1
|
Monnier A, Díaz-Álvarez M, Turiel E, Martín-Esteban A. Evaluation of deep eutectic solvents in the synthesis of molecularly imprinted fibers for the solid-phase microextraction of triazines in soil samples. Anal Bioanal Chem 2024; 416:1337-1347. [PMID: 38308710 PMCID: PMC10861628 DOI: 10.1007/s00216-024-05164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Nowadays, molecularly imprinted polymers (MIPs) are well established and are considered excellent materials for performing selective extractions. However, with the progressive implementation of the principles of green chemistry, it is necessary to find greener alternatives for both the synthesis and further use of MIPs in sample preparation. Accordingly, in the present work, different deep eutectic solvents (DES, both hydrophilic and hydrophobic), as an alternative to conventional organic solvents (i.e., toluene), were evaluated as porogens for the synthesis of imprinted fibers (monoliths), using fused silica capillaries as molds, for solid-phase microextraction (SPME). From this study, the polymer prepared with propazine (dummy template), methacrylic acid (monomer), ethylene glycol dimethacrylate (cross-linker), and a formic acid:L-menthol (1:1) DES (porogen) showed the best performance for selective rebinding of triazines. After optimization of the different variables involved in SPME, the new imprinted fibers were successfully applied to the extraction of target analytes (desisopropylatrazine, desethylatrazine, simazine, and atrazine) from soil sample extracts, providing relative recoveries ranging from 75.7 to 120.1%, reaching limits of detection within the range of 6.2-15.7 ng g-1, depending upon the analyte.
Collapse
Affiliation(s)
- Alexia Monnier
- Departamento de Medio Ambiente y Agronomía, INIA-CSIC, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA-CSIC, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain
| | - Esther Turiel
- Departamento de Medio Ambiente y Agronomía, INIA-CSIC, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA-CSIC, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Hao YX, Yang ML, Chen XF, Zhang F, Li N, He MY, Xu MX. Development of Magnetic Molecularly Imprinted Polymer Coupled Nanospray Ion Source for Analysis of Cephalosporin Antibiotics in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37246392 DOI: 10.1021/acs.jafc.3c01527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A magnetic molecularly imprinted polymer (MMIP) coupled nanospray ion source was developed for analysis of cephalosporin antibiotics in food samples. MIP coated Fe3O4 nanospheres were prepared for magnetic solid-phase extraction (MSPE) of the antibiotics in the extract of samples and then integrated into the nanospray capillary for further desorption and mass spectrometry analysis. The developed device combines the advantages of high extraction efficiency of MSPE, unique selectivity of MIPs, and fast analysis speed of ambient ionization mass spectrometry (AIMS). Five cephalosporin antibiotics in milk, egg, and beef samples were analyzed using the developed methods. High sensitivities with limits of detection (LODs) from 0.3 to 0.5 μg kg-1 were achieved for cephalosporin antibiotics in milk, egg, and beef samples, respectively. Good linearity, determination coefficient values (R2 > 0.992), and precision (RSD < 15%) with recoveries ranging from 72.6% to 115.5% were obtained using the spiked milk, egg, and beef sample matrices.
Collapse
Affiliation(s)
- Ya-Xin Hao
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong 250014, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Min-Li Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xiang-Feng Chen
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong 250014, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Na Li
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong 250014, China
| | - Mu-Yi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Mei-Xia Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| |
Collapse
|
3
|
Yang J, Wang Y, Pan M, Xie X, Liu K, Hong L, Wang S. Synthesis of Magnetic Metal-Organic Frame Material and Its Application in Food Sample Preparation. Foods 2020; 9:E1610. [PMID: 33172006 PMCID: PMC7694616 DOI: 10.3390/foods9111610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
A variety of contaminants in food is an important aspect affecting food safety. Due to the presence of its trace amounts and the complexity of food matrix, it is very difficult to effectively separate and accurately detect them. The magnetic metal-organic framework (MMOF) composites with different structures and functions provide a new choice for the purification of food matrix and enrichment of trace targets, thus providing a new direction for the development of new technologies in food safety detection with high sensitivity and efficiency. The MOF materials composed of inorganic subunits and organic ligands have the advantages of regular pore structure, large specific surface area and good stability, which have been thoroughly studied in the pretreatment of complex food samples. MMOF materials combined different MOF materials with various magnetic nanoparticles, adding magnetic characteristics to the advantages of MOF materials, which are in terms of material selectivity, biocompatibility, easy operation and repeatability. Combined with solid phase extraction (SPE) technique, MMOF materials have been widely used in the food pretreatment. This article introduced the new preparation strategies of different MMOF materials, systematically summarizes their applications as SPE adsorbents in the pretreatment of food contaminants and analyzes and prospects their future application prospects and development directions.
Collapse
Affiliation(s)
- Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yabin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.Y.); (Y.W.); (M.P.); (X.X.); (K.L.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Turiel E, Díaz‐Álvarez M, Martín‐Esteban A. Surface modified‐magnetic nanoparticles by molecular imprinting for the dispersive solid‐phase extraction of triazines from environmental waters. J Sep Sci 2020; 43:3304-3314. [DOI: 10.1002/jssc.202000230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Esther Turiel
- Departamento de Medio Ambiente y AgronomíaINIA Madrid Spain
| | | | | |
Collapse
|
5
|
Turiel E, Martín-Esteban A. Molecularly imprinted polymers-based microextraction techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Zengin A, Badak MU, Aktas N. Selective separation and determination of quercetin from red wine by molecularly imprinted nanoparticles coupled with HPLC and ultraviolet detection. J Sep Sci 2018; 41:3459-3466. [DOI: 10.1002/jssc.201800437] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Adem Zengin
- Department of Chemical Engineering; Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| | - M. Utku Badak
- Department of Chemical Engineering; Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| | - Nahit Aktas
- Department of Chemical Engineering; Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| |
Collapse
|
7
|
García-Fernández M, Díaz-Álvarez M, Martín-Esteban A. Molecularly imprinted magnetic nanoparticles for the micro solid-phase extraction of thiabendazole from citrus samples. J Sep Sci 2017; 40:2638-2644. [DOI: 10.1002/jssc.201700321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/27/2022]
|
8
|
Díaz-Álvarez M, Turiel E, Martín-Esteban A. Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of triazines from environmental soil samples. J Chromatogr A 2016; 1469:1-7. [DOI: 10.1016/j.chroma.2016.09.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
|