1
|
Varjú I, Tóth E, Farkas ÁZ, Farkas VJ, Komorowicz E, Feller T, Kiss B, Kellermayer MZ, Szabó L, Wacha A, Bóta A, Longstaff C, Kolev K. Citrullinated fibrinogen forms densely packed clots with decreased permeability. J Thromb Haemost 2022; 20:2862-2872. [PMID: 36083779 PMCID: PMC9828116 DOI: 10.1111/jth.15875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Fibrin, the main scaffold of thrombi, is susceptible to citrullination by PAD (peptidyl arginine deiminase) 4, secreted from neutrophils during the formation of neutrophil extracellular traps. Citrullinated fibrinogen (citFg) has been detected in human plasma as well as in murine venous thrombi, and it decreases the lysability and mechanical resistance of fibrin clots. OBJECTIVE To investigate the effect of fibrinogen citrullination on the structure of fibrin clots. METHODS Fibrinogen was citrullinated with PAD4 and clotted with thrombin. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to measure fiber thickness, fiber height/width ratio, and fiber persistence length in clots containing citFg. Fiber density was measured with laser scanning microscopy (LSM) and permeability measurements were carried out to estimate the porosity of the clots. The intra-fiber structure of fibrin was analyzed with small-angle X-ray scattering (SAXS). RESULTS SEM images revealed a decrease in the median fiber diameter that correlated with the fraction of citFg in the clot, while the fiber width/length ratio remained unchanged according to AFM. With SAXS we observed that citrullination resulted in the formation of denser clots in line with increased fiber density shown by LSM. The permeability constant of citrullinated fibrin decreased more than 3-fold indicating significantly decreased porosity. SAXS also showed largely preserved periodicity in the longitudinal assembly of fibrin monomers. CONCLUSION The current observations of thin fibers combined with dense packing and low porosity in the presence of citFg can provide a structural framework for the mechanical fragility and lytic resistance of citrullinated fibrin.
Collapse
Affiliation(s)
- Imre Varjú
- Program in Cellular and Molecular MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
- Department of Sociomedical Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Erzsébet Tóth
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Ádám Z. Farkas
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Veronika J. Farkas
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Erzsébet Komorowicz
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Tímea Feller
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Balázs Kiss
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | | | - László Szabó
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
- Department of Functional and Structural Materials, Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - András Wacha
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - Attila Bóta
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - Colin Longstaff
- National Institute for Biological Standards and ControlSouth MimmsUK
| | - Krasimir Kolev
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| |
Collapse
|
2
|
Single-cell transcriptome atlas of the human corpus cavernosum. Nat Commun 2022; 13:4302. [PMID: 35879305 PMCID: PMC9314400 DOI: 10.1038/s41467-022-31950-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
The corpus cavernosum is the most important structure for penile erection, and its dysfunction causes many physiological and psychological problems. However, its cellular heterogeneity and signalling networks at the molecular level are poorly understood because of limited access to samples. Here, we profile 64,993 human cavernosal single-cell transcriptomes from three males with normal erection and five organic erectile dysfunction patients. Cell communication analysis reveals that cavernosal fibroblasts are central to the paracrine signalling network and regulate microenvironmental homeostasis. Combining with immunohistochemical staining, we reveal the cellular heterogeneity and describe a detailed spatial distribution map for each fibroblast, smooth muscle and endothelial subcluster in the corpus cavernosum. Furthermore, comparative analysis and related functional experiments identify candidate regulatory signalling pathways in the pathological process. Our study provides an insight into the human corpus cavernosum microenvironment and a reference for potential erectile dysfunction therapies. The corpus cavernosum is the most important structure for penile erection, and its dysfunction causes physiological and psychological problems. Here the authors perform single-cell RNA-sequencing on corpus cavernosum samples from males with normal erection and erectile dysfunction patients, providing insights into this pathology.
Collapse
|
3
|
Fluorescence microscopic imaging of single desmin intermediate filaments elongated by the presence of divalent cations in vitro. Biophys Chem 2022; 287:106839. [DOI: 10.1016/j.bpc.2022.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
|
4
|
Kodera N, Ando T. High-Speed Atomic Force Microscopy to Study Myosin Motility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:127-152. [PMID: 32451858 DOI: 10.1007/978-3-030-38062-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-speed atomic force microscopy (HS-AFM) is a unique tool that enables imaging of protein molecules during their functional activity at sub-100 ms temporal and submolecular spatial resolution. HS-AFM is suited for the study of highly dynamic proteins, including myosin motors. HS-AFM images of myosin V walking on actin filaments provide irrefutable evidence for the swinging lever arm motion propelling the molecule forward. Moreover, molecular behaviors that have not been noticed before are also displayed on the AFM movies. This chapter describes the principle, underlying techniques and performance of HS-AFM, filmed images of myosin V, and mechanistic insights into myosin motility provided from the filmed images.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
5
|
Feller T, Hársfalvi J, Csányi C, Kiss B, Kellermayer M. Plasmin-driven fibrinolysis in a quasi-two-dimensional nanoscale fibrin matrix. J Struct Biol 2018; 203:273-280. [DOI: 10.1016/j.jsb.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022]
|
6
|
Sato F, Asakawa H, Fukuma T, Terada S. Semi-in situ atomic force microscopy imaging of intracellular neurofilaments under physiological conditions through the 'sandwich' method. Microscopy (Oxf) 2016; 65:316-24. [PMID: 26960670 DOI: 10.1093/jmicro/dfw006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 11/14/2022] Open
Abstract
Neurofilaments are intermediate filament proteins specific for neurons and characterized by formation of biochemically stable, obligate heteropolymers in vivo While purified or reassembled neurofilaments have been subjected to morphological analyses by electron microscopy and atomic force microscopy, there has been a need for direct imaging of cytoplasmic genuine intermediate filaments with minimal risk of artefactualization. In this study, we applied the modified 'cells on glass sandwich' method to exteriorize intracellular neurofilaments, reducing the risk of causing artefacts through sample preparation. SW13vim(-) cells were double transduced with neurofilament medium polypeptide (NF-M) and alpha-internexin (α-inx). Cultured cells were covered with a cationized coverslip after prestabilization with tannic acid to form a sandwich and then split into two. After confirming that neurofilaments could be deposited on ventral plasma membranes exposed via unroofing, we performed atomic force microscopy imaging semi-in situ in aqueous solution. The observed thin filaments, considered to retain native structures of the neurofilaments, exhibited an approximate periodicity of 50-60 nm along their length. Their structural property appeared to reflect the morphology formed by their constituents, i.e. NF-M and α-inx. The success of semi-in situ atomic force microscopy of exposed bona fide assembled neurofilaments through separating the sandwich suggests that it can be an effective and alternative method for investigating cytoplasmic intermediate filaments under physiological conditions by atomic force microscopy.
Collapse
Affiliation(s)
- Fumiya Sato
- Department of Neuroanatomy and Cellular Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan Japan Society for the Promotion of Science (DC1), Kojimachi Business Center Building, 5-3-1 Kojimahchi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hitoshi Asakawa
- Super-resolution AFM R&D Division, Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Fukuma
- Super-resolution AFM R&D Division, Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan Division of Electrical Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Sumio Terada
- Department of Neuroanatomy and Cellular Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
7
|
Feller T, Kellermayer MS, Kiss B. Nano-thrombelastography of fibrin during blood plasma clotting. J Struct Biol 2014; 186:462-71. [DOI: 10.1016/j.jsb.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 01/28/2023]
|
8
|
Kiss B, Kellermayer MSZ. Stretching desmin filaments with receding meniscus reveals large axial tensile strength. J Struct Biol 2014; 186:472-80. [PMID: 24746912 DOI: 10.1016/j.jsb.2014.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022]
Abstract
Desmin forms the intermediate filament system of muscle cells where it plays important role in maintaining mechanical integrity and elasticity. Although the importance of intermediate-filament elasticity in cellular mechanics is being increasingly recognized, the molecular basis of desmin's elasticity is not fully understood. We explored desmin elasticity by molecular combing with forces calculated to be as large as 4nN. Average filament contour length increased 1.55-fold axial on average. Molecular combing together with EGTA-treatment caused the fragmentation of the filament into short, 60 to 120-nm-long and 4-nm-wide structures. The fragments display a surface periodicity of 38nm, suggesting that they are composed of laterally attached desmin dimers. The axis of the fragments may deviate significantly from that of the overstretched filament, indicating that they have a large orientational freedom in spite of being axially interconnected. The emergence of protofibril fragments thus suggests that the interconnecting head or tail domains of coiled-coil desmin dimers are load-bearing elements during axial stretch.
Collapse
Affiliation(s)
- Balázs Kiss
- Department of Biophysics and Radiation Biology, MTA-SE Molecular Biophysics Research Group, Semmelweis University, 1094 Budapest, Tűzoltó u. 37-47, Hungary.
| | - Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, MTA-SE Molecular Biophysics Research Group, Semmelweis University, 1094 Budapest, Tűzoltó u. 37-47, Hungary
| |
Collapse
|
9
|
Mártonfalvi Z, Kellermayer M. Individual globular domains and domain unfolding visualized in overstretched titin molecules with atomic force microscopy. PLoS One 2014; 9:e85847. [PMID: 24465745 PMCID: PMC3896421 DOI: 10.1371/journal.pone.0085847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/03/2013] [Indexed: 01/29/2023] Open
Abstract
Titin is a giant elastomeric protein responsible for the generation of passive muscle force. Mechanical force unfolds titin's globular domains, but the exact structure of the overstretched titin molecule is not known. Here we analyzed, by using high-resolution atomic force microscopy, the structure of titin molecules overstretched with receding meniscus. The axial contour of the molecules was interrupted by topographical gaps with a mean width of 27.7 nm that corresponds well to the length of an unfolded globular (immunoglobulin and fibronectin) domain. The wide gap-width distribution suggests, however, that additional mechanisms such as partial domain unfolding and the unfolding of neighboring domain multimers may also be present. In the folded regions we resolved globules with an average spacing of 5.9 nm, which is consistent with a titin chain composed globular domains with extended interdomain linker regions. Topographical analysis allowed us to allocate the most distal unfolded titin region to the kinase domain, suggesting that this domain systematically unfolds when the molecule is exposed to overstretching forces. The observations support the prediction that upon the action of stretching forces the N-terminal ß-sheet of the titin kinase unfolds, thus exposing the enzyme's ATP-binding site and hence contributing to the molecule's mechanosensory function.
Collapse
Affiliation(s)
- Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
10
|
Winter DL, Paulin D, Mericskay M, Li Z. Posttranslational modifications of desmin and their implication in biological processes and pathologies. Histochem Cell Biol 2013; 141:1-16. [DOI: 10.1007/s00418-013-1148-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
|