1
|
Yadav R, Nandy A, Bisoi A, Mukherjee S. Exploring the Specific Role of Iron Center in the Catalytic Activity of Human Serum Transferrin: CTAB-Induced Conformational Changes and Sequestration by Mixed Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6172-6186. [PMID: 38467540 DOI: 10.1021/acs.langmuir.3c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Conformational changes play a seminal role in modulating the activity of proteins. This concept becomes all the more relevant in the context of metalloproteins, owing to the formation of specific conformation(s) induced by internal perturbations (like a change in pH, ligand binding, or receptor binding), which may carry out the binding and release of the metal ion/ions from the metal binding center of the protein. Herein, we investigated the conformational changes of an iron-binding protein, monoferric human serum transferrin (Fe-hTF), using several spectroscopic approaches. We could reversibly tune the cetyltrimethylammonium bromide (CTAB)-induced conformation of the protein, exploiting the concept of mixed micelles formed by three sequestrating agents: (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) hydrate (CHAPS) and two bile salts, namely, sodium cholate (NaC) and sodium deoxycholate (NaDC). The formation of mixed micelles between CTAB and these reagents (CHAPS/NaC/NaDC) results in the sequestration of CTAB molecules from the protein environment and aids the protein in reattaining its native-like structure. However, the guanidinium hydrochloride-induced denatured Fe-hTF did not acquire its native-like structure using these sequestrating agents, which substantiates the exclusive role of mixed micelles in the present study. Apart from this, we found that the conformation of transferrin (adopted in the presence of CTAB) displays pronounced esterase-like activity toward the para-nitrophenyl acetate (PNPA) substrate as compared to native transferrin. We also outlined the impact of the iron center and amino acids surrounding the iron center on the effective catalytic activity in the CTAB medium. We estimated ∼3 times higher specific catalytic efficiency for the iron-depleted Apo-hTF compared to the fully iron-saturated Fe2-hTF in the presence of CTAB.
Collapse
Affiliation(s)
- Rahul Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Asim Bisoi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
2
|
Pareja Tello R, Wang S, Fontana F, Correia A, Molinaro G, López Cerdà S, Hietala S, Hirvonen J, Barreto G, Santos HA. Fabrication of hydrogel microspheres via microfluidics using inverse electron demand Diels-Alder click chemistry-based tetrazine-norbornene for drug delivery and cell encapsulation applications. Biomater Sci 2023. [PMID: 37334482 DOI: 10.1039/d3bm00292f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Microfluidic on-chip production of polymeric hydrogel microspheres (MPs) can be designed for the loading of different biologically active cargos and living cells. Among different gelation strategies, ionically crosslinked microspheres generally show limited mechanical properties, meanwhile covalently crosslinked microspheres often require the use of crosslinking agents or initiators with limited biocompatibility. Inverse electron demand Diels Alder (iEDDA) click chemistry is a promising covalent crosslinking method with fast kinetics, high chemoselectivity, high efficiency and no cross-reactivity. Herein, in situ gellable iEDDA-crosslinked polymeric hydrogel microspheres are developed via water-in-oil emulsification (W/O) glass microfluidics. The microspheres are composed of two polyethylene glycol precursors modified with either tetrazine or norbornene as functional moieties. Using a single co-flow glass microfluidic platform, homogenous MPs of sizes 200-600 μm are developed and crosslinked within 2 minutes. The rheological properties of iEDDA crosslinked bulk hydrogels are maintained with a low swelling degree and a slow degradation behaviour under physiological conditions. Moreover, a high-protein loading capacity can be achieved, and the encapsulation of mammalian cells is possible. Overall, this work provides the possibility of developing microfluidics-produced iEDDA-crosslinked MPs as a potential drug vehicle and cell encapsulation system in the biomedical field.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sandra López Cerdà
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00014, Helsinki, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280, Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
3
|
Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021; 22:ijms221810086. [PMID: 34576249 PMCID: PMC8466385 DOI: 10.3390/ijms221810086] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called “green chemistry” field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.
Collapse
|
4
|
Kowacz M, Pollack GH. Moving Water Droplets: The Role of Atmospheric CO2 and Incident Radiant Energy in Charge Separation at the Air–Water Interface. J Phys Chem B 2019; 123:11003-11013. [DOI: 10.1021/acs.jpcb.9b09161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Magdalena Kowacz
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| | - Gerald H. Pollack
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| |
Collapse
|