1
|
Konozy EH, Osman MEM. From inflammation to immune regulation: The dual nature of dietary lectins in health and disease. Heliyon 2024; 10:e39471. [PMID: 39502251 PMCID: PMC11535980 DOI: 10.1016/j.heliyon.2024.e39471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Beans, vegetables, fruits, and mushrooms offer a delightful array of fragrances and an abundance of nutrients, including essential vitamins, minerals, protein rich in vital amino acids, and omega-3 fatty acids. However, they may also contain lectins, carbohydrate-binding proteins with potential health risks. While some lectins exhibit stability and resistance to digestion, posing threats to gastrointestinal integrity and immune function, others, such as those from butterfly peas and pink bauhinia, show immunomodulatory properties that could bolster immune responses. While some lectins, such as phytohemagglutinin, have been associated with inflammatory responses and autoimmune disorders, others, such as wheat lectin, have shown potential benefits in nutrient absorption. Additionally, mushroom lectins, while generally nontoxic, exhibit immunomodulatory properties with implications for immune health. Despite their potential benefits, challenges remain in understanding lectin dosages, administration routes, and mechanisms of action. Further research is needed to elucidate the intricate roles of dietary lectins in immune function and autoimmune disorders. This review surveys the immunomodulatory effects of dietary lectins from plants and mushrooms, shedding light on their mechanisms of action. From inflammation modulation to potential autoimmune implications, the diverse roles of dietary lectins have been explored, highlighting avenues for future investigations and therapeutic exploration.
Collapse
Affiliation(s)
- Emadeldin H.E. Konozy
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
- Pharmaceutical Research and Development Centre, Faculty of Pharmacy, Karary University Omdurman, Khartoum State, Sudan
- Biomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences (CoHAS), University of Cape Coast, Cape Coast, Ghana
| | | |
Collapse
|
2
|
Li J, Wang W, Yuan Y, Cui X, Bian H, Wen H, Zhang X, Yu H, Wu H. Pinellia ternata lectin induces inflammation through TLR4 receptor and mediates PI3K/Akt/mTOR axis to regulate NF-κB signaling pathway. Toxicology 2023; 486:153430. [PMID: 36669722 DOI: 10.1016/j.tox.2023.153430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Pinellia ternata, a widely used traditional Chinese medicine, contains a strong mucosal irritant that is connected with Pinellia ternata lectin (PTL) in its tubers. The purpose of this study was to explore the mechanisms by which PTL induces inflammation. We found that in RAW264.7 cells, PTL activated the PI3K/Akt/mTOR and NF-κB pathways, which resulted in the release of proinflammatory cytokines. Flow cytometry and laser confocal microscopy analysis showed that FITC-labeled PTL bound to the macrophages' surface. Based on kinetic analyses and protein-protein docking simulations, PTL was shown to bind toll-like receptor 4 (TLR4).it was demonstrated that PTL binds highly to Toll-like receptor 4 (TLR4). TLR4 knock-down or knockout resulted in a decrease in both cytokine release and PI3K/Akt/mTOR and NF-κB pathway activation in PTL-stimulated macrophages or mice. RNA-seq analysis showed that genes involved in the PI3K/Akt/mTOR signaling pathway were strongly upregulated in response to PTL stimulation, confirming that the PI3K/Akt/mTOR pathway is linked to the inflammatory effect of PTL in RAW264.7 cells. These findings reveal that PTL can mediate inflammation through TLR4 and activating the PI3K/Akt/mTOR to regulate NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jinfei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingde Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongli Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing 210023, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing 210023, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Purification and characterization of a highly thermostable GlcNAc-binding lectin from Collaea speciosa seeds. Int J Biol Macromol 2021; 193:1562-1571. [PMID: 34740693 DOI: 10.1016/j.ijbiomac.2021.10.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022]
Abstract
Lectins from plants of the Diocleinae subtribe often exhibit specificity towards mannose/glucose and derived sugars, with some plants also displaying a second lectin specific to lactose/GalNAc. Here, we present a novel lectin from Collaea speciosa, named CsL, that displays specificity for GlcNAc/glucose. The lectin was extracted from Collaea speciosa seeds and purified by a single chromatographic step on a Sephadex G-50 matrix. In solution, the lectin appears as a dimeric protein composed of 25 kDa monomers. The protein is stable at pH 7-8 and dependent on divalent cations. CsL maintained its agglutination activity after heating to 90 °C for 1 h. Glycan array studies revealed that CsL binds to N-glycans with terminal GlcNAc residues, chitobiose and chitotriose moieties. The partial amino acid sequence of the lectin is similar to that of some lactose-specific lectins from the same subtribe. In contrast to other ConA-like lectins, CsL is not toxic to Artemia. Because of its remarkably different properties and specificity, this lectin could be the first member of a new group inside the Diocleinae lectins.
Collapse
|
4
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Lossio CF, Silva MTL, Correia JLA, Correia SEG, Nagano CS, Oliveira MV, Lima LD, Vital APMS, Leal RB, Nascimento KS. A Diocleinae type II lectin from Dioclea lasiophylla Mart. Ex Benth seeds specific to α-lactose/GalNAc. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Nascimento KS. ConA-Like Lectins: High Similarity Proteins as Models to Study Structure/Biological Activities Relationships. Int J Mol Sci 2018; 20:ijms20010030. [PMID: 30577614 PMCID: PMC6337138 DOI: 10.3390/ijms20010030] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023] Open
Abstract
Lectins are a widely studied group of proteins capable of specific and reversible binding to carbohydrates. Undoubtedly, the best characterized are those extracted from plants of the Leguminosae family. Inside this group of proteins, those from the Diocleinae subtribe have attracted attention, in particular Concanavalin A (ConA), the best-studied lectin of the group. Diocleinae lectins, also called ConA-like lectins, present a high similarity of sequence and three-dimensional structure and are known to present inflammatory, vasoactive, antibiotic, immunomodulatory and antitumor activities, among others. This high similarity of lectins inside the ConA-like group makes it possible to use them to study structure/biological activity relationships by the variability of both carbohydrate specificity and biological activities results. It is in this context the following review aims to summarize the most recent data on the biochemical and structural properties, as well as biological activities, of ConA-like lectins and the use of these lectins as models to study structure/biological activity relationships.
Collapse
Affiliation(s)
- Benildo S Cavada
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Vanir R Pinto-Junior
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Vinicius J S Osterne
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Kyria S Nascimento
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| |
Collapse
|
6
|
Mitogenic activity of Artocarpus lingnanensis lectin and its apoptosis induction in Jurkat T cells. J Nat Med 2018; 72:745-756. [DOI: 10.1007/s11418-018-1212-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
|
7
|
Lossio CF, Moreira CG, Amorim RMF, Nobre CS, Silva MTL, Neto CC, Pinto-Junior VR, Silva IB, Campos J, Assreuy AMS, Cavada BS, Nascimento KS. Lectin from Canavalia villosa seeds: A glucose/mannose-specific protein and a new tool for inflammation studies. Int J Biol Macromol 2017; 105:272-280. [PMID: 28693997 DOI: 10.1016/j.ijbiomac.2017.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 02/04/2023]
Abstract
With important carbohydrate binding properties, lectins are proteins able to decipher the glycocode, and as such, they can be used in bioassays involving cell-cell communication, protein targeting, inflammation, and hypernociception, among others. In this study, a new glucose/mannose-specific lectin from Canavalia villosa seeds (Cvill) was isolated by a single affinity chromatography step in a Sephadex® G-50 column, with a purification yield of 19.35mg of lectin per gram of powdered seed. Analysis of intact protein by mass spectrometry showed the lectin is composed of three polypeptide chains, including a 25.6kDa α chain, 12.9KDa β, and 12.6 KDa γ fragments, similar to the profile of ConA-like glucose/mannose-specific lectins. Partial sequence of the protein was obtained by MS-MALDI TOF/TOF covering 41.7% of its primary structure. Cvill presented sugar specificity to d-glucose, α-methyl-d-mannoside, d-mannose, and glycoproteins fetuin and ovoalbumin. The lectin characterization showed that Cvill presents high stability within a broad range of pH and temperature, also showing average toxicity against Artemia nauplii. The proinflammatory effect of Cvill was observed by induction of paw edema and hypernociception in mice, with the participation of the carbohydrate binding site, showing its potential to be used as tool in inflammation studies.
Collapse
Affiliation(s)
- Claudia F Lossio
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Cleane G Moreira
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Renata M F Amorim
- Laboratório de Fisio-Farmacologia da Inflamação (LAFFIN), Instituto de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Clareane S Nobre
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Mayara T L Silva
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Cornevile C Neto
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Vanir R Pinto-Junior
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ivanice B Silva
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Julia Campos
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife, PE, Brazil
| | - Ana Maria S Assreuy
- Laboratório de Fisio-Farmacologia da Inflamação (LAFFIN), Instituto de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Benildo S Cavada
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Kyria S Nascimento
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
8
|
A novel lectin from Artocarpus lingnanensis induces proliferation and Th1/Th2 cytokine secretion through CD45 signaling pathway in human T lymphocytes. J Nat Med 2017; 71:409-421. [DOI: 10.1007/s11418-017-1073-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023]
|
9
|
Osterne VJS, Silva-Filho JC, Santiago MQ, Pinto-Junior VR, Almeida AC, Barreto AAGC, Wolin IAV, Nascimento APM, Amorim RMF, Rocha BAM, Delatorre P, Nagano CS, Leal RB, Assreuy AMS, Nascimento KS, Cavada BS. Structural characterization of a lectin from Canavalia virosa seeds with inflammatory and cytotoxic activities. Int J Biol Macromol 2017; 94:271-282. [DOI: 10.1016/j.ijbiomac.2016.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/08/2016] [Accepted: 10/09/2016] [Indexed: 01/25/2023]
|
10
|
Shanmugavel S, Velayutham V, Kamalanathan T, Periasamy M, Munusamy A, Sundaram J. Isolation and analysis of mannose/trehalose/maltose specific lectin from jack bean with antibruchid activity. Int J Biol Macromol 2016; 91:1-14. [PMID: 27238584 DOI: 10.1016/j.ijbiomac.2016.05.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 02/02/2023]
Abstract
A lectin with insecticidal property against the stored product pest, Callosobruchus maculatus was successfully isolated from the seeds of Canavalia virosa using standard affinity chromatography. The isolated molecule typically behaved like a lectin in its characteristics. It agglutinated indicator red blood cells (RBC) in its native as well as enzyme treated conditions. The enzyme treated RBC types exhibited a very high hemagglutination (HA) titre values and this property of isolated molecule behaved like arcelin, the lectin-like molecules reported from several species of Phaseolus. As a characteristic feature of a lectin, the isolated molecule effectively inhibited the agglutination of indicator RBC types with simple and complex carbohydrates including glycoproteins. This nature of the isolated molecule also relate with characteristic feature of arcelin isoforms in inhibiting HA activity with complex glycoproteins as reported in many studies. Most interestingly, the present study disclosed trehalose as a potent inhibitor of C. virosa lectin. Therefore, feeding insect pests on the lectin like arcelin could serve as antibiosis factor/anti-insect activity. The molecular characteristics of this isolated molecule and its mass studies too revealed its homology with arcelin, arcelin-1, 2 and 6 isoforms of P. vulgaris and lectin from Canavalia cathartica, C. lineata and C. brasiliensis.
Collapse
Affiliation(s)
| | - Veeramani Velayutham
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | | | - Arumugam Munusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
11
|
Almeida AC, Osterne VJDS, Santiago MQ, Pinto-Junior VR, Silva-Filho JC, Lossio CF, Nascimento FLF, Almeida RPH, Teixeira CS, Leal RB, Delatorre P, Rocha BAM, Assreuy AMS, Nascimento KS, Cavada BS. Structural analysis of Centrolobium tomentosum seed lectin with inflammatory activity. Arch Biochem Biophys 2016; 596:73-83. [PMID: 26946944 DOI: 10.1016/j.abb.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
A glycosylated lectin (CTL) with specificity for mannose and glucose has been detected and purified from seeds of Centrolobium tomentosum, a legume plant from Dalbergieae tribe. It was isolated by mannose-sepharose affinity chromatography. The primary structure was determined by tandem mass spectrometry and consists of 245 amino acids, similar to other Dalbergieae lectins. CTL structures were solved from two crystal forms, a monoclinic and a tetragonal, diffracted at 2.25 and 1.9 Å, respectively. The carbohydrate recognition domain (CRD), metal-binding site and glycosylation site were characterized, and the structural basis for mannose/glucose-binding was elucidated. The lectin adopts the canonical dimeric organization of legume lectins. CTL showed acute inflammatory effect in paw edema model. The protein was subjected to ligand screening (dimannosides and trimannoside) by molecular docking, and interactions were compared with similar lectins possessing the same ligand specificity. This is the first crystal structure of mannose/glucose native seed lectin with proinflammatory activity isolated from the Centrolobium genus.
Collapse
Affiliation(s)
- Alysson Chaves Almeida
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Vinicius Jose da Silva Osterne
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Mayara Queiroz Santiago
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Vanir Reis Pinto-Junior
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Jose Caetano Silva-Filho
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza - Campus I, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Claudia Figueiredo Lossio
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Claudener Souza Teixeira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Plinio Delatorre
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza - Campus I, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Ana Maria Sampaio Assreuy
- Instituto de Superior de Ciências Fisiológicas-ISCB, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Kyria Santiago Nascimento
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Benildo Sousa Cavada
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
12
|
Alves AC, Vasconcelos MA, Santiago MQ, Pinto-Junior VR, Silva Osterne VJ, Lossio CF, Bringel PHSF, Castro RR, Nagano CS, Delatorre P, Souza LAG, Nascimento KS, Assreuy AMS, Cavada BS. A novel vasorelaxant lectin purified from seeds of Clathrotropis nitida: partial characterization and immobilization in chitosan beads. Arch Biochem Biophys 2015; 588:33-40. [PMID: 26545483 DOI: 10.1016/j.abb.2015.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 02/02/2023]
Abstract
A novel lectin from seeds of Clathrotropis nitida (CNA) was purified and characterized. CNA is a glycoprotein containing approximately 3.3% carbohydrates in its structure. CNA promoted intense agglutination of rabbit erythrocytes, which was inhibited by galactosides and porcine stomach mucin (PSM). The lectin maintained its hemagglutinating activity after incubation in a wide range of temperatures (30-60 °C) and pH (6.0-7.0), and its binding activity was dependent on divalent cations (Ca(+2) and Mg(+2)). SDS-PAGE showed an electrophoretic profile consisting of a single band of 28 kDa, as confirmed by electrospray ionization mass spectrometry, which indicated an average molecular mass of 27,406 ± 2 Da and the possible presence of isoforms and glycoforms. In addition, CNA exhibited no toxicity to Artemia sp. nauplii and elicited reversible and dose-dependent vasorelaxation in precontracted aortic rings. CNA was successfully immobilized on chitosan beads and was able to capture PSM in solution. This study demonstrated that CNA is a lectin that has potential as a biotechnological tool in glycomics and glycoproteomics applications.
Collapse
Affiliation(s)
- Ana Cecilia Alves
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Mayron Alves Vasconcelos
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Mayara Queiroz Santiago
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Vanir Reis Pinto-Junior
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Vinicius Jose Silva Osterne
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Claudia Figueiredo Lossio
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Pedro Henrique Souza Ferreira Bringel
- Instituto Superior de Ciências Biomédicas-ISCB and Faculdade de Filosofia Dom Aureliano Matos-FAFIDAM, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Rondinelle Ribeiro Castro
- Instituto Superior de Ciências Biomédicas-ISCB and Faculdade de Filosofia Dom Aureliano Matos-FAFIDAM, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Espectrometria de Massas Aplicada a Proteínas - LEMAP, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Plinio Delatorre
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza - Campus I, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Kyria Santiago Nascimento
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Ana Maria Sampaio Assreuy
- Instituto Superior de Ciências Biomédicas-ISCB and Faculdade de Filosofia Dom Aureliano Matos-FAFIDAM, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Benildo Sousa Cavada
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
13
|
Pinto-Junior VR, Correia JLA, Pereira RI, Pereira-Junior FN, Santiago MQ, Osterne VJS, Madeira JC, Cajazeiras JB, Nagano CS, Delatorre P, Assreuy AMS, Nascimento KS, Cavada BS. Purification and molecular characterization of a novel mannose-specific lectin from Dioclea reflexa hook seeds with inflammatory activity. J Mol Recognit 2015; 29:134-41. [PMID: 26464029 DOI: 10.1002/jmr.2512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 12/16/2022]
Abstract
A novel lectin present in Dioclea reflexa seeds (DrfL) was discovered and described in this study. DrfL was purified in a single step by affinity chromatography in a Sephadex G-50 column. The lectin strongly agglutinated rabbit erythrocytes and was inhibited by α-methyl-D-mannoside, D-mannose, and D-glucose. The hemagglutinating activity of DrfL is optimum at pH 5.0-7.0, stable up to 50 °C, and dependent on divalent cations. Similar to other lectins of the subtribe Diocleinae, the analysis by mass spectrometry indicated that DrfL has three chains (α, β, and γ) with masses of 25,562, 12,874, and 12,706 Da, respectively, with no disulfide bonds or glycosylation. DrfL showed inflammatory activity in the paw edema model and exhibited low cytotoxicity against Artemia sp.
Collapse
Affiliation(s)
- Vanir R Pinto-Junior
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jorge L A Correia
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ronniery I Pereira
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisco N Pereira-Junior
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mayara Q Santiago
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vinicius J S Osterne
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Juliana C Madeira
- Laboratório de Fisio-Farmacologia da Inflamação (LAFFIN), Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - João B Cajazeiras
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Celso S Nagano
- Laboratório de Espectrometria de Massas aplicado a Proteínas (LEMAP), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Plinio Delatorre
- Laboratório de Biologia Molecular Estrutural e Oncogenética (LBMEO), Department of Molecular Biology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Ana M S Assreuy
- Laboratório de Fisio-Farmacologia da Inflamação (LAFFIN), Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Kyria S Nascimento
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Benildo S Cavada
- Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
14
|
Sartim MA, Sampaio SV. Snake venom galactoside-binding lectins: a structural and functional overview. J Venom Anim Toxins Incl Trop Dis 2015; 21:35. [PMID: 26413085 PMCID: PMC4583214 DOI: 10.1186/s40409-015-0038-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 09/16/2015] [Indexed: 12/13/2022] Open
Abstract
Snake venom galactoside-binding lectins (SVgalLs) comprise a class of toxins capable of recognizing and interacting with terminal galactoside residues of glycans. In the past 35 years, since the first report on the purification of thrombolectin from Bothrops atrox snake venom, several SVgalLs from Viperidae and Elapidae snake families have been described, as has progressive improvement in the investigation of structural/functional aspects of these lectins. Moreover, the advances of techniques applied in protein-carbohydrate recognition have provided important approaches in order to screen for possible biological targets. The present review describes the efforts over the past 35 years to elucidate SVgalLs, highlighting their structure and carbohydrate recognition function involved in envenomation pathophysiology and potential biomedical applications.
Collapse
Affiliation(s)
- Marco A. Sartim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Suely V. Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| |
Collapse
|
15
|
Chan YS, Yu H, Xia L, Ng TB. Lectin from green speckled lentil seeds (Lens culinaris) triggered apoptosis in nasopharyngeal carcinoma cell lines. Chin Med 2015; 10:25. [PMID: 26357525 PMCID: PMC4563850 DOI: 10.1186/s13020-015-0057-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/31/2015] [Indexed: 02/05/2023] Open
Abstract
Background The green speckled lentil seed (Lens culinaris) lectin (GSLL) exhibits hemagglutinating activity, and possesses some properties distinct from those of other lentil lectins (e.g., molecular size, biological activities) that deserve further investigation.
This study aims to investigate the basic properties (e.g., molecular size, amino acid sequence, sugar specificity) and biological activities (e.g., antiproliferative activity) of GSLL. Methods GSLL was purified by successive fractionation on SP-Sepharose, Affi-gel blue gel, Mono Q, and Superdex 75. The biochemical properties of GSLL were investigated by SDS-PAGE, mass spectrometry, N-terminal amino acid sequencing, and sugar inhibition tests. For the biological activities, purified lyophilized GSLL was sterilized, adjusted to concentrations from 1 to 0 mg/mL (by twofold serial dilution) in Dulbecco’s modified Eagle’s medium with fetal bovine serum, and examined by using the MTT assay, flow cytometry, and western blotting after treatment of nasopharyngeal carcinoma CNE1 and CNE2 cell lines with the lectin. Results GSLL appeared as a 21-kDa band in non-reducing SDS-PAGE. It was composed of two subunits with molecular sizes of 17 and ~4 kDa. It exhibited specificity in binding to glucose and mannose, as well as glucosides and mannosides. Mass spectrometry and N-terminal amino acid sequencing revealed similarity of GSLL to L. culinaris lectin (LcL), especially higher coverage of the β-chain of LcL. A 48-h treatment with GSLL exerted antiproliferative effects on nasopharyngeal carcinoma CNE1 and CNE2 cell lines with significant inhibition at 0.125 mg/mL (P < 0.001) and 1 mg/mL (P = 0.004), respectively, and these effects were attenuated in the presence of glucose and mannose. GSLL induced apoptosis in nasopharyngeal carcinoma CNE1 cells, with detectable phosphatidylserine externalization, mitochondrial depolarization, and cell cycle arrest. Western blot analysis suggested that GSLL triggered the extrinsic apoptotic pathway involving caspase 3, 8, and 9 in CNE1 cells. Conclusion GSLL possessed some different properties from LcL (e.g., lower pI), and increased caspase 3, 8, and 9 activity in CNE1 cells.
Collapse
Affiliation(s)
- Yau Sang Chan
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060 Shenzhen, Guangdong People's Republic of China
| | - Huimin Yu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060 Shenzhen, Guangdong People's Republic of China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060 Shenzhen, Guangdong People's Republic of China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Lo Kwee Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories Hong Kong, People's Republic of China
| |
Collapse
|