephalus glaber differed substantially from other bathyergids, and from fossorial mammals by possessing a less specialized humerus, tibia and fibula. Our data suggest strong functional and developmental constraints driving the selection of limb specializations in most bathyergids, but more relaxed pressures acting on the limbs of H. glaber. A combination of historical, developmental and ecological factors in Heterocephalus are hypothesized to have played important roles in shaping its appendicular phenotype.
Collapse
Affiliation(s)
- Germán Montoya-Sanhueza
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic.
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa.
| | - Gabriel Šaffa
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Jennifer U M Jarvis
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Developmental Plasticity in the Ossification of the Proximal Femur of Heterocephalus glaber (Bathyergidae, Rodentia). J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09602-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Qi H, Gao G, Wang H, Ma Y, Wang H, Wu S, Yu J, Wang Q. Mechanical properties, microstructure and chemical composition of naked mole rat incisors. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which make it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterised the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found out that (i) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (ii) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (iii) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increase in distance from enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guide for the design of bionic machinery and materials.
Collapse
Affiliation(s)
- Hongyan Qi
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Guixiong Gao
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Ministry of Education, Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Huixin Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Yunhai Ma
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Hubiao Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Siyang Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Jiangtao Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Qinghua Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| |
Collapse
|