1
|
Chavoshpour-Natanzi Z, Sahihi M. Encapsulation of quercetin-loaded β-lactoglobulin for drug delivery using modified anti-solvent method. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Maffucci I, Hu X, Fumagalli V, Contini A. An Efficient Implementation of the Nwat-MMGBSA Method to Rescore Docking Results in Medium-Throughput Virtual Screenings. Front Chem 2018; 6:43. [PMID: 29556494 PMCID: PMC5844977 DOI: 10.3389/fchem.2018.00043] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 01/05/2023] Open
Abstract
Nwat-MMGBSA is a variant of MM-PB/GBSA based on the inclusion of a number of explicit water molecules that are the closest to the ligand in each frame of a molecular dynamics trajectory. This method demonstrated improved correlations between calculated and experimental binding energies in both protein-protein interactions and ligand-receptor complexes, in comparison to the standard MM-GBSA. A protocol optimization, aimed to maximize efficacy and efficiency, is discussed here considering penicillopepsin, HIV1-protease, and BCL-XL as test cases. Calculations were performed in triplicates on both classic HPC environments and on standard workstations equipped by a GPU card, evidencing no statistical differences in the results. No relevant differences in correlation to experiments were also observed when performing Nwat-MMGBSA calculations on 4 or 1 ns long trajectories. A fully automatic workflow for structure-based virtual screening, performing from library set-up to docking and Nwat-MMGBSA rescoring, has then been developed. The protocol has been tested against no rescoring or standard MM-GBSA rescoring within a retrospective virtual screening of inhibitors of AmpC β-lactamase and of the Rac1-Tiam1 protein-protein interaction. In both cases, Nwat-MMGBSA rescoring provided a statistically significant increase in the ROC AUCs of between 20 and 30%, compared to docking scoring or to standard MM-GBSA rescoring.
Collapse
Affiliation(s)
- Irene Maffucci
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Xiao Hu
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Valentina Fumagalli
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini," Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Lee XA, Verma C, Sim AY. Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99. Proteins 2017; 85:1493-1506. [DOI: 10.1002/prot.25310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/28/2017] [Accepted: 04/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Xiong An Lee
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR); Matrix 138671 Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR); Matrix 138671 Singapore
- Department of Biological Sciences; National University of Singapore; 117543 Singapore
- School of Biological Sciences; Nanyang Technological University; 637551 Singapore
| | - Adelene Y.L Sim
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR); Matrix 138671 Singapore
| |
Collapse
|
4
|
All-Purpose Containers? Lipid-Binding Protein - Drug Interactions. PLoS One 2015; 10:e0132096. [PMID: 26167932 PMCID: PMC4500398 DOI: 10.1371/journal.pone.0132096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/10/2015] [Indexed: 01/30/2023] Open
Abstract
The combined use of in vitro (19F-NMR) and in silico (molecular docking) procedures demonstrates the affinity of a number of human calycins (lipid-binding proteins from ileum, liver, heart, adipose tissue and epidermis, and retinol-binding protein from intestine) for different drugs (mainly steroids and vastatins). Comparative evaluations on the complexes outline some of the features relevant for interaction (non-polar character of the drugs; amino acids and water molecules in the protein calyx most often involved in binding). Dissociation constants (Ki) for drugs typically lie in the same range as Ki for natural ligands; in most instances (different proteins and docking conditions), vastatins are the strongest interactors, with atorvastatin ranking top in half of the cases. The affinity of some calycins for some of the vastatins is in the order of magnitude of the drug Cmax after systemic administration in humans. The possible biological implications of this feature are discussed in connection with drug delivery parameters (route of administration, binding to carrier proteins, distribution to, and accumulation in, human tissues).
Collapse
|
5
|
Kaieda S, Halle B. Time Scales of Conformational Gating in a Lipid-Binding Protein. J Phys Chem B 2015; 119:7957-67. [DOI: 10.1021/acs.jpcb.5b03214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuji Kaieda
- Department of Biophysical
Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Department of Biophysical
Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
6
|
Visscher KM, Kastritis PL, Bonvin AMJJ. Non-interacting surface solvation and dynamics in protein-protein interactions. Proteins 2015; 83:445-58. [DOI: 10.1002/prot.24741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/10/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Koen M. Visscher
- Bijvoet Center for Biomolecular Research; Faculty of Science-Chemistry, Utrecht University; 3584CH Utrecht The Netherlands
| | - Panagiotis L. Kastritis
- Bijvoet Center for Biomolecular Research; Faculty of Science-Chemistry, Utrecht University; 3584CH Utrecht The Netherlands
| | - Alexandre M. J. J. Bonvin
- Bijvoet Center for Biomolecular Research; Faculty of Science-Chemistry, Utrecht University; 3584CH Utrecht The Netherlands
| |
Collapse
|
7
|
Matsuoka D, Sugiyama S, Murata M, Matsuoka S. Molecular Dynamics Simulations of Heart-type Fatty Acid Binding Protein in Apo and Holo Forms, and Hydration Structure Analyses in the Binding Cavity. J Phys Chem B 2014; 119:114-27. [DOI: 10.1021/jp510384f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daisuke Matsuoka
- JST ERATO, Lipid Active
Structure Project, ‡Department of Chemistry, Graduate
School of Science, and §Project Research Center for Fundamental Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Sugiyama
- JST ERATO, Lipid Active
Structure Project, ‡Department of Chemistry, Graduate
School of Science, and §Project Research Center for Fundamental Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- JST ERATO, Lipid Active
Structure Project, ‡Department of Chemistry, Graduate
School of Science, and §Project Research Center for Fundamental Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- JST ERATO, Lipid Active
Structure Project, ‡Department of Chemistry, Graduate
School of Science, and §Project Research Center for Fundamental Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Determinants of protein–ligand complex formation in the thyroid hormone receptor α: A molecular dynamics simulation study. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Carzaniga T, Mazzantini E, Nardini M, Regonesi ME, Greco C, Briani F, De Gioia L, Dehò G, Tortora P. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding. Biochimie 2013; 97:49-59. [PMID: 24075876 DOI: 10.1016/j.biochi.2013.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/16/2013] [Indexed: 11/27/2022]
Abstract
Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.
Collapse
Affiliation(s)
- Thomas Carzaniga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Elisa Mazzantini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Maria Elena Regonesi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Claudio Greco
- Dipartimento di Scienze dell'ambiente e del territorio e di Scienze della terra, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Luca De Gioia
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Paolo Tortora
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| |
Collapse
|
10
|
Paramo T, Garzón D, Holdbrook DA, Khalid S, Bond PJ. The simulation approach to lipid-protein interactions. Methods Mol Biol 2013; 974:435-455. [PMID: 23404287 DOI: 10.1007/978-1-62703-275-9_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.
Collapse
Affiliation(s)
- Teresa Paramo
- Department of Chemistry, Unilever Centre for Molecular Informatics, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
11
|
Eberini I, Daniele S, Parravicini C, Sensi C, Trincavelli ML, Martini C, Abbracchio MP. In silico identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases. J Comput Aided Mol Des 2011; 25:743-52. [PMID: 21744154 DOI: 10.1007/s10822-011-9455-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/28/2011] [Indexed: 01/14/2023]
Abstract
GPR17, a previously orphan receptor responding to both uracil nucleotides and cysteinyl-leukotrienes, has been proposed as a novel promising target for human neurodegenerative diseases. Here, in order to specifically identify novel potent ligands of GPR17, we first modeled in silico the receptor by using a multiple template approach, in which extracellular loops of the receptor, quite complex to treat, were modeled making reference to the most similar parts of all the class-A GPCRs crystallized so far. A high-throughput virtual screening exploration of GPR17 binding site with more than 130,000 lead-like compounds was then applied, followed by the wet functional and pharmacological validation of the top-scoring chemical structures. This approach revealed successful for the proposed aim, and allowed us to identify five agonists or partial agonists with very diverse chemical structure. None of these compounds could have been expected 'a priori' to act on a GPCR, and all of them behaved as much more potent ligands than GPR17 endogenous activators.
Collapse
Affiliation(s)
- Ivano Eberini
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang JF, Chou KC. Insights from modeling the 3D structure of New Delhi metallo-β-lactamse and its binding interactions with antibiotic drugs. PLoS One 2011; 6:e18414. [PMID: 21494599 PMCID: PMC3073942 DOI: 10.1371/journal.pone.0018414] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/04/2011] [Indexed: 11/18/2022] Open
Abstract
New Delhi metallo-beta-lactamase (NDM-1) is an enzyme that makes bacteria resistant to a broad range of beta-lactam antibiotic drugs. This is because it can inactivate most beta-lactam antibiotic drugs by hydrolyzing them. For in-depth understanding of the hydrolysis mechanism, the three-dimensional structure of NDM-1 was developed. With such a structural frame, two enzyme-ligand complexes were derived by respectively docking Imipenem and Meropenem (two typical beta-lactam antibiotic drugs) to the NDM-1 receptor. It was revealed from the NDM-1/Imipenem complex that the antibiotic drug was hydrolyzed while sitting in a binding pocket of NDM-1 formed by nine residues. And for the case of NDM-1/Meropenem complex, the antibiotic drug was hydrolyzed in a binding pocket formed by twelve residues. All these constituent residues of the two binding pockets were explicitly defined and graphically labeled. It is anticipated that the findings reported here may provide useful insights for developing new antibiotic drugs to overcome the resistance problem.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Bioinformation and Technology, Shanghai, China
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (J-FW); (K-CC)
| | - Kuo-Chen Chou
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (J-FW); (K-CC)
| |
Collapse
|
13
|
Wang JF, Wei DQ, Chou KC. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus. Biochem Biophys Res Commun 2009; 388:413-7. [PMID: 19665993 DOI: 10.1016/j.bbrc.2009.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/28/2022]
Abstract
The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.
Collapse
Affiliation(s)
- Jing-Fang Wang
- College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | | | | |
Collapse
|