1
|
Applications of Cryostructures in the Chromatographic Separation of Biomacromolecules. J Chromatogr A 2022; 1683:463546. [DOI: 10.1016/j.chroma.2022.463546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/20/2022]
|
2
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
3
|
Berillo D, Al-Jwaid A, Caplin J. Polymeric Materials Used for Immobilisation of Bacteria for the Bioremediation of Contaminants in Water. Polymers (Basel) 2021; 13:1073. [PMID: 33805360 PMCID: PMC8037671 DOI: 10.3390/polym13071073] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bioremediation is a key process for reclaiming polluted soil and water by the use of biological agents. A commonly used approach aims to neutralise or remove harmful pollutants from contaminated areas using live microorganisms. Generally, immobilised microorganisms rather than planktonic cells have been used in bioremediation methods. Activated carbon, inorganic minerals (clays, metal oxides, zeolites), and agricultural waste products are acceptable substrates for the immobilisation of bacteria, although there are limitations with biomass loading and the issue with leaching of bacteria during the process. Various synthetic and natural polymers with different functional groups have been used successfully for the efficient immobilisation of microorganisms and cells. Promise has been shown using macroporous materials including cryogels with entrapped bacteria or cells in applications for water treatment and biotechnology. A cryogel is a macroporous polymeric gel formed at sub-zero temperatures through a process known as cryogelation. Macroporous hydrogels have been used to make scaffolds or supports for immobilising bacterial, viral, and other cells. The production of composite materials with immobilised cells possessing suitable mechanical and chemical stability, porosity, elasticity, and biocompatibility suggests that these materials are potential candidates for a range of applications within applied microbiology, biotechnology, and research. This review evaluates applications of macroporous cryogels as tools for the bioremediation of contaminants in wastewater.
Collapse
Affiliation(s)
- Dmitriy Berillo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Areej Al-Jwaid
- School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK; (A.A.-J.); (J.C.)
- Environment and Pollution Engineering Technical Department, Basrah Engineering Technical College, Southern Technical University, Basra 61003, Iraq
| | - Jonathan Caplin
- School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK; (A.A.-J.); (J.C.)
| |
Collapse
|
4
|
Jyothilekshmi I, Jayaprakash NS. Trends in Monoclonal Antibody Production Using Various Bioreactor Syst. J Microbiol Biotechnol 2021; 31:349-357. [PMID: 32238761 PMCID: PMC9705917 DOI: 10.4014/jmb.1911.11066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Monoclonal antibodies are widely used as diagnostic reagents and for therapeutic purposes, and their demand is increasing extensively. To produce these proteins in sufficient quantities for commercial use, it is necessary to raise the output by scaling up the production processes. This review describes recent trends in high-density cell culture systems established for monoclonal antibody production that are excellent methods to scale up from the lab-scale cell culture. Among the reactors, hollow fiber bioreactors contribute to a major part of high-density cell culture as they can provide a tremendous amount of surface area in a small volume for cell growth. As an alternative to hollow fiber reactors, a novel disposable bioreactor has been developed, which consists of a polymer-based supermacroporous material, cryogel, as a matrix for cell growth. Packed bed systems and disposable wave bioreactors have also been introduced for high cell density culture. These developments in high-density cell culture systems have led to the monoclonal antibody production in an economically favourable manner and made monoclonal antibodies one of the dominant therapeutic and diagnostic proteins in biopharmaceutical industry.
Collapse
Affiliation(s)
- I. Jyothilekshmi
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India
| | - N. S. Jayaprakash
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India,Corresponding author Phone: +91-4162202377 E-mail: ;
| |
Collapse
|
5
|
Perret G, Boschetti E. Aptamer-Based Affinity Chromatography for Protein Extraction and Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:93-139. [PMID: 31485702 DOI: 10.1007/10_2019_106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aptamers are oligonucleotide molecules able to recognize very specifically proteins. Among the possible applications, aptamers have been used for affinity chromatography with effective results and advantages over most advanced protein separation technologies. This chapter first discusses the context of the affinity chromatography with aptamer ligands. With the adaptation of SELEX, the chemical modifications of aptamers to comply with the covalent coupling and the separation process are then extensively presented. A focus is then made about the most important applications for protein separation with real-life examples and the comparison with immunoaffinity chromatography. In spite of well-advanced demonstrations and the extraordinary potential developments, a significant optimization work is still due to deserve large-scale applications with all necessary validations. Graphical Abstract Aptamer-protein complexes by X-ray crystallography.
Collapse
|
6
|
Zhang H, Liu C, Chen L, Dai B. Control of ice crystal growth and its effect on porous structure of chitosan cryogels. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Evli S, Uygun DA. Enzymatic Activity of Urokinase Immobilized onto Cu 2+-Chelated Cibacron Blue F3GA-Derived Poly (HEMA) Magnetic Nanoparticles. Appl Biochem Biotechnol 2018; 188:194-207. [PMID: 30417319 DOI: 10.1007/s12010-018-2923-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022]
Abstract
In this presented work, magnetic poly(2-hydroxyethyl methacrylate) (p (HEMA)) nanoparticles were synthesized by surfactant-free emulsion polymerization technique. Cibacron Blue F3GA was covalently attached to the magnetic p (HEMA) nanoparticles and Cu2+ ions were then chelated with dye molecules. Synthesized magnetic nanoparticles were spherical with the diameter of 80 nm and exhibited magnetic character. Incorporation rate of Cibacron Blue for magnetic nanoparticles was found to be 28.125-μmol/g polymer. Loaded amount of Cu2+ ions was calculated as 10.229-μmol/g polymer. These Cu2+-Cibacron Blue F3GA-derived magnetic p (HEMA) nanoparticles were used for urokinase adsorption under different conditions (i.e., pH, enzyme initial concentration, ionic strength, temperature). Maximum adsorption capacity was found to be 630.43-mg/g polymer, and it was observed that Langmuir adsorption isotherm was applicable in this adsorption process. The adsorbed urokinase was desorbed from the Cu2+-Cibacron Blue F3GA-derived magnetic p (HEMA) nanoparticles by using 1.0 M of NaCl with the desorption rate of 96%. It was also demonstrated that adsorption capacity did not change significantly after five adsorption/desorption cycles.
Collapse
Affiliation(s)
- Sinem Evli
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey. .,Nanotechnology Application and Research Center, Adnan Menderes University, Aydın, Turkey.
| |
Collapse
|
8
|
Savina IN, Ingavle GC, Cundy AB, Mikhalovsky SV. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications. Sci Rep 2016; 6:21154. [PMID: 26883390 PMCID: PMC4756301 DOI: 10.1038/srep21154] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/18/2016] [Indexed: 01/27/2023] Open
Abstract
The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.
Collapse
Affiliation(s)
- Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Ganesh C. Ingavle
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Andrew B. Cundy
- School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Sergey V. Mikhalovsky
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
- School of Engineering, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
9
|
Textural and waterbinding behaviors of β-lactoglobulin-xanthan gum electrostatic hydrogels in relation to their microstructure. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Andaç M, Denizli A. Affinity-recognition-based polymeric cryogels for protein depletion studies. RSC Adv 2014. [DOI: 10.1039/c4ra02655a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Supermacroporous cryogels can be used for the depletion of highly abundant proteins prior to proteome investigations.
Collapse
Affiliation(s)
- Müge Andaç
- Department of Chemistry
- Biochemistry Division
- Hacettepe University
- Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry
- Biochemistry Division
- Hacettepe University
- Ankara, Turkey
| |
Collapse
|
11
|
Singh D, Vishnoi T, Kumar A. Effect of alpha-ketoglutarate on growth and metabolism of cells cultured on three-dimensional cryogel matrix. Int J Biol Sci 2013; 9:521-30. [PMID: 23781146 PMCID: PMC3677688 DOI: 10.7150/ijbs.4962] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/11/2012] [Indexed: 11/17/2022] Open
Abstract
Alpha- ketoglutarate (α-KG) is a well-known intermediate of Kreb's cycle and thus one of the important candidates in the role of cellular metabolism. The aim was to investigate the effect of α-KG on the growth and proliferation of different cells (fibroblasts and chondrocytes). Further change in the consumption of glucose and release of ammonia in the media, upon the addition of α-KG was also examined. NIH3T3 and chondrocytes were seeded on two different macroporous cryogel matrices synthesized by poly (hydroxyethylmethaacrylate)-gelatin (HG) and alginate-gelatin (AG). Higher proliferation was observed for both the cell lines in 2-D as well as 3-D where α-KG was added to the media compared to the controls. It was evident that the chondrocytes were metabolically more active in the case of α-KG containing samples as early extracellular matrix (ECM) accumulation was observed. In comparison to the 6-8 weeks duration required by the chondrocytes for ECM accumulation in normal in-vitro culture conditions, α-KG containing samples showed an earlier accumulation within 3 weeks. In order to further validate the results, scanning electron microscopic (SEM) analysis was performed showed high ECM deposition and cells embedded in the matrix. Homogenous distribution of cells on both the synthesized matrix was reported using 4'-6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI) staining. The results clearly showed reduction in ammonia concentration in α-KG containing samples thus leading to decreased ammonia toxicity that builds up during long cell culture conditions thereby enhancing the proliferation and metabolic activity. Thus α-KG can be used potentially for long batch-cultures for the production of vaccines or antibody as well as can play an important role as a bioactive molecule for in vitro neo-cartilage generation.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | | | | |
Collapse
|
12
|
Jain E, Kumar A. Disposable polymeric cryogel bioreactor matrix for therapeutic protein production. Nat Protoc 2013; 8:821-35. [PMID: 23558783 DOI: 10.1038/nprot.2013.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low cost and high efficiency make disposable bioreactors feasible for small-scale therapeutic development and initial clinical trials. We have developed a cryogel-based disposable bioreactor matrix, which has been used for production of protein therapeutics such as urokinase and monoclonal antibodies (mAbs). The protocol discusses the application of a cryogel bioreactor for mAb production. Cryogels composed of either polyacrylamide (PAAm) coupled to gelatin or semi-interpenetrating PAAm-chitosan are synthesized by free-radical polymerization at -12 °C. Hybridoma cells are immobilized over the cryogel bioreactor and incubated for 48 h. Medium is circulated thereafter at 0.2 ml min(-1) and bioreactors can be run continuously for 60 d. The cryogel-based packed-bed bioreactor can be formulated as a monolith or as beads; it also has an efficiency four times what can be obtained using a tissue-culture flask, a high surface-to-volume ratio and effective nutrient transport. After incubation, the bioreactor setup will take about 60 min using a pre-prepared sterilized cryogel.
Collapse
Affiliation(s)
- Era Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | | |
Collapse
|
13
|
Gun'ko VM, Savina IN, Mikhalovsky SV. Cryogels: morphological, structural and adsorption characterisation. Adv Colloid Interface Sci 2013; 187-188:1-46. [PMID: 23218507 DOI: 10.1016/j.cis.2012.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022]
Abstract
Experimental results on polymer, protein, and composite cryogels and data treatment methods used for morphological, textural, structural, adsorption and diffusion characterisation of the materials are analysed and compared. Treatment of microscopic images with specific software gives quantitative structural information on both native cryogels and freeze-dried materials that is useful to analyse the drying effects on their structure. A combination of cryoporometry, relaxometry, thermoporometry, small angle X-ray scattering (SAXS), equilibrium and kinetic adsorption of low and high-molecular weight compounds, diffusion breakthrough of macromolecules within macroporous cryogel membranes, studying interactions of cells with cryogels provides a consistent and comprehensive picture of textural, structural and adsorption properties of a variety of cryogels. This analysis allows us to establish certain regularities in the cryogel properties related to narrow (diameter 0.4<d<2 nm), middle (2<d<50 nm) and broad (50<d<100 nm) nanopores, micropores (100 nm<d<100 μm) and macropores (d>100 μm) with boundary sizes within modified life science pore classification. Particular attention is paid to water bound in cryogels in native superhydrated or freeze-dried states. At least, five states of water - free unbound, weakly bound (changes in the Gibbs free energy-ΔG<0.5-0.8 kJ/mol) and strongly bound (-ΔG>0.8 kJ/mol), and weakly associated (chemical shift of the proton resonance δ(H)=1-2 ppm) and strongly associated (δ(H)=3-6 ppm) waters can be distinguished in hydrated cryogels using (1)H NMR, DSC, TSDC, TG and other methods. Different software for image treatment or developed to analyse the data obtained with the adsorption, diffusion, SAXS, cryoporometry and thermoporometry methods and based on regularisation algorithms is analysed and used for the quantitative morphological, structural and adsorption characterisation of individual and composite cryogels, including polymers filled with solid nano- or microparticles.
Collapse
Affiliation(s)
- Vladimir M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kiev 03164, Ukraine.
| | | | | |
Collapse
|
14
|
Zheng Y, Gun'ko VM, Howell CA, Sandeman SR, Phillips GJ, Kozynchenko OP, Tennison SR, Ivanov AE, Mikhalovsky SV. Composites with macroporous poly(vinyl alcohol) cryogels with attached activated carbon microparticles with controlled accessibility of a surface. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5936-5944. [PMID: 23088424 DOI: 10.1021/am301577c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A set of glutaraldehyde (GA) cross-linked poly(vinyl alcohol)/activated carbon (PVA/GA/AC) composites prepared in the form of monolithic rods using a cryogelation technique and studied using adsorption, mercury porosimetry, scanning electron microscopy (SEM), and quantum chemistry methods display porosity similar to that of PVA/GA cryogel at a high GA content (content ratio GA/AC = 1 and GA/PVA = 0.2). GA cross-linked PVA multilayer coverage is an effective barrier for adsorption on AC particles. Variations in surface chemistry (AC initial and oxidized in air at 300 °C for 12 h) and content (14-62.5%w/w) of ACs in PVA/GA/AC composites relatively weakly affect their textural characteristics at a high GA content (specific surface area S(BET) < 120 m²/g, pore volume V(p) < 0.35 cm³/g). However, PVA/GA/AC composite rods formed with a lower concentration of GA (content ratio GA/AC = 1/6 and GA/PVA = 1/10) have significantly greater S(BET) (∼500 m²/g) and V(p) (>0.55 cm³/g) values because of improved accessibility of the AC surface. This provides better adsorption of methylene blue as a probe compound.
Collapse
Affiliation(s)
- Yishan Zheng
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stowers CC, Robertson JB, Ban H, Tanner RD, Boczko EM. Periodic fermentor yield and enhanced product enrichment from autonomous oscillations. Appl Biochem Biotechnol 2009; 156:59-75. [PMID: 19184548 DOI: 10.1007/s12010-008-8486-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 12/10/2008] [Indexed: 11/26/2022]
Abstract
Four decades of work have clearly established the existence of autonomous oscillations in budding yeast culture across a range of operational parameters and in a few strains. Autonomous oscillations impact substrate conversion to biomass and products. Relatively little work has been done to quantify yield in this case. We have analyzed the yield of autonomously oscillating systems, grown under different conditions, and demonstrate that it too oscillates. Using experimental data and mathematical models of yeast growth and division, we demonstrate strategies to increase the efficient recovery of products. The analysis makes advantage of the population structure and synchrony of the system and our ability to target production within the cell cycle. While oscillatory phenomena in culture have generally been regarded with trepidation in the engineering art of bioprocess control, our results provide further evidence that autonomously oscillating systems can be a powerful tool, rather than an obstruction.
Collapse
Affiliation(s)
- Chris C Stowers
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | |
Collapse
|
16
|
Kirsebom H, Rata G, Topgaard D, Mattiasson B, Galaev IY. In situ 1H NMR studies of free radical cryopolymerization. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.06.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Jungbauer A, Hahn R. Polymethacrylate monoliths for preparative and industrial separation of biomolecular assemblies. J Chromatogr A 2008; 1184:62-79. [DOI: 10.1016/j.chroma.2007.12.087] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/04/2007] [Accepted: 12/19/2007] [Indexed: 11/28/2022]
|
18
|
Jain E, Kumar A. Upstream processes in antibody production: Evaluation of critical parameters. Biotechnol Adv 2008; 26:46-72. [DOI: 10.1016/j.biotechadv.2007.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|