1
|
Ma X, Xu S, Pan Y, Jiang C, Wang Z. Construction of SERS output-signal aptasensor using MOF/noble metal nanoparticles based nanozyme for sensitive histamine detection. Food Chem 2024; 440:138227. [PMID: 38142555 DOI: 10.1016/j.foodchem.2023.138227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Herein, a signal output SERS aptasensor for Histamine (HA) detection is designed. MIL-100(Fe) was loaded with gold nanoparticles (AuNPs) to form composite nanozyme MIL-100(Fe)@AuNPs, which was used in the reaction system TMB/H2O2. Silver nanoparticles (AgNPs) were synthesized as "amplifier" for the SERS signal of ox TMB. After nucleic acid functionalization, the two parts were assembled to form the multifunctional substrate with both high catalytic and SERS efficiency. In the detection system, the specific binding effect of HA aptamer toward HA induced a decrease in the assembly of AgNPs on MIL-100(Fe)@AuNPs which caused a decrease in ox TMB SERS signals. The linear relation of HA ranged from 10-11 M to 5 × 10-3 M with LOD as low as 3.9 × 10-12 M. Recovery ratio in fermented soybean products (94.42-105.75 %) proved the real sample applicability. The fabricated SERS aptasensor will provide technical support for the safety during food processing and storage.
Collapse
Affiliation(s)
- Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Shan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Caiyun Jiang
- Department of Health, Jiangsu Engineering and Research Center of Food Safety, Jiangsu Vocational Institute of Commerce, Nanjing 211168, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Liu J, Zhang N, Shen B, Zhang L, Zhang Z, Zhu L, Jiang L. Deinococcus wulumuqiensis R12 synthesized silver nanoparticles with peroxidase-like activity for synergistic antibacterial application. Biotechnol J 2024; 19:e2300584. [PMID: 38651247 DOI: 10.1002/biot.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
The use of a combination of several antibacterial agents for therapy holds great promise in reducing the dosage and side effects of these agents, improving their efficiency, and inducing potential synergistic therapeutic effects. Herein, this study provides an innovative antibacterial treatment strategy by synergistically combining R12-AgNPs with H2O2 therapy. R12-AgNPs were simply produced with the supernatant of an ionizing radiation-tolerant bacterium Deinococcus wulumuqiensis R12 by one-step under room temperature. In comparison with chemically synthesized AgNPs, the biosynthesized AgNPs presented fascinating antibacterial activity and peroxidase-like properties, which endowed it with the capability to catalyze the decomposition of H2O2 to generate hydroxyl radical. After the combination of R12-AgNPs and H2O2, an excellent synergistic bacteriostatic activity was observed for both Escherichia coli and Staphylococcus aureus, especially at low concentrations. In addition, in vitro cytotoxicity tests showed R12-AgNPs had good biocompatibility. Thus, this work presents a novel antibacterial agent that exhibits favorable synergistic antibacterial activity and low toxicity, without the use of antibiotics or a complicated synthesis process.
Collapse
Affiliation(s)
- Jingjia Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Nan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Liling Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, P.R. China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|