1
|
Li LP, Hack B, Seeliger E, Prasad PV. MRI Mapping of the Blood Oxygenation Sensitive Parameter T 2* in the Kidney: Basic Concept. Methods Mol Biol 2021; 2216:171-185. [PMID: 33476000 DOI: 10.1007/978-1-0716-0978-1_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The role of hypoxia in renal disease and injury has long been suggested but much work still remains, especially as it relates to human translation. Invasive pO2 probes are feasible in animal models but not for human use. In addition, they only provide localized measurements. Histological methods can identify hypoxic tissue and provide a spatial distribution, but are invasive and allow only one-time point. Blood oxygenation level dependent (BOLD) MRI is a noninvasive method that can monitor relative oxygen availability across the kidney. It is based on the inherent differences in magnetic properties of oxygenated vs. deoxygenated hemoglobin. Presence of deoxyhemoglobin enhances the spin-spin relaxation rate measured using a gradient echo sequence, known as R2* (= 1/T2*). While the key interest of BOLD MRI is in the application to humans, use in preclinical models is necessary primarily to validate the measurement against invasive methods, to better understand physiology and pathophysiology, and to evaluate novel interventions. Application of MRI acquisitions in preclinical settings involves several challenges both in terms of logistics and data acquisition. This section will introduce the concept of BOLD MRI and provide some illustrative applications. The following sections will discuss the technical issues associated with data acquisition and analysis.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Lu-Ping Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Bradley Hack
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Erdmann Seeliger
- Institute of Physiology, Charité - University Medicine Berlin, Berlin, Germany
| | | |
Collapse
|
2
|
Zhao K, Pohlmann A, Feng Q, Mei Y, Yang G, Yi P, Feng Q, Chen W, Zhou L, Wu EX, Seeliger E, Niendorf T, Feng Y. Physiological system analysis of the kidney by high-temporal-resolution T 2 ∗ monitoring of an oxygenation step response. Magn Reson Med 2020; 85:334-345. [PMID: 32710578 DOI: 10.1002/mrm.28399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE Examine the feasibility of characterizing the regulation of renal oxygenation using high-temporal-resolution monitoring of the T 2 ∗ response to a step-like oxygenation stimulus. METHODS For T 2 ∗ mapping, multi-echo gradient-echo imaging was used (temporal resolution = 9 seconds). A step-like renal oxygenation challenge was applied involving sequential exposure to hyperoxia (100% O2 ), hypoxia (10% O2 + 90% N2 ), and hyperoxia (100% O2 ). In vivo experiments were performed in healthy rats (N = 10) and in rats with bilateral ischemia-reperfusion injury (N = 4). To assess the step response of renal oxygenation, a second-order exponential model was used (model parameters: amplitude [A], time delay [Δt], damping constant [D], and period of the oscillation [T]) for renal cortex, outer stripe of the outer medulla, inner stripe of the outer medulla, and inner medulla. RESULTS The second-order exponential model permitted us to model the exponential T 2 ∗ recovery and the superimposed T 2 ∗ oscillation following renal oxygenation stimulus. The in vivo experiments revealed a difference in Douter medulla between healthy controls (D < 1, indicating oscillatory recovery) and ischemia-reperfusion injury (D > 1, reflecting aperiodic recovery). The increase in Douter medulla by a factor of 3.7 (outer stripe of the outer medulla) and 10.0 (inner stripe of the outer medulla) suggests that this parameter might be rather sensitive to (patho)physiological oxygenation changes. CONCLUSION This study demonstrates the feasibility of monitoring the dynamic oxygenation response of renal tissues to a step-like oxygenation challenge using high-temporal-resolution T 2 ∗ mapping. Our results suggest that the implemented system analysis approach may help to unlock questions regarding regulation of renal oxygenation, with the ultimate goal of providing imaging means for diagnostics and therapy of renal diseases.
Collapse
Affiliation(s)
- Kaixuan Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Qijian Feng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingjie Mei
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Philips Healthcare, Guangzhou, China
| | - Guixiang Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Wufang Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wang C, Zhang R, Wang R, Jiang L, Zhang X, Wang H, Zhao K, Jin L, Zhang J, Wang X, Fang J. Noninvasive measurement of renal oxygen extraction fraction under the influence of respiratory challenge. J Magn Reson Imaging 2016; 44:230-7. [PMID: 26800848 DOI: 10.1002/jmri.25163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chengyan Wang
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing PR China
| | - Rui Zhang
- College of Engineering; Peking University; Beijing PR China
| | - Rui Wang
- Department of Radiology; Peking University First Hospital; Beijing PR China
| | - Li Jiang
- Philips Healthcare; Suzhou Jiangsu PR China
| | - Xiaodong Zhang
- Department of Radiology; Peking University First Hospital; Beijing PR China
| | - He Wang
- Philips Healthcare; Suzhou Jiangsu PR China
| | - Kai Zhao
- Department of Radiology; Peking University First Hospital; Beijing PR China
| | - Lixin Jin
- Philips Healthcare; Suzhou Jiangsu PR China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing PR China
- College of Engineering; Peking University; Beijing PR China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing PR China
- Department of Radiology; Peking University First Hospital; Beijing PR China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing PR China
- College of Engineering; Peking University; Beijing PR China
| |
Collapse
|
4
|
Zhang R, Wang Y, Chen F, Wang Q, Wang Z, Chen Y, Xiao W. Noninvasive evaluation of renal oxygenation in primary nephrotic syndrome with blood oxygen level dependent magnetic resonance imaging: Initial experience. J Int Med Res 2015; 43:356-63. [PMID: 25947644 DOI: 10.1177/0300060515579117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/05/2015] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES To use blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to evaluate renal oxygenation in patients with primary nephrotic syndrome (PNS), and test the hypothesis that renal tissue oxygenation correlates with renal function, tubulointerstitial alterations and treatment response. METHODS Patients with untreated first-onset PNS and healthy control subjects underwent BOLD MRI. Blood and urine samples were obtained on the day of MRI, and patients underwent renal biopsy the day after MRI. Renal tubulointerstitial damage scores (TIDS) were determined using Katafuchi criteria. All patients received corticosteroids within 7 days after MRI and were followed up for 12 months. RESULTS Medullary R2* values were significantly lower in patients with PNS (n = 20) than controls (n = 18). Medullary R2* values were negatively correlated with estimated glomerular filtration rates and positively correlated with TIDS in patients with PNS. There were no significant differences in medullary or cortical R2* values when patients were classified according to treatment response. CONCLUSIONS The medullary oxygen concentration was higher in patients with PNS than in control subjects. BOLD MRI was a useful noninvasive method for the evaluation of renal function and tubulointerstitial impairment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yao Wang
- Department of Ultrasonography, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qidong Wang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaoming Wang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yilun Chen
- Kidney Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Acute superoxide radical scavenging reduces blood pressure but does not influence kidney function in hypertensive rats with postischemic kidney injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:512619. [PMID: 25050356 PMCID: PMC4090523 DOI: 10.1155/2014/512619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) is associated with significant morbidity and mortality in hypertensive surroundings. We investigated superoxide radical molecules influence on systemic haemodynamic and kidney function in spontaneously hypertensive rats (SHR) with induced postischemic AKI. Experiment was performed in anesthetized adult male SHR. The right kidney was removed, and left renal artery was subjected to ischemia by clamping for 40 minutes. The treated group received synthetic superoxide dismutase mimetic TEMPOL in the femoral vein 5 minutes before, during, and 175 minutes after the period of reperfusion, while the control AKI group received the vehicle via the same route. All parameters were measured 24 h after renal reperfusion. TEMPOL treatment significantly decreased mean arterial pressure and total peripheral resistance (P < 0.05) compared to AKI control. It also increased cardiac output and catalase activity (P < 0.05). Lipid peroxidation and renal vascular resistance were decreased in TEMPOL (P < 0.05). Plasma creatinine and kidney morphological parameters were unchanged among TEMPOL treated and control groups. Our study shows that superoxide radicals participate in haemodynamic control, but acute superoxide scavenging is ineffective in glomerular and tubular improvement, probably due to hypertension-induced strong endothelial dysfunction which neutralizes beneficial effects of O2− scavenging.
Collapse
|
6
|
Pohlmann A, Cantow K, Hentschel J, Arakelyan K, Ladwig M, Flemming B, Hoff U, Persson PB, Seeliger E, Niendorf T. Linking non-invasive parametric MRI with invasive physiological measurements (MR-PHYSIOL): towards a hybrid and integrated approach for investigation of acute kidney injury in rats. Acta Physiol (Oxf) 2013; 207:673-89. [PMID: 23336404 DOI: 10.1111/apha.12065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/17/2012] [Accepted: 01/16/2013] [Indexed: 01/11/2023]
Abstract
Acute kidney injury of various origins shares a common link in the pathophysiological chain of events: imbalance between renal medullary oxygen delivery and oxygen demand. For in vivo assessment of kidney haemodynamics and oxygenation in animals, quantitative but invasive physiological methods are established. A very limited number of studies attempted to link these invasive methods with parametric Magnetic Resonance Imaging (MRI) of the kidney. Moreover, the validity of parametric MRI (pMRI) as a surrogate marker for renal tissue perfusion and renal oxygenation has not been systematically examined yet. For this reason, we set out to combine invasive techniques and non-invasive MRI in an integrated hybrid setup (MR-PHYSIOL) with the ultimate goal to calibrate, monitor and interpret parametric MR and physiological parameters by means of standardized interventions. Here we present a first report on the current status of this multi-modality approach. For this purpose, we first highlight key characteristics of renal perfusion and oxygenation. Second, concepts for in vivo characterization of renal perfusion and oxygenation are surveyed together with the capabilities of MRI for probing blood oxygenation-dependent tissue stages. Practical concerns evoked by the use of strong magnetic fields in MRI and interferences between MRI and invasive physiological probes are discussed. Technical solutions that balance the needs of in vivo physiological measurements together with the constraints dictated by small bore MR scanners are presented. An early implementation of the integrated MR-PHYSIOL approach is demonstrated including brief interventions of hypoxia and hyperoxia.
Collapse
Affiliation(s)
- A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin; Germany
| | - K. Cantow
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin; Germany
| | | | - M. Ladwig
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - B. Flemming
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - U. Hoff
- Nephrology and Intensive Care Medicine; Charité - Universitätsmedizin Berlin; Campus Virchow-Klinikum, and Center for Cardiovascular Research; Berlin; Germany
| | - P. B. Persson
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - E. Seeliger
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | | |
Collapse
|
7
|
Rognant N, Lemoine S, Laville M, Juillard L. Évaluation du contenu tissulaire rénal en oxygène par la technique IRM BOLD. Nephrol Ther 2012; 8:212-5. [DOI: 10.1016/j.nephro.2011.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 08/02/2011] [Indexed: 10/14/2022]
|
8
|
Edwards A, Layton AT. Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide. Am J Physiol Renal Physiol 2011; 301:F979-96. [PMID: 21849492 DOI: 10.1152/ajprenal.00096.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We expanded our region-based model of water and solute exchanges in the rat outer medulla to incorporate the transport of nitric oxide (NO) and superoxide (O(2)(-)) and to examine the impact of NO-O(2)(-) interactions on medullary thick ascending limb (mTAL) NaCl reabsorption and oxygen (O(2)) consumption, under both physiological and pathological conditions. Our results suggest that NaCl transport and the concentrating capacity of the outer medulla are substantially modulated by basal levels of NO and O(2)(-). Moreover, the effect of each solute on NaCl reabsorption cannot be considered in isolation, given the feedback loops resulting from three-way interactions between O(2), NO, and O(2)(-). Notwithstanding vasoactive effects, our model predicts that in the absence of O(2)(-)-mediated stimulation of NaCl active transport, the outer medullary concentrating capacity (evaluated as the collecting duct fluid osmolality at the outer-inner medullary junction) would be ∼40% lower. Conversely, without NO-induced inhibition of NaCl active transport, the outer medullary concentrating capacity would increase by ∼70%, but only if that anaerobic metabolism can provide up to half the maximal energy requirements of the outer medulla. The model suggests that in addition to scavenging NO, O(2)(-) modulates NO levels indirectly via its stimulation of mTAL metabolism, leading to reduction of O(2) as a substrate for NO. When O(2)(-) levels are raised 10-fold, as in hypertensive animals, mTAL NaCl reabsorption is significantly enhanced, even as the inefficient use of O(2) exacerbates hypoxia in the outer medulla. Conversely, an increase in tubular and vascular flows is predicted to substantially reduce mTAL NaCl reabsorption. In conclusion, our model suggests that the complex interactions between NO, O(2)(-), and O(2) significantly impact the O(2) balance and NaCl reabsorption in the outer medulla.
Collapse
Affiliation(s)
- Aurélie Edwards
- Dept. of Chemical and Biological Engineering, Tufts Univ., 4 Colby St., Medford, MA 02155, USA.
| | | |
Collapse
|
9
|
Grenier N, Quaia E, Prasad PV, Juillard L. Radiology Imaging of Renal Structure and Function by Computed Tomography, Magnetic Resonance Imaging, and Ultrasound. Semin Nucl Med 2011; 41:45-60. [DOI: 10.1053/j.semnuclmed.2010.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Rognant N, Guebre-Egziabher F, Bacchetta J, Janier M, Hiba B, Langlois JB, Gadet R, Laville M, Juillard L. Evolution of renal oxygen content measured by BOLD MRI downstream a chronic renal artery stenosis. Nephrol Dial Transplant 2010; 26:1205-10. [DOI: 10.1093/ndt/gfq538] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Pruijm M, Hofmann L, Maillard M, Tremblay S, Glatz N, Wuerzner G, Burnier M, Vogt B. Effect of sodium loading/depletion on renal oxygenation in young normotensive and hypertensive men. Hypertension 2010; 55:1116-22. [PMID: 20308608 DOI: 10.1161/hypertensionaha.109.149682] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of this study was to investigate the effect of sodium intake on renal tissue oxygenation in humans. To this purpose, we measured renal hemodynamics, renal sodium handling, and renal oxygenation in normotensive (NT) and hypertensive (HT) subjects after 1 week of a high-sodium and 1 week of a low-sodium diet. Renal oxygenation was measured using blood oxygen level-dependent magnetic resonance. Tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* values in the medulla and cortex were calculated, with a low R2* indicating a high tissue oxygenation. Ten male NT (mean age: 26.5+/-7.4 years) and 8 matched HT subjects (mean age: 28.8+/-5.7 years) were studied. Cortical R2* was not different under the 2 conditions of salt intake. Medullary R2* was significantly lower under low sodium than high sodium in both NT and HT subjects (28.1+/-0.8 versus 31.3+/-0.6 s(-1); P<0.05 in NT; and 27.9+/-1.5 versus 30.3+/-0.8 s(-1); P<0.05, in HT), indicating higher medullary oxygenation under low-sodium conditions. In NT subjects, medullary oxygenation was positively correlated with proximal reabsorption of sodium and negatively with absolute distal sodium reabsorption, but not with renal plasma flow. In HT subjects, medullary oxygenation correlated with the 24-hour sodium excretion but not with proximal or with the distal handling of sodium. These data demonstrate that dietary sodium intake influences renal tissue oxygenation, low sodium intake leading to an increased renal medullary oxygenation both in normotensive and young hypertensive subjects.
Collapse
Affiliation(s)
- Menno Pruijm
- Service of Nephrology, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 17, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Boss A, Martirosian P, Jehs MC, Dietz K, Alber M, Rossi C, Claussen CD, Schick F. Influence of oxygen and carbogen breathing on renal oxygenation measured by T2*-weighted imaging at 3.0 T. NMR IN BIOMEDICINE 2009; 22:638-645. [PMID: 19306339 DOI: 10.1002/nbm.1378] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim of the study was to assess the influence of carbogen (95% O(2), 5% CO(2)) or pure oxygen breathing on renal oxygenation measured by blood oxygenation level dependent (BOLD) magnetic resonance imaging at 3.0 T. Seven healthy young volunteers (median age 25, range 23-35 years) participated in the study. A T2*-weighted fat-saturated spoiled gradient-echo sequence was implemented on a 3.0 T whole-body imager (TE/TR = 27.9 ms/49 ms, excitation angle 20 degrees ) with an acquisition time of approximately 5.3 s. A total of 100 images were acquired during 22 min. A block design was applied for gas administration: 4 min room air, 4 min carbogen/oxygen, 4 min room air, 4 min carbogen/oxygen and 6 min room air. A compartment model was fitted to the data sets accounting for time-dependent increase/decrease of renal oxygenation as well as baseline changes of the scanner. T2*-weighted images showed good image quality without notable artefacts or distortions. Mean relative signal increase due to carbogen breathing was 2.73% (95% confidence interval: 1.34-5.54) in the right kidney and 3.76% (1.53-9.20) in the left kidney, while oxygen breathing led to a signal enhancement of 3.20% (2.57-3.98) in the right kidney and 3.16% (1.83-5.45) in the left kidney. No statistical difference was found between carbogen and oxygen breathing or between the oxygenation of the right and the left kidney. A significant difference was found in the characteristic time constant for the signal increase with a faster saturation taking place for oxygen breathing. Renal tissue oxygenation is clearly influenced by carbogen or oxygen breathing. The changes can be assessed by T2*-weighted MRI at high field strengths. The effects are in the expected range for the BOLD effect of 3-4% at 3.0 T. The proposed technique might be interesting for the assessment of renal tissue oxygenation and its regulation in patients with kidney diseases.
Collapse
Affiliation(s)
- Andreas Boss
- Section of Experimental Radiology, Eberhard-Karls University, Hoppe-Seyler-Strasse 3, Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Evans RG, Gardiner BS, Smith DW, O'Connor PM. Methods for studying the physiology of kidney oxygenation. Clin Exp Pharmacol Physiol 2009; 35:1405-12. [PMID: 18983577 DOI: 10.1111/j.1440-1681.2008.05063.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
1. An improved understanding of the regulation of kidney oxygenation has the potential to advance preventative, diagnostic and therapeutic strategies for kidney disease. Here, we review the strengths and limitations of available and emerging methods for studying kidney oxygen status. 2. To fully characterize kidney oxygen handling, we must quantify multiple parameters, including renal oxygen delivery (DO2) and consumption (VO2), as well as oxygen tension (Po2). Ideally, these parameters should be quantified both at the whole-organ level and within specific vascular, tubular and interstitial compartments. 3. Much of our current knowledge of kidney oxygen physiology comes from established techniques that allow measurement of global kidney DO2 and VO2, or local tissue Po2. When used in tandem, these techniques can help us understand oxygen mass balance in the kidney. Po2 can be resolved to specific tissue compartments in the superficial cortex, but not deep below the kidney surface. We have limited ability to measure local kidney tissue DO2 and VO2. 4. Mathematical modelling has the potential to provide new insights into the physiology of kidney oxygenation, but is limited by the quality of the information such models are based on. 5. Various imaging techniques and other emerging technologies have the potential to allow Po2 mapping throughout the kidney and/or spatial resolution of Po2 in specific renal tissues, even in humans. All currently available methods have serious limitations, but with further refinement should provide a pathway through which data obtained from experimental animal models can be related to humans in the clinical setting.
Collapse
Affiliation(s)
- Roger G Evans
- Department of Physiology, Monash University, Victoria, Australia.
| | | | | | | |
Collapse
|
14
|
Wilcox CS, Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 2009; 60:418-69. [PMID: 19112152 DOI: 10.1124/pr.108.000240] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney and Vascular Disorder Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
15
|
Li LP, Halter S, Prasad PV. Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am 2008; 16:613-25, viii. [PMID: 18926426 DOI: 10.1016/j.mric.2008.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxygenation status plays a major role in renal physiology and pathophysiology, and thus has attracted considerable attention in recent years. While much of the early work and a significant amount of present work is based on invasive methods or ex vivo analysis, and is therefore restricted to animal models, blood oxygen level-dependent (BOLD) MR imaging has been shown to extend these findings to human beings. BOLD MR imaging is most useful in monitoring effects of physiologic or pharmacologic maneuvers. Several teams around the world have demonstrated reproducible data and have illustrated several useful applications. Studies supporting the use of renal BOLD MR imaging in characterizing disease with prognostic value have also been reported. This article provides an overview of current state-of-the art of renal BOLD MR imaging.
Collapse
Affiliation(s)
- Lu-Ping Li
- Center for Advanced Imaging, Department of Radiology, Evanston Northwestern Healthcare, Evanston, IL 60201, USA
| | | | | |
Collapse
|
16
|
Yang X, Cao J, Wang X, Li X, Xu Y, Jiang X. Evaluation of renal oxygenation in rat by using R2' at 3-T magnetic resonance: initial observation. Acad Radiol 2008; 15:912-8. [PMID: 18572128 DOI: 10.1016/j.acra.2008.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 12/26/2007] [Accepted: 01/08/2008] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES We sought to initially evaluate the feasibility of R2' on a 3-T magnetic resonance (MR) scanner for assessment of renal oxygenation changes following administration of furosemide in rats. MATERIALS AND METHODS Eight intact male Wistar rats were involved in experimental group. The experiment was performed at a 3-T MR scanner using a multiple gradient-echo (mGRE) sequence for R2* map and a multiecho fast spin-echo (FSE) sequence for R2 map. R2' values of cortex and medulla were calculated using the equation R2* = R2 + R2'. The values of R2 and R2* were measured and R2' was calculated before and after administration of furosemide, and the changes (delta values) were calculated. RESULTS Both R2* and R2 values decreased significantly after administration of furosemide (P < .001) in both the cortex and medulla. DeltaR2* in the medulla was significantly higher than in the cortex (P < .05). DeltaR2 was not significantly different between the cortex and medulla (P > .05). The baseline R2' value was 12.13 +/- 0.59 1/s in the cortex and 19.52 +/- 3.44 1/s in the medulla. R2' value decreased significantly in the medulla after administration of furosemide (P < .05), but there was no significant difference in the cortex before and after administration of furosemide (P > .05). CONCLUSION R2' may be more appropriate than R2* to indicate the change of oxygenation after administration of furosemide in intact rats at 3-T MR. Further studies are needed for both intact animals and experimental models in comparison with non-MR imaging methods to validate this initial observation.
Collapse
Affiliation(s)
- Xuedong Yang
- Department of Radiology, Peking, First Hospital and Functional Imaging Center, Advanced Academy of Interdisciplinary Sciences, Peking University, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | | | | | | | | | | |
Collapse
|
17
|
Evans RG, Gardiner BS, Smith DW, O'Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol 2008; 295:F1259-70. [PMID: 18550645 DOI: 10.1152/ajprenal.90230.2008] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney is faced with unique challenges for oxygen regulation, both because its function requires that perfusion greatly exceeds that required to meet metabolic demand and because vascular control in the kidney is dominated by mechanisms that regulate glomerular filtration and tubular reabsorption. Because tubular sodium reabsorption accounts for most oxygen consumption (Vo2) in the kidney, renal Vo2 varies with glomerular filtration rate. This provides an intrinsic mechanism to match changes in oxygen delivery due to changes in renal blood flow (RBF) with changes in oxygen demand. Renal Vo2 is low relative to supply of oxygen, but diffusional arterial-to-venous (AV) oxygen shunting provides a mechanism by which oxygen superfluous to metabolic demand can bypass the renal microcirculation. This mechanism prevents development of tissue hyperoxia and subsequent tissue oxidation that would otherwise result from the mismatch between renal Vo2 and RBF. Recent evidence suggests that RBF-dependent changes in AV oxygen shunting may also help maintain stable tissue oxygen tension when RBF changes within the physiological range. However, AV oxygen shunting also renders the kidney susceptible to hypoxia. Given that tissue hypoxia is a hallmark of both acute renal injury and chronic renal disease, understanding the causes of tissue hypoxia is of great clinical importance. The simplistic paradigm of oxygenation depending only on the balance between local perfusion and Vo2 is inadequate to achieve this goal. To fully understand the control of renal oxygenation, we must consider a triad of factors that regulate intrarenal oxygenation: local perfusion, local Vo2, and AV oxygen shunting.
Collapse
Affiliation(s)
- Roger G Evans
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
18
|
dos Santos EA, Li LP, Ji L, Prasad PV. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest Radiol 2007; 42:157-62. [PMID: 17287645 PMCID: PMC2904752 DOI: 10.1097/01.rli.0000252492.96709.36] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We sought to evaluate the influence of streptozotocin (STZ)-induced diabetes on renal outer medullary pO2 and blood flow by invasive microprobes and to demonstrate feasibility that blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) can monitor these changes. MATERIALS AND METHODS A total of 60 Wistar-Furth rats were used. Diabetes was induced by STZ in 48. Animals were divided into OxyLite group (n=30) and BOLD MRI groups (n=30) each with a 5 subgroups of 6 animals: control and 2, 5, 14, and 28 days after induction of diabetes. Outer renal medullary oxygen tension and blood flow were measured by the combined OxyLite/OxyFlo probes. RESULTS Both OxyLite and BOLD MRI showed a significant increase in the renal hypoxia levels after STZ at all time points. However, no changes were observed in the outer renal medullary oxygen tension and blood flow between diabetic and control groups. CONCLUSIONS These preliminary results suggest that hypoxic changes can be detected as early as 2 days in rat kidneys with diabetes by BOLD MRI and that these early changes are not dependent on blood flow.
Collapse
|
19
|
Abstract
The kidney has a unique environment that results in relatively low tissue oxygen tension (Po2). However, recent studies have shown that renal hypoxia is more severe during hypertension and may reflect changes in the way O2 is used. The present review summarizes studies that explore the relationship between renal oxygen tension (Po2), oxygen consumption and hypertension. More recent studies suggest that oxidative stress accompanying hypertension, rather than the elevated blood pressure per se reduces Po2. The Po2 in various sections of the kidney often reflects the level of oxygen consumption, which varies depending on the sites of Na+ reabsorption, a process that consumes nearly 90% of total renal oxygen. The efficient use of oxygen for the transport of Na+ in the kidney is reduced during hypertension, which may contribute to the resulting hypoxia. Conversely, the defect in renal oxygen usage due to oxidative stress may exacerbate hypertension in animal models. The goal of many of these studies is to determine the impact of renal hypoxia in the generation of hypertension.
Collapse
Affiliation(s)
- William J Welch
- Department of Medicine, Georgetown University, Washington DC 20057, USA.
| |
Collapse
|
20
|
Djamali A, Sadowski EA, Samaniego-Picota M, Fain SB, Muehrer RJ, Alford SK, Grist TM, Becker BN. Noninvasive Assessment of Early Kidney Allograft Dysfunction by Blood Oxygen Level-Dependent Magnetic Resonance Imaging. Transplantation 2006; 82:621-8. [PMID: 16969284 DOI: 10.1097/01.tp.0000234815.23630.4a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) is a noninvasive method to assess tissue oxygen bioavailability, using deoxyhemoglobin as an endogenous contrast agent. We hypothesized that BOLD-MRI could accurately discriminate different types of rejection early after kidney transplantation. METHODS Twenty-three patients underwent imaging in the first four months posttransplant. Five had normal functioning transplants and 18 had biopsy-proven acute allograft dysfunction (acute tubular necrosis [ATN, n=5] and acute rejection [n=13] including borderline rejection: n=3; IA rejection: n=4; IIA rejection: n=6: C4d(+) rejection: n=9). RESULTS Mean medullary R2* (MR2*) levels (a measure directly proportional to tissue deoxyhemoglobin levels) were significantly higher in normal functioning allografts (R2*=24.3/s+/-2.3) versus acute rejection (R2*=16.6/s+/-2.1) and ATN (R2*=20.9/s+/-1.8) (P<0.05). The lowest MR2* levels were observed in acute rejection episodes with vascular injury i.e. IIA and C4d (+). Similarly, the lowest medullary to cortical R2* ratios (MCR2*) were present in allografts with IIA (1.24+/-0.05) and C4d(+) rejection (1.26+/-0.06). ROC curve analyses suggested that MR2* and MCR2* values could accurately discriminate acute rejection in the early posttransplant period. CONCLUSIONS BOLD-MRI demonstrated significant changes in medullary oxygen bioavailability in allografts with biopsy-proven ATN and acute rejection, suggesting that there may be a role for this noninvasive tool to evaluate kidney function early after transplantation.
Collapse
Affiliation(s)
- Arjang Djamali
- Department of Medicine, University of Wisconsin Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Prasad PV. Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease. Am J Physiol Renal Physiol 2006; 290:F958-74. [PMID: 16601297 PMCID: PMC2919069 DOI: 10.1152/ajprenal.00114.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides exquisite anatomic detail of various organs and is capable of providing additional functional information. This combination allows for comprehensive diagnostic evaluation of pathologies such as ischemic renal disease. Noninvasive MRI techniques could facilitate translation of many studies performed in controlled animal models using technologies that are invasive to humans. Such a translation is being recognized as essential because many proposed interventions and drugs that prove efficacious in animal models fail to do so in humans. In this article, we review the state-of-the-art functional MRI technique as applied to the kidneys.
Collapse
Affiliation(s)
- Pottumarthi V Prasad
- Dept. of Radiology, Walgreen Jr. Bldg., Suite 507, Evanston Northwestern Healthcare, 2650 Ridge Ave., Evanston, IL 60201, USA.
| |
Collapse
|
22
|
Abstract
This is a review of blood oxygenation level-dependent (BOLD) MRI as applied to the kidney. It has been shown that BOLD MRI measurements reflect changes in renal oxygenation, especially in the medulla. Renal medulla functions in a hypoxic milieu and is extremely sensitive to further decrease in blood flow or increase in oxygen consumption. Availability of a non-invasive technique such as BOLD MRI should allow for better understanding of the factors involved in the maintenance of renal oxygenation status, not only in animal models, but also in humans.
Collapse
Affiliation(s)
- Pottumarthi V Prasad
- Department of Radiology, Evanston Northwestern Healthcare, Evanston, Ill 60201, USA.
| |
Collapse
|