1
|
Stewart JR, Hare KM, Thompson MB. Evolution of Placentation in Eugongylini (Squamata: Scincidae): Ontogeny of Extraembryonic Membranes in Oviparous and Viviparous Species of New Zealand. J Morphol 2024; 285:e70001. [PMID: 39415663 DOI: 10.1002/jmor.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
New Zealand scincid lizards, genus Oligosoma, represent a monophyletic radiation of a clade, Eugongylini, of species distributed geographically throughout the South Pacific with major radiations in Australia and New Caledonia. Viviparity has evolved independently on multiple occasions within these lineages. Studies of Australian species have revealed that placental specializations resulting in substantial placentotrophy have evolved in two lineages. The pattern of extraembryonic membrane development of oviparous species differs from viviparous species and identical placental architecture has evolved in both placentotrophic lineages. We analyzed extraembryonic membrane development in two New Zealand species, the sole oviparous species, Oligosoma suteri, and placental development of a representative viviparous species, Oligosoma polychroma, using histological techniques. We conclude that these two species share a basic pattern of extraembryonic membrane development with other squamates. Comparisons with Australian species indicate that morphogenesis of the yolk sac of O. suteri results in an elaborate structure previously known only in Oligosoma lichenigerum with a geographic distribution on Lord Howe Island and Norfolk Island. This finding supports a close relationship between these two taxa. We conclude also that the pattern of placental development of O. polychroma is identical to that of viviparous species of Australia. The terminal placental stage for each of these lineages includes a chorioallantoic placenta and an elaborate omphaloplacenta. This level of homoplasy in placental evolution is consistent with a hypothesis that selection favors regional differentiation of the maternal-embryonic interface and that the omphaloplacenta is an adaptation for histotrophic transport.
Collapse
Affiliation(s)
- James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kelly M Hare
- Urban Wildlife Trust, Wellington/Hamilton, New Zealand
| | - Michael B Thompson
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
de Dios-Arcos C, Villagrán-SantaCruz M. Extraembryonic Membranes and Placentation in the Mexican Snake Conopsis lineata. J Morphol 2024; 285:e21783. [PMID: 39390729 DOI: 10.1002/jmor.21783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Extraembryonic membranes provide protection, oxygen, water, and nutrients to developing embryos, and their study generates information on the origin of the terrestrial egg and the evolution of viviparity. In this research, the morphology of the extraembryonic membranes and the types of placentation in the viviparous snake Conopsis lineata are described through optical microscopy during early and late gestation. When embryos develop inside the uterus, they become surrounded by a thin eggshell membrane. In early gestation, during stages 16 and 18, the embryo is already surrounded by the amnion and the chorion, and in a small region by the chorioallantois, which is product of the contact between the chorion and the growing allantois. A trilaminar omphalopleure covers the yolk sac from the embryonic hemisphere to the level of the equator where the sinus terminalis is located, and from there a bilaminar omphalopleure extends into the abembryonic hemisphere. Thus, according to the relationship of these membranes with the uterine wall, the chorioplacenta, the choriovitelline placenta, and the chorioallantoic placenta are structured at the embryonic pole, while the omphaloplacenta is formed at the abembryonic pole. During late gestation (stages 35, 36, and 37), the uterus and allantois are highly vascularized. The allantois occupies most of the extraembryonic coelom and at the abembryonic pole, it contacts the omphaloplacenta and form the omphalallantoic placenta. This is the first description of all known placenta types in Squamata for a snake species member of the subfamily Colubrinae; where an eggshell membrane with 2.9 μm in width present throughout development is also evident. The structure of extraembryonic membranes in C. lineata is similar to that of other oviparous and viviparous squamate species. The above indicates not only homology, but also that the functional characteristics have been maintained throughout the evolution of the reproductive type.
Collapse
Affiliation(s)
- Cecilia de Dios-Arcos
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Maricela Villagrán-SantaCruz
- Laboratorio de Biología Tisular y Reproductora, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
3
|
Stewart JR, Presch W. Placental ontogeny in the Yucca Night Lizard, Xantusia vigilis. J Morphol 2024; 285:e21692. [PMID: 38573030 DOI: 10.1002/jmor.21692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Squamate placentas support physiological exchange between mothers and embryos. Uterine and embryonic epithelial cells provide sites for transporting mechanisms and extraembryonic membranes provide the scaffolding for embryonic epithelial cells and vascular systems. Diversity in placental structure involves variation in extraembryonic membrane development as well as epithelial cell specializations. Variation in placental ontogeny is known to occur and, although lineage specific patterns have been described, phylogenetic distribution of specific patterns is poorly understood. Xantusia vigilis is a viviparous lizard in a monophyletic clade, Xantusiidae, of predominantly viviparous species. Xantusiidae is one of two viviparous lineages within the clade Scincoidea that provides an important outgroup comparison for Scincidae, which includes the largest number of independent origins of viviparity among Squamata. Previous reports contain brief descriptions of placental structure of X vigilis but the developmental pattern is unknown including relevant details for comparison with skinks. We studied placental ontogeny in X. vigilis to address two hypotheses: (1) the pattern of development of placental architecture is similar to species of Scincidae and, (2) placental epithelial cell specializations are similar to species of Scincidae. The terminal placental stage of X. vigilis is similar to skinks in that it includes a chorioallantoic placenta and an omphaloplacenta. The chorioallantoic placenta is richly vascularized with thin, squamous epithelial cells separating the two vascular systems. This morphology differs from the elaborate epithelial cell specializations as occur in some skink species, but is similar to many species. Epithelial cells of the omphaloplacenta are enlarged, as they are in scincids, yet development of the omphaloplacenta includes a vascular pattern known to occur only in gerrhonotine lizards. Histochemical staining properties of the epithelium of the omphalopleure of the omphaloplacenta indicate the potential for protein transport, a function not previously reported for lizards.
Collapse
Affiliation(s)
- James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - William Presch
- Department of Biological Science, California State University, Fullerton, California, USA
| |
Collapse
|
4
|
Vázquez-García E, Villagrán-SantaCruz M. Placentation in the Mexican scincid lizard Plestiodon brevirostris (Squamata: Scincidae). J Morphol 2023; 284:e21563. [PMID: 36719277 DOI: 10.1002/jmor.21563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Viviparity is the reproductive pattern in which females gestate eggs within their reproductive tract to complete their development and give birth to live offspring. Within extant sauropsids, only the Squamata (e.g., snakes, lizards, and amphisbaenians) evolved viviparity, representing 20% of the existing species. The genus Plestiodon is represented by 43 species and is one of the most widely distributed genera of the Scincidae in Mexico. The goal of this research has been to determine the placental morphology and ontogeny during gestation in the lizard Plestiodon brevirostris. Specimens were dissected to obtain the embryonic chambers and the embryos were categorized to carry out the correlation between the development stage and the placenta development. The embryonic chambers were processed using the conventional histological technique for light microscopy. The identified embryonic stages were 4, 29, 34, 36, and 39. A thin eggshell surrounds the egg in early developmental stages; however, this structure is already absent in the embryonic hemisphere during the developmental stage 29. The results revealed that P. brevirostris is a lecithotrophic species, but a close maternal-fetal relationship is established by tissue apposition. Ontogenically, the placental types that form in the embryonic hemisphere are the chorioplacenta, choriovitelline placenta, and chorioallantoic placenta; whereas the omphaloplacenta is formed in the abembryonic hemisphere. The structure of the chorioallantoic placenta in P. brevirostris suggests that it may play a role during gas exchange between the mother and the embryo, due to the characteristics of the epithelia that comprise it. The structure of embryonic and maternal epithelia of the omphaloplacenta suggests a role in the absorption of the eggshell during gestation and possibly in the transport or diffusion of some nutrients. In general, it is evident that ontogeny and placental characteristics of P. brevirostris match those of other species of viviparous lecithotrophic scincids.
Collapse
Affiliation(s)
- Erwin Vázquez-García
- Departamento de Biología Comparada, Laboratorio de Biología Tisular y Reproductora, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Maricela Villagrán-SantaCruz
- Departamento de Biología Comparada, Laboratorio de Biología Tisular y Reproductora, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
5
|
Wen J, Ishihara T, Renfree MB, Griffith OW. Comparing the potential for maternal-fetal signalling in oviparous and viviparous lizards. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210262. [PMID: 36252210 PMCID: PMC9574625 DOI: 10.1098/rstb.2021.0262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
The evolution of a placenta requires several steps including changing the timing of reproductive events, facilitating nutrient exchange, and the capacity for maternal-fetal communication. To understand the evolution of maternal-fetal communication, we used ligand-receptor gene expression as a proxy for the potential for cross-talk in a live-bearing lizard (Pseudemoia entrecasteauxii) and homologous tissues in a related egg-laying lizard (Lampropholis guichenoti). Approximately 70% of expressed ligand/receptor genes were shared by both species. Gene ontology (GO) analysis showed that there was no GO-enrichment in the fetal membranes of the egg-laying species, but live-bearing fetal tissues were significantly enriched for 50 GO-terms. Differences in enrichment suggest that the evolution of viviparity involved reinforcing specific signalling pathways, perhaps to support fetal control of placentation. One identified change was in transforming growth factor beta signalling. Using immunohistochemistry, we show the production of the signalling molecule inhibin beta B (INHBB) occurs in viviparous fetal membranes but was absent in closely related egg-laying tissues, suggesting that the evolution of viviparity may have involved changes to signalling via this pathway. We argue that maternal-fetal signalling evolved through co-opting expressed signalling molecules and recruiting new signalling molecules to support the complex developmental changes required to support a fetus in utero. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Jinglin Wen
- School of BioSciences, University of Melbourne, Victoria 3052, Australia
| | - Teruhito Ishihara
- School of BioSciences, University of Melbourne, Victoria 3052, Australia
| | - Marilyn B. Renfree
- School of BioSciences, University of Melbourne, Victoria 3052, Australia
| | - Oliver W. Griffith
- School of BioSciences, University of Melbourne, Victoria 3052, Australia
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
6
|
Whittington CM, Buddle AL, Griffith OW, Carter AM. Embryonic specializations for vertebrate placentation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210261. [PMID: 36252220 PMCID: PMC9574634 DOI: 10.1098/rstb.2021.0261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
The vertebrate placenta, a close association of fetal and parental tissue for physiological exchange, has evolved independently in sharks, teleost fishes, coelacanths, amphibians, squamate reptiles and mammals. This transient organ forms during pregnancy and is an important contributor to embryonic development in both viviparous and oviparous, brooding species. Placentae may be involved in transport of respiratory gases, wastes, immune molecules, hormones and nutrients. Depending on the taxon, the embryonic portion of the placenta is comprised of either extraembryonic membranes (yolk sac or chorioallantois) or temporary embryonic tissues derived via hypertrophy of pericardium, gill epithelium, gut, tails or fins. These membranes and tissues have been recruited convergently into placentae in several lineages. Here, we highlight the diversity and common features of embryonic tissues involved in vertebrate placentation and suggest future studies that will provide new knowledge about the evolution of pregnancy. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Camilla M. Whittington
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence A08, New South Wales 2006, Australia
| | - Alice L. Buddle
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence A08, New South Wales 2006, Australia
| | - Oliver W. Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsloews Vej 21, 5000 Odense, Denmark
| |
Collapse
|
7
|
Imakawa K, Kusama K, Kaneko-Ishino T, Nakagawa S, Kitao K, Miyazawa T, Ishino F. Endogenous Retroviruses and Placental Evolution, Development, and Diversity. Cells 2022; 11:cells11152458. [PMID: 35954303 PMCID: PMC9367772 DOI: 10.3390/cells11152458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The main roles of placentas include physical protection, nutrient and oxygen import, export of gasses and fetal waste products, and endocrinological regulation. In addition to physical protection of the fetus, the placentas must provide immune protection throughout gestation. These basic functions are well-conserved; however, placentas are undoubtedly recent evolving organs with structural and cellular diversities. These differences have been explained for the last two decades through co-opting genes and gene control elements derived from transposable elements, including endogenous retroviruses (ERVs). However, the differences in placental structures have not been explained or characterized. This manuscript addresses the sorting of ERVs and their integration into the mammalian genomes and provides new ways to explain why placental structures have diverged.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan
- Correspondence: ; Tel.: +81-96-386-2652
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Nakagawa 259-1193, Japan
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Fumitoshi Ishino
- Institute of Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
8
|
Starck JM, Stewart JR, Blackburn DG. Phylogeny and evolutionary history of the amniote egg. J Morphol 2021; 282:1080-1122. [PMID: 33991358 DOI: 10.1002/jmor.21380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
We review morphological features of the amniote egg and embryos in a comparative phylogenetic framework, including all major clades of extant vertebrates. We discuss 40 characters that are relevant for an analysis of the evolutionary history of the vertebrate egg. Special attention is given to the morphology of the cellular yolk sac, the eggshell, and extraembryonic membranes. Many features that are typically assigned to amniotes, such as a large yolk sac, delayed egg deposition, and terrestrial reproduction have evolved independently and convergently in numerous clades of vertebrates. We use phylogenetic character mapping and ancestral character state reconstruction as tools to recognize sequence, order, and patterns of morphological evolution and deduce a hypothesis of the evolutionary history of the amniote egg. Besides amnion and chorioallantois, amniotes ancestrally possess copulatory organs (secondarily reduced in most birds), internal fertilization, and delayed deposition of eggs that contain an embryo in the primitive streak or early somite stage. Except for the amnion, chorioallantois, and amniote type of eggshell, these features evolved convergently in almost all major clades of aquatic vertebrates possibly in response to selective factors such as egg predation, hostile environmental conditions for egg development, or to adjust hatching of young to favorable season. A functionally important feature of the amnion membrane is its myogenic contractility that moves the (early) embryo and prevents adhering of the growing embryo to extraembryonic materials. This function of the amnion membrane and the liquid-filled amnion cavity may have evolved under the requirements of delayed deposition of eggs that contain developing embryos. The chorioallantois is a temporary embryonic exchange organ that supports embryonic development. A possible evolutionary scenario is that the amniote egg presents an exaptation that paved the evolutionary pathway for reproduction on land. As shown by numerous examples from anamniotes, reproduction on land has occurred multiple times among vertebrates-the amniote egg presenting one "solution" that enabled the conquest of land for reproduction.
Collapse
Affiliation(s)
- J Matthias Starck
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - James R Stewart
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | | |
Collapse
|
9
|
Blackburn DG, Stewart JR. Morphological research on amniote eggs and embryos: An introduction and historical retrospective. J Morphol 2021; 282:1024-1046. [PMID: 33393149 DOI: 10.1002/jmor.21320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022]
Abstract
Evolution of the terrestrial egg of amniotes (reptiles, birds, and mammals) is often considered to be one of the most significant events in vertebrate history. Presence of an eggshell, fetal membranes, and a sizeable yolk allowed this egg to develop on land and hatch out well-developed, terrestrial offspring. For centuries, morphologically-based studies have provided valuable information about the eggs of amniotes and the embryos that develop from them. This review explores the history of such investigations, as a contribution to this special issue of Journal of Morphology, titled Developmental Morphology and Evolution of Amniote Eggs and Embryos. Anatomically-based investigations are surveyed from the ancient Greeks through the Scientific Revolution, followed by the 19th and early 20th centuries, with a focus on major findings of historical figures who have contributed significantly to our knowledge. Recent research on various aspects of amniote eggs is summarized, including gastrulation, egg shape and eggshell morphology, eggs of Mesozoic dinosaurs, sauropsid yolk sacs, squamate placentation, embryogenesis, and the phylotypic phase of embryonic development. As documented in this review, studies on amniote eggs and embryos have relied heavily on morphological approaches in order to answer functional and evolutionary questions.
Collapse
Affiliation(s)
- Daniel G Blackburn
- Department of Biology and Electron Microscopy Center, Trinity College, Hartford, Connecticut, USA
| | - James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|