1
|
A macroscopic link between interhemispheric tract myelination and cortico-cortical interactions during action reprogramming. Nat Commun 2022; 13:4253. [PMID: 35869067 PMCID: PMC9307658 DOI: 10.1038/s41467-022-31687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination has been increasingly implicated in the function and dysfunction of the adult human brain. Although it is known that axon myelination shapes axon physiology in animal models, it is unclear whether a similar principle applies in the living human brain, and at the level of whole axon bundles in white matter tracts. Here, we hypothesised that in humans, cortico-cortical interactions between two brain areas may be shaped by the amount of myelin in the white matter tract connecting them. As a test bed for this hypothesis, we use a well-defined interhemispheric premotor-to-motor circuit. We combined TMS-derived physiological measures of cortico-cortical interactions during action reprogramming with multimodal myelin markers (MT, R1, R2* and FA), in a large cohort of healthy subjects. We found that physiological metrics of premotor-to-motor interaction are broadly associated with multiple myelin markers, suggesting interindividual differences in tract myelination may play a role in motor network physiology. Moreover, we also demonstrate that myelination metrics link indirectly to action switching by influencing local primary motor cortex dynamics. These findings suggest that myelination levels in white matter tracts may influence millisecond-level cortico-cortical interactions during tasks. They also unveil a link between the physiology of the motor network and the myelination of tracts connecting its components, and provide a putative mechanism mediating the relationship between brain myelination and human behaviour. Myelination is a key regulator of brain function. Here the authors use MR-based myelin measures to examine if cortico-cortical interactions, as assessed by paired pulse transcranial magnetic stimulation, are affected by variations in myelin in the human brain.
Collapse
|
2
|
Piredda GF, Hilbert T, Thiran JP, Kober T. Probing myelin content of the human brain with MRI: A review. Magn Reson Med 2020; 85:627-652. [PMID: 32936494 DOI: 10.1002/mrm.28509] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Rapid and efficient transmission of electric signals among neurons of vertebrates is ensured by myelin-insulating sheaths surrounding axons. Human cognition, sensation, and motor functions rely on the integrity of these layers, and demyelinating diseases often entail serious cognitive and physical impairments. Magnetic resonance imaging radically transformed the way these disorders are monitored, offering an irreplaceable tool to noninvasively examine the brain structure. Several advanced techniques based on MRI have been developed to provide myelin-specific contrasts and a quantitative estimation of myelin density in vivo. Here, the vast offer of acquisition strategies developed to date for this task is reviewed. Advantages and pitfalls of the different approaches are compared and discussed.
Collapse
Affiliation(s)
- Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Heath F, Hurley SA, Johansen-Berg H, Sampaio-Baptista C. Advances in noninvasive myelin imaging. Dev Neurobiol 2017; 78:136-151. [PMID: 29082667 PMCID: PMC5813152 DOI: 10.1002/dneu.22552] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/18/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Myelin is important for the normal development and healthy function of the nervous system. Recent developments in MRI acquisition and tissue modeling aim to provide a better characterization and more specific markers for myelin. This allows for specific monitoring of myelination longitudinally and noninvasively in the healthy brain as well as assessment of treatment and intervention efficacy. Here, we offer a nontechnical review of MRI techniques developed to specifically monitor myelin such as magnetization transfer (MT) and myelin water imaging (MWI). We further summarize recent studies that employ these methods to measure myelin in relation to development and aging, learning and experience, and neuropathology and psychiatric disorders. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 136–151, 2018
Collapse
Affiliation(s)
- Florence Heath
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Samuel A Hurley
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom.,Departments of Neuroscience and Radiology, 1111 Highland Ave, University of Wisconsin - Madison, Madison, Wisconsin, 53705
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Cassandra Sampaio-Baptista
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
4
|
Altmann-Schneider I, de Craen AJM, van den Berg-Huysmans AA, Slagboom P, Westendorp RG, van Buchem MA, van der Grond J. An in vivo study on brain microstructure in biological and chronological ageing. PLoS One 2015; 10:e0120778. [PMID: 25807271 PMCID: PMC4373824 DOI: 10.1371/journal.pone.0120778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/27/2015] [Indexed: 11/28/2022] Open
Abstract
This study aimed to investigate whether magnetization transfer imaging (MTI) parameters of cortical gray and white matter and subcortical gray matter structures differ between subjects enriched for human familial longevity and control subjects to provide a thorough description of the brain phenotype of familial longevity. Moreover, we aimed to describe cerebral ageing effects on MTI parameters in an elderly cohort. All subjects were included from the Leiden Longevity Study and underwent 3 Tesla MTI of the brain. In total, 183 offspring of nonagenarian siblings, who are enriched for familial factors of longevity, were contrasted with 163 environmentally and age-matched controls. No differences in cortical and subcortical gray matter and white matter MTI parameters were found between offspring and control subjects using histogram-based and voxel-wise analyses. Cortical gray matter and white matter MTI parameters decreased with increasing chronological age (all p < 0.001). Decrease of white matter magnetization transfer ratio (MTR) was homogeneous throughout the whole mean white matter skeleton except for parts of the callosal splenium and partly the posterior limb of the internal capsule and superior region of the corona radiata (p < 0.05). Mean MTR of subcortical gray matter structures decreased with increasing age (p amygdala, caudate nucleus and putamen < 0.001; p pallidum = 0.001, p thalamus = 0.002). In conclusion, the brain phenotype of human familial longevity is - at a mean age of 66 years - not characterized by preserved macromolecular brain tissue integrity.
Collapse
Affiliation(s)
- Irmhild Altmann-Schneider
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | | | - Pieternella Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Rudi G.J. Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
- Faculty of Health and Medical Sciences, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mark A. van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| |
Collapse
|
5
|
Fjær S, Bø L, Myhr KM, Torkildsen Ø, Wergeland S. Magnetization transfer ratio does not correlate to myelin content in the brain in the MOG-EAE mouse model. Neurochem Int 2015; 83-84:28-40. [PMID: 25744931 DOI: 10.1016/j.neuint.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/29/2015] [Accepted: 02/24/2015] [Indexed: 12/27/2022]
Abstract
Magnetization transfer ratio (MTR) is a magnetic resonance imaging (MRI) method which may detect demyelination not detected by conventional MRI in the central nervous system of patients with multiple sclerosis (MS). A decrease in MTR value has previously been shown to correlate to myelin loss in the mouse cuprizone model for demyelination. In this study, we investigated the sensitivity of MTR for demyelination in the myelin oligodendrocyte (MOG) 1-125 induced experimental autoimmune encephalomyelitis (EAE) mouse model. A total of 24 female c57Bl/6 mice were randomized to a control group (N = 6) or EAE (N = 18). MTR images were obtained at a preclinical 7 Tesla Bruker MR-scanner before EAE induction (baseline), 17-19 days (midpoint) and 31-32 days (endpoint) after EAE induction. Mean MTR values were calculated in five regions of the brain and compared to weight, EAE severity score and myelin content assessed by immunostaining for proteolipid protein and luxol fast blue, lymphocyte and monocyte infiltration and iron deposition. Contrary to what was expected, MTR values in the EAE mice were higher than in the control mice at the midpoint and endpoint. No significant difference in myelin content was found according to histo- or immunohistochemistry. Changes in MTR values did not correlate to myelin content, iron content, lymphocyte or monocyte infiltration, weight or EAE severity scores. This suggest that MTR measures of brain tissue can give significant differences between control mice and EAE mice not caused by demyelination, inflammation or iron deposition, and may not be useful surrogate markers for demyelination in the MOG1-125 mouse model.
Collapse
Affiliation(s)
- Sveinung Fjær
- KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| | - Lars Bø
- KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Øivind Torkildsen
- KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Kearney H, Yiannakas MC, Samson RS, Wheeler-Kingshott CAM, Ciccarelli O, Miller DH. Investigation of magnetization transfer ratio-derived pial and subpial abnormalities in the multiple sclerosis spinal cord. Brain 2014; 137:2456-68. [DOI: 10.1093/brain/awu171] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
7
|
Zhang Y, Wells J, Buist R, Peeling J, Yong VW, Mitchell JR. Active inflammation increases the heterogeneity of MRI texture in mice with relapsing experimental allergic encephalomyelitis. Magn Reson Imaging 2013; 32:168-74. [PMID: 24246391 DOI: 10.1016/j.mri.2013.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 08/20/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
Inflammation modulates tissue damage in relapsing-remitting multiple sclerosis (MS) both acutely and chronically, but its severity is difficult to evaluate with conventional MRI analysis. In mice with experimental allergic encephalomyelitis (EAE, a model of MS), we administered ultra small particles of iron oxide to track macrophage-mediated inflammation during the onset (relapse) and recovery (remission) of disease activity using high field MRI. We performed MRI texture analysis, a sensitive measure of tissue regularity, and T2 assessment both in EAE lesions and the control tissue, and measured spinal cord volume. We found that inflammation was 3 times more remarkable at onset than at recovery of EAE in histology yet demyelination appeared similar across animals and disease course. In MRI, lesion texture was more heterogeneous; T2 was lower; and spinal cord volume was greater in EAE than in controls, but only MRI texture was worse at relapse than at remission of EAE. Moreover, MRI texture correlated with spinal cord volume and tended to correlate with the extent of disability in EAE. While subject to further confirmation, our findings may suggest the sensitivity of MRI texture analysis for accessing inflammation.
Collapse
Affiliation(s)
- Yunyan Zhang
- Department of Radiology, University of Calgary, 2500 University Drive Calgary, Alberta, Canada T2N 1N4; Department of Clinical Neurosciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4; Hotchkiss Brain Institute, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4.
| | - Jennifer Wells
- Department of Clinical Neurosciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Richard Buist
- Department of Radiology, University of Manitoba, 66 Chancellors Circle, Winnipeg, Manitoba, Canada R3T 2N2
| | - James Peeling
- Department of Radiology, University of Manitoba, 66 Chancellors Circle, Winnipeg, Manitoba, Canada R3T 2N2
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4; Department of Oncology, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4; Hotchkiss Brain Institute, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - J Ross Mitchell
- Department of Radiology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA
| |
Collapse
|
8
|
Gitter BD, Horn JW, Brown JM, Territo PR, Winkle W, Yoder KK, Hutchins GD, Sterchi DL. Histological Validation of Dopamine Transporter PET Images in the Rat 6-OHDA Lesion Model of Parkinson's Disease. J Histotechnol 2013. [DOI: 10.1179/his.2007.30.2.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. Neuroimage 2011; 55:1454-60. [PMID: 21238597 DOI: 10.1016/j.neuroimage.2011.01.007] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/24/2010] [Accepted: 01/05/2011] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Correlation of diffusion tensor imaging (DTI) with histochemical staining for demyelination and axonal damage in multiple sclerosis (MS) ex vivo human cervical spinal cords. BACKGROUND In MS, demyelination, axonal degeneration, and inflammation contribute to disease pathogenesis to variable degrees. Based upon in vivo animal studies with acute injury and histopathologic correlation, we hypothesized that DTI can differentiate between axonal and myelin pathologies within humans. METHODS DTI was performed at 4.7 T on 9 MS and 5 normal control fixed cervical spinal cord blocks following autopsy. Sections were then stained for Luxol fast blue (LFB), Bielschowsky silver, and hematoxylin and eosin (H&E). Regions of interest (ROIs) were graded semi-quantitatively as normal myelination, mild (<50%) demyelination, or moderate-severe (>50%) demyelination. Corresponding axonal counts were manually determined on Bielschowsky silver. ROIs were mapped to co-registered DTI parameter slices. DTI parameters evaluated included standard quantitative assessments of apparent diffusion coefficient (ADC), relative anisotropy (RA), axial diffusivity and radial diffusivity. Statistical correlations were made between histochemical gradings and DTI parameters using linear mixed models. RESULTS Within ROIs in MS subjects, increased radial diffusivity distinguished worsening severities of demyelination. Relative anisotropy was decreased in the setting of moderate-severe demyelination compared to normal areas and areas of mild demyelination. Radial diffusivity, ADC, and RA became increasingly altered within quartiles of worsening axonal counts. Axial diffusivity did not correlate with axonal density (p=0.091). CONCLUSIONS Increased radial diffusivity can serve as a surrogate for demyelination. However, radial diffusivity was also altered with axon injury, suggesting that this measure is not pathologically specific within chronic human MS tissue. We propose that radial diffusivity can serve as a marker of overall tissue integrity within chronic MS lesions. This study provides pathologic foundation for on-going in vivo DTI studies in MS.
Collapse
|
10
|
McCreary CR, Bjarnason TA, Skihar V, Mitchell JR, Yong VW, Dunn JF. Multiexponential T2 and magnetization transfer MRI of demyelination and remyelination in murine spinal cord. Neuroimage 2009; 45:1173-82. [PMID: 19349232 DOI: 10.1016/j.neuroimage.2008.12.071] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/23/2008] [Accepted: 12/31/2008] [Indexed: 11/19/2022] Open
Abstract
Identification of remyelination is important in the evaluation of potential treatments of demyelinating diseases such as multiple sclerosis. Local injection of lysolecithin into the brain or spinal cord provides a murine model of demyelination with spontaneous remyelination. The aim of this study was to determine if quantitative, multicomponent T(2) (qT(2)) analysis and magnetization transfer ratio (MTR), both indicative of myelin content, could detect changes in myelination, particularly remyelination, of the cervical spinal cord in mice treated with lysolecithin. We found that the myelin water fraction and geometric mean T(2) value of the intra/extracellular water significantly decreased at 14 days then returned to control levels by 28 days after injury, corresponding to clearance of myelin debris and remyelination which was shown by eriochrome cyanine and oil red O staining of histological sections. The MTR was significantly decreased 14 days after lysolecithin injection, and remained low over the time course studied. Evidence of demyelination shown by both qT(2) and MTR lagged behind the histological evidence of demyelination. Myelin water fraction increased with remyelination, however MTR remained lower after 28 days. The difference between qT(2) and MTR may identify early remyelination.
Collapse
Affiliation(s)
- Cheryl R McCreary
- Experimental Imaging Centre, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Remyelination of axons that have been demyelinated due to multiple sclerosis (MS) may be a critical step in restoring the damaged axons and reversing the disease process. While it is possible to establish the presence of remyelination with microscopy of tissue samples, it is important to have noninvasive or minimally invasive methods to measure remyelination in living animals and humans. Such tools are critical to establishing the efficacy of agents purported to promote or enhance remyelination. This chapter reviews the technology of imaging of the brain, its application to MS, and the current state of imaging techniques for measuring remyelination and the health of the associated neurons in the setting of MS.
Collapse
Affiliation(s)
- B J Erickson
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
12
|
Pirko I, Johnson AJ. Neuroimaging of demyelination and remyelination models. Curr Top Microbiol Immunol 2008; 318:241-66. [PMID: 18219821 DOI: 10.1007/978-3-540-73677-6_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Small-animal magnetic resonance imaging is becoming an increasingly utilized noninvasive tool in the study of animal models of MS including the most commonly used autoimmune, viral, and toxic models. Because most MS models are induced in rodents with brains and spinal cords of a smaller magnitude than humans, small-animal MRI must accomplish much higher resolution acquisition in order to generate useful data. In this review, we discuss key aspects and important differences between high field strength experimental and human MRI. We describe the role of conventional imaging sequences including T1, T2, and proton density-weighted imaging, and we discuss the studies aimed at analyzing blood-brain barrier (BBB) permeability and acute inflammation utilizing gadolinium-enhanced MRI. Advanced MRI methods, including diffusion-weighted and magnetization transfer imaging in monitoring demyelination, axonal damage, and remyelination, and studies utilizing in vivo T1 and T2 relaxometry, provide insight into the pathology of demyelinating diseases at previously unprecedented details. The technical challenges of small voxel in vivo MR spectroscopy and the biologically relevant information obtained by analysis of MR spectra in demyelinating models is also discussed. Novel cell-specific and molecular imaging techniques are becoming more readily available in the study of experimental MS models. As a growing number of tissue restorative and remyelinating strategies emerge in the coming years, noninvasive monitoring of remyelination will be an important challenge in small-animal imaging. High field strength small-animal experimental MRI will continue to evolve and interact with the development of new human MR imaging and experimental NMR techniques.
Collapse
Affiliation(s)
- I Pirko
- Department of Neurology, Waddell Center for Multiple Sclerosis, University of Cincinnati, 260 Stetson St, Suite 2300, Cincinnati, OH 45267-0525, USA.
| | | |
Collapse
|
13
|
Laule C, Vavasour IM, Kolind SH, Li DKB, Traboulsee TL, Moore GRW, MacKay AL. Magnetic resonance imaging of myelin. Neurotherapeutics 2007; 4:460-84. [PMID: 17599712 PMCID: PMC7479725 DOI: 10.1016/j.nurt.2007.05.004] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ability to measure myelin in vivo has great consequences for furthering our knowledge of normal development, as well as for understanding a wide range of neurological disorders. The following review summarizes the current state of myelin imaging using MR. We consider five MR techniques that have been used to study myelin: 1) conventional MR, 2) MR spectroscopy, 3) diffusion, 4) magnetization transfer, and 5) T2 relaxation. Fundamental studies involving peripheral nerve and MR/histology comparisons have aided in the interpretation and validation of MR data. We highlight a number of important findings related to myelin development, damage, and repair, and we conclude with a critical summary of the current techniques available and their potential to image myelin in vivo.
Collapse
Affiliation(s)
- Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC, V6T 2B5 Canada.
| | | | | | | | | | | | | |
Collapse
|
14
|
Budde MD, Kim JH, Liang HF, Schmidt RE, Russell JH, Cross AH, Song SK. Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn Reson Med 2007; 57:688-95. [PMID: 17390365 DOI: 10.1002/mrm.21200] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diffusion tensor imaging (DTI) has been widely applied to investigate injuries in the central nervous system (CNS) white matter (WM). However, the underlying pathological correlates of diffusion changes have not been adequately determined. In this study the coregistration of histological sections to MR images and a pixel-based receiver operating characteristic (ROC) analysis were used to compare the axial (lambda( parallel)) and radial (lambda( perpendicular)) diffusivities derived from DTI and histological markers of axon (phosphorylated neurofilament, SMI-31) and myelin (Luxol fast blue (LFB)) integrity, respectively, in two different patterns of injury to mouse spinal cord (SC) WM. In contusion SC injury (SCI), a decrease in lambda( parallel) matched the pattern of axonal damage with high accuracy, but lambda( perpendicular) did not match the pattern of demyelination detected by LFB. In a mouse model of multiple sclerosis (MS), lambda( perpendicular) and lambda( parallel) did not match the patterns of demyelination or axonal damage, respectively. However, a region of interest (ROI) analysis suggested that lambda( perpendicular)-detected demyelination paralleled that observed with LFB, and lambda( parallel) decreased in both regions of axonal damage and normal-appearing WM (NAWM) as visualized by SMI-31. The results suggest that directional diffusivities may reveal abnormalities that are not obvious with SMI-31 and LFB staining, depending on the type of injury.
Collapse
Affiliation(s)
- Matthew D Budde
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Blezer ELA, Bauer J, Brok HPM, Nicolay K, 't Hart BA. Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR IN BIOMEDICINE 2007; 20:90-103. [PMID: 16948176 DOI: 10.1002/nbm.1085] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced with recombinant human myelin/oligodendrocyte glycoprotein in the common marmoset is a useful preclinical model of multiple sclerosis in which white matter lesions can be well visualized with MRI. In this study we characterized lesion progression with quantitative in vivo MRI (4.7 T; T(1) relaxation time +/- Gd-DTPA; T(2) relaxation time; magnetization transfer ratio, MTR, imaging) and correlated end stage MRI presentation with quantitative ex vivo MRI (formaldehyde fixed brains; T(1) and T(2) relaxation times; MTR) and histology. The histopathological characterization included axonal density measurements and the numeric quantification of infiltrated macrophages expressing markers for early active [luxol fast blue (LFB) or migration inhibition factor-related protein-14 positive] or late active/inactive [periodic acid Schiff (PAS) positive] demyelinating lesion. MRI experiments were done every two weeks until the monkeys were sacrificed with severe EAE-related motor deficits. Compared with the normal appearing white matter, lesions showed an initial increase in T(1) relaxation times, leakage of Gd-DTPA and decrease in MTR values. The progressive enlargement of lesions was associated with stabilized T(1) values, while T(2) initially increased and stabilized thereafter and MTR remained decreased. Gd-DTPA leakage was highly variable throughout the experiment. MRI characteristics of the cortex and (normal appearing) white matter did not change during the experiment. We observed that in vivo MTR values correlated positively with the number of early active (LFB+) and negatively with late active (PAS+) macrophages. Ex vivo MTR and relaxation times correlated positively with the number of PAS-positive macrophages. None of the investigated MRI parameters correlated with axonal density.
Collapse
Affiliation(s)
- Erwin L A Blezer
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Edwards MB, Draper ERC, Hand JW, Taylor KM, Young IR. Mechanical testing of human cardiac tissue: some implications for MRI safety. J Cardiovasc Magn Reson 2006; 7:835-40. [PMID: 16353445 DOI: 10.1080/10976640500288149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
PURPOSE The effects of aging on tissue strength and its ability to withstand forces associated with MRI have not been investigated. This study aimed to determine the forces required to cause partial or total detachment of a heart valve prosthesis in patients with age-related degenerative diseases exposed to MRI. METHODS Eighteen tissue samples excised during routine heart valve replacement surgery were subjected to a suture pull-out test using a tensile materials testing machine. Five preconditioning cycles were applied before commencing the final destructive test. The test was complete when the sample ruptured and the suture was pulled completely free from the tissue. Results were compared with previously calculated magnetically induced forces at 4.7 T. RESULTS All tissue samples displayed a basic failure pattern. Mean forces required to cause initial yield and total rupture were 4.0 N (+/- 3.3 N) and 4.9 N (+/- 3.6 N), respectively. Significant factors determining initial yield were stenosed calcific tissue (p < .01), calcific degeneration (single pathology) (p < .04) and tissue stiffness (p < .01). Calcific degeneration (p < .03) and tissue stiffness (p < .03) were also significant in determining maximum force required to cause total rupture. CONCLUSION Specific age-related degenerative cardiac diseases stiffen and strengthen tissue resulting in significant forces being required to pull a suture through valve annulus tissue. These forces are significantly greater than magnetically induced < 4.7 T. Therefore, patients with degenerative valvular diseases are unlikely to be at risk of valve dehiscence during exposure to static magnetic field < or = 4.7 T.
Collapse
Affiliation(s)
- Maria-Benedicta Edwards
- United Kingdom Heart Valve Registry, Department of Cardiothoracic Surgery, Hammersmith Hospital, UK
| | | | | | | | | |
Collapse
|
17
|
Abstract
Magnetization transfer (MT) is a relatively new way of generating contrast in magnetic resonance (MR) images that is sensitive to the density of the macromolecules found throughout tissue structures such as membranes, myelin, and organelles. MT imaging (MTI) can provide a quantitative measure of macromolecular density, and therefore of tissue damage, and has been applied in the central nervous system in multiple sclerosis (MS) and other diseases. This article introduces the contrast mechanisms behind MTI and gives some practical guidance about implementing MTI and about quantitative analysis of the MT scans. An overview of MT measurements made in animal studies, in postmortem tissue samples, and in other demyelinating diseases attempts to rationalize the pathological basis of changes in MT contrast in MS. The application of MTI to MS is reviewed, with emphasis on the contribution that MTI has made to the current understanding of the MS disease process, both its natural history and the response to treatment. The pathological basis of abnormal MT contrast is still open to debate, with many conflicting reports; indeed, it is unlikely that a simple measure of MT effect will reveal the details of pathology that is a combination of inflammation, demyelination, remyelination, and axonal loss. There is no doubt, however, that MT measurements have contributed to the current understanding of both disease progression and the response to treatment and will prove to be a valuable tool in the future, particularly if more refined techniques can be applied practically in multicenter studies.
Collapse
Affiliation(s)
- Mark A Horsfield
- Department of Cardiology, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK.
| |
Collapse
|
18
|
Kim JH, Budde MD, Liang HF, Klein RS, Russell JH, Cross AH, Song SK. Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 2005; 21:626-32. [PMID: 16298135 DOI: 10.1016/j.nbd.2005.09.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/11/2005] [Accepted: 09/21/2005] [Indexed: 11/24/2022] Open
Abstract
In the current study, the feasibility and reproducibility of in vivo diffusion tensor imaging (DTI) of the spinal cord in normal mice are illustrated followed by its application to mice with experimental allergic encephalomyelitis (EAE) to detect and differentiate axon and myelin damage. Axial diffusivity, describing water movement along the axonal fiber tract, in all regions of spinal cord white matter from EAE-affected C57BL/6 mice was significantly decreased compared to normal mice, whereas there was no statistically significant change in radial diffusivity, describing water movement across the fiber tract. Furthermore, a direct comparison between DTI and histology from a single mouse demonstrated a decrease in axial diffusivity that was supported by widespread staining of antibody against beta-amyloid precursor protein. Regionally elevated radial diffusivity corresponded with locally diminished Luxol fast blue staining in the same tissue from the EAE mouse cord. Our findings suggest that axonal damage is more widespread than myelin damage in the spinal cord white matter of mice with EAE and that in vivo DTI may provide a sensitive and specific measure of white matter injury.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Erskine MK, Cook LL, Riddle KE, Mitchell JR, Karlik SJ. Resolution-dependent estimates of multiple sclerosis lesion loads. Can J Neurol Sci 2005; 32:205-12. [PMID: 16018156 DOI: 10.1017/s031716710000398x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Changes in brain lesion loads assessed with magnetic resonance imaging obtained at 1.5 Telsa (T) are used as a measure of disease evolution in natural history studies and treatment trials of multiple sclerosis. METHODS A comparison was made between the total lesion volume and individual lesions observed on 1.5 T images and on high-resolution 4 T images. Lesions were quantified using a computer-assisted segmentation tool. RESULTS There was a 46% increase in the total number of lesions detected with 4 T versus 1.5 T imaging (p < 0.005). The 4 T also showed a 60% increase in total lesion volume when compared with the 1.5 T (p < 0.005). In several instances, the 1.5 T scans showed individual lesions that coalesced into larger areas of abnormality in the 4 T scans. The relationship between individual lesion volumes was linear (slope 1.231) showing that the lesion volume observed at 4 T increased with the size of the lesion detected at 1.5 T. The 4 T voxels were less than one quarter the size of those used at 1.5 T and there were no consistent differences between their signal-to-noise ratios. CONCLUSIONS The increase in signal strength that accompanied the increase in field strength compensated for the loss in signal amplitude produced by the use of smaller voxels. This enabled the acquisition of images with improved resolution, resulting in increased lesion detection at 4 T and larger lesion volumes.
Collapse
Affiliation(s)
- M K Erskine
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|