1
|
Li B, Wang L, Du M, He H. FTO in oral diseases: Functions, mechanisms, and therapeutic potential. FASEB J 2024; 38:e70115. [PMID: 39436191 DOI: 10.1096/fj.202401406rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Fat mass and obesity-associated protein (FTO) is the first identified N6-methyladenosine (m6A) demethylase widely distributed in various tissues in adults and children. It plays an essential role in diverse mRNA-associated processes including transcriptional stability, selective splicing, mRNA translocation, and also protein translation. Recently, emerging studies have shown that FTO is involved in the genesis and development of oral diseases. However, the correlation between FTO and oral diseases and its specific regulatory mechanism still needs further study. In this review, we will summarize the discovery, distribution, gene expression, protein structure, biological functions, inhibitors, and quantifying methods of FTO, as well as its regulatory role and mechanism in oral diseases. Notably, FTO genetic variants are strongly associated with periodontal diseases (PDs), temporomandibular joint osteoarthritis (TMJOA), and obstructive sleep apnea (OSA). Besides, the latest studies that describe the relationship between FTO and PDs, head and neck squamous cell carcinoma (HNSCCs), TMJOA, and OSA will be discussed. We elaborate on the regulatory roles of FTO in PDs, HNSCCs, and TMJOA, which are modulated through cell proliferation, cell migration, apoptosis, bone metabolism, and immune response. The review will enrich our understanding of RNA epigenetic modifications in oral diseases and present a solid theoretical foundation for FTO to serve as a novel diagnosis and prognostic biomarker for oral diseases.
Collapse
Affiliation(s)
- Biao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Leilei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingyuan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Wu Z, Zhou R, Li B, Cao M, Wang W, Li X. Methylation modifications in tRNA and associated disorders: Current research and potential therapeutic targets. Cell Prolif 2024; 57:e13692. [PMID: 38943267 PMCID: PMC11503269 DOI: 10.1111/cpr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
High-throughput sequencing has sparked increased research interest in RNA modifications, particularly tRNA methylation, and its connection to various diseases. However, the precise mechanisms underpinning the development of these diseases remain largely elusive. This review sheds light on the roles of several tRNA methylations (m1A, m3C, m5C, m1G, m2G, m7G, m5U, and Nm) in diverse biological functions, including metabolic processing, stability, protein interactions, and mitochondrial activities. It further outlines diseases linked to aberrant tRNA modifications, related enzymes, and potential underlying mechanisms. Moreover, disruptions in tRNA regulation and abnormalities in tRNA-derived small RNAs (tsRNAs) contribute to disease pathogenesis, highlighting their potential as biomarkers for disease diagnosis. The review also delves into the exploration of drugs development targeting tRNA methylation enzymes, emphasizing the therapeutic prospects of modulating these processes. Continued research is imperative for a comprehensive comprehension and integration of these molecular mechanisms in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ruixin Zhou
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Baizao Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mingyu Cao
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wenlong Wang
- Department of Breast Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Clinical Research Center for Breast Cancer in Hunan ProvinceChangshaHunanChina
| | - Xinying Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Ren C, Cao Z, Liu Y, Wang R, Lin C, Wang Z. Medicinal chemistry aspects of fat mass and obesity associated protein: structure, function and inhibitors. Future Med Chem 2024; 16:1705-1726. [PMID: 39101588 PMCID: PMC11370915 DOI: 10.1080/17568919.2024.2380245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Adiposity and obesity-related proteins (FTO), the earliest identified mRNA N6-methyladenosine (m6A) demethylases, are known to play crucial roles in several biological processes. Therefore, FTO is a promising target for anticancer treatment. Understanding the biological functions and regulatory mechanisms of FTO targets can serve as guidelines for drug development. Despite significant efforts to develop FTO inhibitors, no specific small-molecule inhibitors have entered clinical trials so far. In this manuscript, we review the relationship between FTO and various cancers, the small-molecule inhibitors developed against FTO targets from the perspective of medicinal chemistry and other fields, and describe their structural optimization process and structure-activity relationship, providing clues for their future development direction.
Collapse
Affiliation(s)
- Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Zhi Cao
- Medical Quality Control & Evaluation Department, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Yang Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Rui Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Congcong Lin
- Department of Pharmaceutics, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zishu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| |
Collapse
|
4
|
Harrahill NJ, Hadden MK. Small molecules that regulate the N 6-methyladenosine RNA modification as potential anti-cancer agents. Eur J Med Chem 2024; 274:116526. [PMID: 38805939 DOI: 10.1016/j.ejmech.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Epitranscriptomics, the field of post-translational RNA modifications, is a burgeoning domain of research that has recently received significant attention for its role in multiple diseases, including cancer. N6-methyladenosine (m6A) is the most prominent post-translational RNA modification and plays a critical role in RNA transcription, processing, translation, and metabolism. The m6A modification is controlled by three protein classes known as writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins). Each class of m6A regulatory proteins has been implicated in cancer initiation and progression. As such, many of these proteins have been identified as potential targets for anti-cancer chemotherapeutics. In this work, we provide an overview of the role m6A-regulating proteins play in cancer and discuss the current state of small molecule therapeutics targeting these proteins.
Collapse
Affiliation(s)
- Noah J Harrahill
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States.
| |
Collapse
|
5
|
Feng G, Wu Y, Hu Y, Shuai W, Yang X, Li Y, Ouyang L, Wang G. Small molecule inhibitors targeting m 6A regulators. J Hematol Oncol 2024; 17:30. [PMID: 38711100 PMCID: PMC11075261 DOI: 10.1186/s13045-024-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
As the most common form of epigenetic regulation by RNA, N6 methyladenosine (m6A) modification is closely involved in physiological processes, such as growth and development, stem cell renewal and differentiation, and DNA damage response. Meanwhile, its aberrant expression in cancer tissues promotes the development of malignant tumors, as well as plays important roles in proliferation, metastasis, drug resistance, immunity and prognosis. This close association between m6A and cancers has garnered substantial attention in recent years. An increasing number of small molecules have emerged as potential agents to target m6A regulators for cancer treatment. These molecules target the epigenetic level, enabling precise intervention in RNA modifications and efficiently disrupting the survival mechanisms of tumor cells, thus paving the way for novel approaches in cancer treatment. However, there is currently a lack of a comprehensive review on small molecules targeting m6A regulators for anti-tumor. Here, we have comprehensively summarized the classification and functions of m6A regulators, elucidating their interactions with the proliferation, metastasis, drug resistance, and immune responses in common cancers. Furthermore, we have provided a comprehensive overview on the development, mode of action, pharmacology and structure-activity relationships of small molecules targeting m6A regulators. Our aim is to offer insights for subsequent drug design and optimization, while also providing an outlook on future prospects for small molecule development targeting m6A.
Collapse
Affiliation(s)
- Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yuan Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Guo J, Zhao L, Duan M, Yang Z, Zhao H, Liu B, Wang Y, Deng L, Wang C, Jiang X, Jiang X. Demethylases in tumors and the tumor microenvironment: Key modifiers of N 6-methyladenosine methylation. Biomed Pharmacother 2024; 174:116479. [PMID: 38537580 DOI: 10.1016/j.biopha.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.
Collapse
Affiliation(s)
- Junchen Guo
- Departmentof Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liang Zhao
- Department of Anorectal Surgery, Shenyang Anorectal Hospital, Shenyang, Liaoning 110002, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liping Deng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Chen Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Xiaodi Jiang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110002, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
7
|
Mao-Mao, Zhang JJ, Xu YP, Shao MM, Wang MC. Regulatory effects of natural products on N6-methyladenosine modification: A novel therapeutic strategy for cancer. Drug Discov Today 2024; 29:103875. [PMID: 38176674 DOI: 10.1016/j.drudis.2023.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
N6-methyladenosine (m6A) is considered to be the most common and abundant epigenetics modification in messenger RNA (mRNA) and noncoding RNA. Abnormal modification of m6A is closely related to the occurrence, development, progression, and prognosis of cancer. m6A regulators have been identified as novel targets for anticancer drugs. Natural products, a rich source of traditional anticancer drugs, have been utilized for the development of m6A-targeting drugs. Here, we review the key role of m6A modification in cancer progression and explore the prospects and structural modification mechanisms of natural products as potential drugs targeting m6A modification for cancer treatment.
Collapse
Affiliation(s)
- Mao-Mao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Jin-Jing Zhang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Yue-Ping Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Min-Min Shao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Meng-Chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China.
| |
Collapse
|
8
|
Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Heliyon 2024; 10:e23668. [PMID: 38192819 PMCID: PMC10772099 DOI: 10.1016/j.heliyon.2023.e23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as the most common modification method in eukaryotes, is widely involved in numerous physiological and pathological processes, such as embryonic development, malignancy, immune regulation, and premature aging. Under pathological conditions of ocular diseases, changes in m6A modification and its metabolism can be detected in aqueous and vitreous humor. At the same time, an increasing number of studies showed that m6A modification is involved in the normal development of eye structures and the occurrence and progress of many ophthalmic diseases, especially ocular neovascular diseases, such as diabetic retinopathy, age-related macular degeneration, and melanoma. In this review, we summarized the latest progress regarding m6A modification in ophthalmic diseases, changes in m6A modification-related enzymes in various pathological states and their upstream and downstream regulatory networks, provided new prospects for m6A modification in ophthalmic diseases and new ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
9
|
Xiao P, Duan Z, Liu Z, Chen L, Zhang D, Liu L, Zhou C, Gan J, Dong Z, Yang CG. Rational Design of RNA Demethylase FTO Inhibitors with Enhanced Antileukemia Drug-Like Properties. J Med Chem 2023. [PMID: 37418628 DOI: 10.1021/acs.jmedchem.3c00543] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The fat mass and obesity-associated protein (FTO) is an RNA N6-methyladenosine (m6A) demethylase highly expressed in diverse cancers including acute myeloid leukemia (AML). To improve antileukemia drug-like properties, we have designed 44/ZLD115, a flexible alkaline side-chain-substituted benzoic acid FTO inhibitor derived from FB23. A combination of structure-activity relationship analysis and lipophilic efficiency-guided optimization demonstrates that 44/ZLD115 exhibits better drug-likeness than the previously reported FTO inhibitors, FB23 and 13a/Dac85. Then, 44/ZLD115 shows significant antiproliferative activity in leukemic NB4 and MOLM13 cell lines. Moreover, 44/ZLD115 treatment noticeably increases m6A abundance on the AML cell RNA, upregulates RARA gene expression, and downregulates MYC gene expression in MOLM13 cells, which are consistent with FTO gene knockdown. Lastly, 44/ZLD115 exhibits antileukemic activity in xenograft mice without substantial side effects. This FTO inhibitor demonstrates promising properties that can be further developed for antileukemia applications.
Collapse
Affiliation(s)
- Pan Xiao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zongliang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zeyu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyan Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wang Z, Zhou J, Zhang H, Ge L, Li J, Wang H. RNA m 6 A methylation in cancer. Mol Oncol 2022; 17:195-229. [PMID: 36260366 PMCID: PMC9892831 DOI: 10.1002/1878-0261.13326] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
N6 -methyladenosine (m6 A) is one of the most abundant internal modifications in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). It is a reversible and dynamic RNA modification that has been observed in both internal coding segments and untranslated regions. Studies indicate that m6 A modifications play important roles in translation, RNA splicing, export, degradation and ncRNA processing control. In this review, we focus on the profiles and biological functions of RNA m6 A methylation on both mRNAs and ncRNAs. The dynamic modification of m6 A and its potential roles in cancer development are discussed. Moreover, we discuss the possibility of m6 A modifications serving as potential biomarkers for cancer diagnosis and targets for therapy.
Collapse
Affiliation(s)
- Zhaotong Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiawang Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haisheng Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lichen Ge
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiexin Li
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Hongsheng Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Qiu FS, He JQ, Zhong YS, Guo MY, Yu CH. Implications of m6A methylation and microbiota interaction in non-small cell lung cancer: From basics to therapeutics. Front Cell Infect Microbiol 2022; 12:972655. [PMID: 36118041 PMCID: PMC9478539 DOI: 10.3389/fcimb.2022.972655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenine (m6A) is one of the most common RNA epigenetic modifications in all higher eukaryotes. Increasing evidence demonstrated that m6A-related proteins, acted as oncogenes or tumor suppressors, are abnormally expressed in the cell lines and tissues of non-small cell lung cancer (NSCLC). In addition, lung as the special immune organ contacts with the outer environments and thereby inevitably suffers from different types of microbial pathogen attack. Those microbial pathogens affect the development, progression, and clinical outcomes of NSCLC via altering host m6A modification to disrupt pulmonary immune homeostasis and increase the susceptibility; conversely, host cells modulate m6A modification to repress bacterial colonization. Therefore, m6A harbors the potential to be the novel biomarkers and targets for predicting poor prognosis and chemotherapy sensitivity of patients with lung cancer. In this paper, we provided an overview of the biological properties of m6A-modifying enzymes, and the mechanistic links among lung microbiota, m6A modification and NSCLC. Although the flood of novel m6A-related inhibitors represents many dramatic improvements in NSCLC therapy, their efficacy and toxicity in NSCLC are explored to address these pivotal gaps in the field.
Collapse
Affiliation(s)
- Fen-Sheng Qiu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Jia-Qi He
- Pharmaceutical Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Sen Zhong
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Chen-Huan Yu,
| |
Collapse
|
12
|
Liu Z, Duan Z, Zhang D, Xiao P, Zhang T, Xu H, Wang CH, Rao GW, Gan J, Huang Y, Yang CG, Dong Z. Structure-Activity Relationships and Antileukemia Effects of the Tricyclic Benzoic Acid FTO Inhibitors. J Med Chem 2022; 65:10638-10654. [PMID: 35793358 DOI: 10.1021/acs.jmedchem.2c00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N6-methyladenosine (m6A) demethylase FTO is overexpressed in acute myeloid leukemia (AML) cells and promotes leukemogenesis. We previously developed tricyclic benzoic acid FB23 as a highly potent FTO inhibitor in vitro. However, it showed a moderate antiproliferative effect on AML cells. In this work, we performed a structure-activity relationship study of tricyclic benzoic acids as FTO inhibitors. The analog 13a exhibited excellent inhibitory effects on FTO similar to that of FB23 in vitro. In contrast to FB23, 13a exerted a strong antiproliferative effect on AML cells. Like FTO knock down, 13a upregulated ASB2 and RARA expression and increased the protein abundance while it downregulated MYC expression and decreased MYC protein abundance. These genes are key FTO targets in AML cells. Finally, 13a treatment improved the survival rate of MONOMAC6-transplanted NSG mice. Collectively, our data suggest that targeting FTO with tricyclic benzoic acid inhibitors may be a potential strategy for treating AML.
Collapse
Affiliation(s)
- Zeyu Liu
- State Key Laboratory of Drug Research, Centre for the Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongliang Duan
- State Key Laboratory of Drug Research, Centre for the Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Deyan Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Xiao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Centre for the Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongjiao Xu
- State Key Laboratory of Drug Research, Centre for the Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chuan-Hui Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yue Huang
- State Key Laboratory of Drug Research, Centre for the Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for the Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Dong
- State Key Laboratory of Drug Research, Centre for the Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
13
|
Li X, Zheng L, Zhang B, Deng ZY, Luo T. The Structure Basis of Phytochemicals as Metabolic Signals for Combating Obesity. Front Nutr 2022; 9:913883. [PMID: 35769384 PMCID: PMC9234462 DOI: 10.3389/fnut.2022.913883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
The consumption of phytochemicals, bioactive compounds in fruits and vegetables, has been demonstrated to ameliorate obesity and related metabolic symptoms by regulating specific metabolic pathways. This review summarizes the progress made in our understanding of the potential of phytochemicals as metabolic signals: we discuss herein selected molecular mechanisms which are involved in the occurrence of obesity that may be regulated by phytochemicals. The focus of our review highlights the regulation of transcription factors toll like receptor 4 (TLR4), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the peroxisome proliferator-activated receptors (PPARs), fat mass and obesity-associated protein (FTO) and regulation of microRNAs (miRNA). In this review, the effect of phytochemicals on signaling pathways involved in obesity were discussed on the basis of their chemical structure, suggesting molecular mechanisms for how phytochemicals may impact these signaling pathways. For example, compounds with an isothiocyanate group or an α, β-unsaturated carbonyl group may interact with the TLR4 signaling pathway. Regarding Nrf2, we examine compounds possessing an α, β-unsaturated carbonyl group which binds covalently with the cysteine thiols of Keap1. Additionally, phytochemical activation of PPARs, FTO and miRNAs were summarized. This information may be of value to better understand how specific phytochemicals interact with specific signaling pathways and help guide the development of new drugs to combat obesity and related metabolic diseases.
Collapse
|
14
|
Recent Advances of m6A Demethylases Inhibitors and Their Biological Functions in Human Diseases. Int J Mol Sci 2022; 23:ijms23105815. [PMID: 35628623 PMCID: PMC9144293 DOI: 10.3390/ijms23105815] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) is a post-transcriptional RNA modification and one of the most abundant types of RNA chemical modifications. m6A functions as a molecular switch and is involved in a range of biomedical aspects, including cardiovascular diseases, the central nervous system, and cancers. Conceptually, m6A methylation can be dynamically and reversibly modulated by RNA methylation regulatory proteins, resulting in diverse fates of mRNAs. This review focuses on m6A demethylases fat-mass- and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5), which especially erase m6A modification from target mRNAs. Recent advances have highlighted that FTO and ALKBH5 play an oncogenic role in various cancers, such as acute myeloid leukemias (AML), glioblastoma, and breast cancer. Moreover, studies in vitro and in mouse models confirmed that FTO-specific inhibitors exhibited anti-tumor effects in several cancers. Accumulating evidence has suggested the possibility of FTO and ALKBH5 as therapeutic targets for specific diseases. In this review, we aim to illustrate the structural properties of these two m6A demethylases and the development of their specific inhibitors. Additionally, this review will summarize the biological functions of these two m6A demethylases in various types of cancers and other human diseases.
Collapse
|
15
|
Comparative study of the binding between chlorogenic acid and four proteins by isothermal titration calorimetry, spectroscopy and docking methods. Pharmacol Rep 2022; 74:523-538. [PMID: 35545727 DOI: 10.1007/s43440-022-00369-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
As a polyphenolic compound, chlorogenic acid has antioxidant, anti-inflammatory, antiviral, anti-obesity and other effects. Based on the interactions between chlorogenic acid and the proteins (human serum albumin (HSA), pepsin (Pep), trypsin (Try), fat mass and obesity-associated protein (FTO)), results will provide clues for screening effective inhibitors. The interaction between chlorogenic acid and the four proteins (HSA, Pep, Try, FTO) was analyzed by the aid of fluorescence quenching, synchronous fluorescence, three-dimensional fluorescence, isothermal titration calorimetry, and molecular docking. It can be concluded that there is no obvious interaction between chlorogenic acid and FTO. The binding affinity between chlorogenic acid and three proteins is HSA > Try > Pep. The binding process is spontaneous, and the quenching type is static quenching. Hydrophobic interaction and hydrogen bonding is observed in the binding process. This study provides valuable information for understanding the interaction mechanism between chlorogenic acid and proteins, and provides clues for screening inhibitors.
Collapse
|
16
|
Solution structure ensemble of human obesity-associated protein FTO reveals druggable surface pockets at the interface between the N- and C-terminal domain. J Biol Chem 2022; 298:101907. [PMID: 35398093 PMCID: PMC9065727 DOI: 10.1016/j.jbc.2022.101907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
|
17
|
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022; 21:52. [PMID: 35164788 PMCID: PMC8842557 DOI: 10.1186/s12943-022-01510-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs. Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wei-Qing Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shu-Ran Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Min-Feng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Yu Lyu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, USA
| | - Jia-Xu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
18
|
Targeting N6-methyladenosine RNA modification combined with immune checkpoint Inhibitors: A new approach for cancer therapy. Comput Struct Biotechnol J 2022; 20:5150-5161. [PMID: 36187919 PMCID: PMC9508382 DOI: 10.1016/j.csbj.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
|
19
|
Perry GS, Das M, Woon ECY. Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. J Med Chem 2021; 64:16974-17003. [PMID: 34792334 DOI: 10.1021/acs.jmedchem.1c01694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The AlkB family of nucleic acid demethylases is currently of intense chemical, biological, and medical interest because of its critical roles in several key cellular processes, including epigenetic gene regulation, RNA metabolism, and DNA repair. Emerging evidence suggests that dysregulation of AlkB demethylases may underlie the pathogenesis of several human diseases, particularly obesity, diabetes, and cancer. Hence there is strong interest in developing selective inhibitors for these enzymes to facilitate their mechanistic and functional studies and to validate their therapeutic potential. Herein we review the remarkable advances made over the past 20 years in AlkB demethylase inhibition research. We discuss the rational design of reported inhibitors, their mode-of-binding, selectivity, cellular activity, and therapeutic opportunities. We further discuss unexplored structural elements of the AlkB subfamilies and propose potential strategies to enable subfamily selectivity. It is hoped that this perspective will inspire novel inhibitor design and advance drug discovery research in this field.
Collapse
Affiliation(s)
- Gemma S Perry
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mohua Das
- Lab of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Esther C Y Woon
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
20
|
Prakash M, Itoh Y, Fujiwara Y, Takahashi Y, Takada Y, Mellini P, Elboray EE, Terao M, Yamashita Y, Yamamoto C, Yamaguchi T, Kotoku M, Kitao Y, Singh R, Roy R, Obika S, Oba M, Wang DO, Suzuki T. Identification of Potent and Selective Inhibitors of Fat Mass Obesity-Associated Protein Using a Fragment-Merging Approach. J Med Chem 2021; 64:15810-15824. [PMID: 34727689 DOI: 10.1021/acs.jmedchem.1c01107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fat mass obesity-associated protein (FTO) is a DNA/RNA demethylase involved in the epigenetic regulation of various genes and is considered a therapeutic target for obesity, cancer, and neurological disorders. Here, we aimed to design novel FTO-selective inhibitors by merging fragments of previously reported FTO inhibitors. Among the synthesized analogues, compound 11b, which merges key fragments of Hz (3) and MA (4), inhibited FTO selectively over alkylation repair homologue 5 (ALKBH5), another DNA/RNA demethylase. Treatment of acute monocytic leukemia NOMO-1 cells with a prodrug of 11b decreased the viability of acute monocytic leukemia cells, increased the level of the FTO substrate N6-methyladenosine in mRNA, and induced upregulation of MYC and downregulation of RARA, which are FTO target genes. Thus, Hz (3)/MA (4) hybrid analogues represent an entry into a new class of FTO-selective inhibitors.
Collapse
Affiliation(s)
- Muthuraj Prakash
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.,SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Yoshie Fujiwara
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukari Takahashi
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yuri Takada
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Paolo Mellini
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Elghareeb E Elboray
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.,Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mitsuhiro Terao
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | | | - Chika Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Kotoku
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yuki Kitao
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Ritesh Singh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.,Department of Chemistry, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305817, Rajasthan, India
| | - Rohini Roy
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Oba
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Dan Ohtan Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.,Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.,SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.,CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Zhou LL, Xu H, Huang Y, Yang CG. Targeting the RNA demethylase FTO for cancer therapy. RSC Chem Biol 2021; 2:1352-1369. [PMID: 34704042 PMCID: PMC8496078 DOI: 10.1039/d1cb00075f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023] Open
Abstract
N 6-Methyladenosine (m6A) is the most prevalent internal modification on mRNA and represents a new layer of gene expression in eukaryotes. The field of m6A-encoded epitranscriptomics was rejuvenated with the discovery of fat mass and obesity-associated protein (FTO) as the first m6A demethylase responsible for RNA modification in cells. Increasing evidence has revealed that FTO is significantly involved in physiological processes, and its dysregulation is implicated in various human diseases. Considering this functional significance, developing small-molecule modulators of the FTO protein represents a novel direction for biology research. However, such modulators remain in the early stages of development. Here, our review mainly focuses on the progress of FTO inhibitor development to date. We summarize screening methods used to identify FTO modulators, techniques used to assess the biological effects of these modulators, strategies used to achieve selective inhibition of FTO rather than its homologues, and the results of investigations of FTO modulator modes of action and anticancer efficacy. Thus, this review aims to facilitate novel chemical entity discovery, probe FTO biology, and promote the validation of FTO as a clinical drug target for cancer treatment.
Collapse
Affiliation(s)
- Lin-Lin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Hongjiao Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Yue Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
22
|
Structural characteristics of small-molecule inhibitors targeting FTO demethylase. Future Med Chem 2021; 13:1475-1489. [PMID: 34240624 DOI: 10.4155/fmc-2021-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies have shown that the FTO gene is closely related to obesity and weight gain in humans. FTO is an N6-methyladenosine demethylase and is linked to an increased risk of obesity and a variety of diseases, such as acute myeloid leukemia, type 2 diabetes, breast cancer, glioblastoma and cervical squamous cell carcinoma. In light of the significant role of FTO, the development of small-molecule inhibitors targeting the FTO protein provides not only a powerful tool for grasping the active site of FTO but also a theoretical basis for the design and synthesis of drugs targeting the FTO protein. This review focuses on the structural characteristics of FTO inhibitors and discusses the occurrence of obesity and cancer caused by FTO gene overexpression.
Collapse
|
23
|
Singh H, Das S, Yadav J, Srivastava VK, Jyoti A, Kaushik S. In silico prediction, molecular docking and binding studies of acetaminophen and dexamethasone to Enterococcus faecalis diaminopimelate epimerase. J Mol Recognit 2021; 34:e2894. [PMID: 33719110 DOI: 10.1002/jmr.2894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 11/11/2022]
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive coccoid, non-sporulating, facultative anaerobic, multidrug resistance bacterium responsible for almost 65% to 80% of all enterococcal nosocomial infections. It usually causes infective endocarditis, urinary tract and surgical wound infections. The increase in E. faecalis resistance to conventionally available antibiotic has rekindled intense interest in developing useful antibacterial drugs. In E. faecalis, diaminopimelate epimerase (DapF) is involved in the lysine biosynthetic pathway. The product of this pathway is precursors of peptidoglycan synthesis, which is a component of bacterial cell wall. Also, because mammals lack this enzyme, consequently E. faecalis diaminopimelate epimerase (EfDapF) represents a potential target for developing novel class of antibiotics. In this regard, we have successfully cloned, overexpressed the gene encoding DapF in BL-21(DE3) and purified with Ni-NTA Agarose resin. In addition to this, binding studies were performed using fluorescence spectroscopy in order to confirm the bindings of the identified lead compounds (acetaminophen and dexamethasone) with EfDapF. Docking studies revealed that acetaminophen found to make hydrogen bonds with Asn72 and Asn13 while dexamethasone interacted by forming hydrogen bonds with Asn205 and Glu223. Thus, biochemical studies indicated acetaminophen and dexamethasone, as potential inhibitors of EfDapF and eventually can reduce the catalytic activity of EfDapF.
Collapse
Affiliation(s)
- Harpreet Singh
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | | | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| |
Collapse
|
24
|
Gan Y, Bai N, Li X, Gao S, Wang R. A study of the binding between radicicol and four proteins by means of spectroscopy and molecular docking. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/1747519821993068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interactions between radicicol and four proteins (catalase, trypsin, pepsin, and human serum protein) are investigated by spectroscopic techniques and molecular docking. A static quenching process is confirmed. The binding constant value between radicicol and human serum protein is the largest among the four proteins. Results reveal changes in the micro-environment of the protein by the addition of radicicol. It is found that radicicol shows an inhibitory effect on the activity of proteins (catalase, trypsin, and pepsin). Molecular docking results are consistent with the thermodynamic experimental results. This work provides clues to the elucidation of the mechanisms of the interactions between radicicol and proteins.
Collapse
Affiliation(s)
- Ya Gan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, P.R. China
| | - Ning Bai
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, P.R. China
| | - Xitong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, P.R. China
| | - Shuiting Gao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, P.R. China
| | - Ruiyong Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
25
|
Bayoumi M, Munir M. Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Front Cell Dev Biol 2021; 8:587108. [PMID: 33511112 PMCID: PMC7835257 DOI: 10.3389/fcell.2020.587108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cellular RNA can acquire a variety of chemical modifications during the cell cycle, and compelling pieces of evidence highlight the importance of these modifications in determining the metabolism of RNA and, subsequently, cell physiology. Among myriads of modifications, methylation at the N6-position of adenosine (m6A) is the most important and abundant internal modification in the messenger RNA. The m6A marks are installed by methyltransferase complex proteins (writers) in the majority of eukaryotes and dynamically reversed by demethylases such as FTO and ALKBH5 (erasers). The incorporated m6A marks on the RNA transcripts are recognized by m6A-binding proteins collectively called readers. Recent epigenetic studies have unequivocally highlighted the association of m6A demethylases with a range of biomedical aspects, including human diseases, cancers, and metabolic disorders. Moreover, the mechanisms of demethylation by m6A erasers represent a new frontier in the future basic research on RNA biology. In this review, we focused on recent advances describing various physiological, pathological, and viral regulatory roles of m6A erasers. Additionally, we aim to analyze structural insights into well-known m6A-demethylases in assessing their substrate binding-specificity, efficiency, and selectivity. Knowledge on cellular and viral RNA metabolism will shed light on m6A-specific recognition by demethylases and will provide foundations for the future development of efficacious therapeutic agents to various cancerous conditions and open new avenues for the development of antivirals.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom.,Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
26
|
Li X, Gao S, Zhang N, Zhang M, Wang R, Chang J. Identification of tectoridin as the inhibitor of FTO by isothermal titration calorimetric and spectroscopic methods. NEW J CHEM 2021. [DOI: 10.1039/d1nj00117e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The characteristics of binding between tectoridin and the fat mass and obesity-associated protein were investigated.
Collapse
Affiliation(s)
- Xitong Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuting Gao
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ning Zhang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Miao Zhang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ruiyong Wang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Junbiao Chang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
- College of Chemistry and Chemical Engineering
| |
Collapse
|
27
|
Bai N, Gan Y, Li X, Gao S, Yu W, Wang R, Chang J. The role of chlorine atom on the binding between acrylonitrile derivatives and fat mass and obesity‐associated protein. J Mol Recognit 2020; 34:e2880. [DOI: 10.1002/jmr.2880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Ning Bai
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Ya Gan
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Xitong Li
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Shuting Gao
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Wenquan Yu
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Ruiyong Wang
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Junbiao Chang
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| |
Collapse
|
28
|
Zhang Y, Li QN, Zhou K, Xu Q, Zhang CY. Identification of Specific N6-Methyladenosine RNA Demethylase FTO Inhibitors by Single-Quantum-Dot-Based FRET Nanosensors. Anal Chem 2020; 92:13936-13944. [DOI: 10.1021/acs.analchem.0c02828] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Qing-nan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Kaiyue Zhou
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|