1
|
Iron-Based Magnetic Nanosystems for Diagnostic Imaging and Drug Delivery: Towards Transformative Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14102093. [PMID: 36297529 PMCID: PMC9607318 DOI: 10.3390/pharmaceutics14102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The advancement of biomedicine in a socioeconomically sustainable manner while achieving efficient patient-care is imperative to the health and well-being of society. Magnetic systems consisting of iron based nanosized components have gained prominence among researchers in a multitude of biomedical applications. This review focuses on recent trends in the areas of diagnostic imaging and drug delivery that have benefited from iron-incorporated nanosystems, especially in cancer treatment, diagnosis and wound care applications. Discussion on imaging will emphasise on developments in MRI technology and hyperthermia based diagnosis, while advanced material synthesis and targeted, triggered transport will be the focus for drug delivery. Insights onto the challenges in transforming these technologies into day-to-day applications will also be explored with perceptions onto potential for patient-centred healthcare.
Collapse
|
2
|
Zhang C, Huang W, Huang C, Zhou C, Tang Y, Wei W, Li Y, Tang Y, Luo Y, Zhou Q, Chen W. VHPKQHR Peptide Modified Ultrasmall Paramagnetic Iron Oxide Nanoparticles Targeting Rheumatoid Arthritis for T1-Weighted Magnetic Resonance Imaging. Front Bioeng Biotechnol 2022; 10:821256. [PMID: 35295653 PMCID: PMC8918785 DOI: 10.3389/fbioe.2022.821256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) could be the ideal diagnostic modality for early rheumatoid arthritis (RA). Vascular cell adhesion molecule-1 (VCAM-1) is highly expressed in synovial locations in patients with RA, which could be a potential target protein for RA diagnosis. The peptide VHPKQHR (VHP) has a high affinity to VCAM-1. To make the contrast agent to target RA at an early stage, we used VHP and ultrasmall paramagnetic iron oxide (USPIO) to synthesize UVHP (U stands for USPIO) through a chemical reaction with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. The size of UVHP was 6.7 nm; the potential was −27.7 mV, and the r2/r1 value was 1.73. Cytotoxicity assay exhibited that the cell survival rate was higher than 80% at even high concentrations of UVHP (Fe concentration 200 µg/mL), which showed the UVHP has low toxicity. Compared with no TNF-α stimulation, VCAM-1 expression was increased nearly 3-fold when mouse aortic endothelial cells (MAECs) were stimulated with 50 ng/mL TNF-α; cellular Fe uptake was increased very significantly with increasing UVHP concentration under TNF-α treatment; cellular Fe content was 17 times higher under UVHP with Fe concentration 200 µg/mL treating MAECs. These results indicate that UVHP can target overexpression of VCAM-1 at the cellular level. RA mice models were constructed with adjuvant-induced arthritis. In vivo MRI and biodistribution results show that the signal intensity of knee joints was increased significantly and Fe accumulation in RA model mice compared with normal wild-type mice after injecting UVHP 24 h. These results suggest that we have synthesized a simple, low-cost, and less toxic contrast agent UVHP, which targeted VCAM-1 for early-stage RA diagnosis and generates high contrast in T1-weighted MRI.
Collapse
Affiliation(s)
- Chunyu Zhang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wei Wei
- Institution of GuangDong Cord Blood Bank, Guangzhou, China
| | - Yongsheng Li
- Institution of GuangDong Cord Blood Bank, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| |
Collapse
|
3
|
Daldrup-Link HE, Theruvath AJ, Rashidi A, Iv M, Majzner RG, Spunt SL, Goodman S, Moseley M. How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol 2022; 52:354-366. [PMID: 34046709 PMCID: PMC8626538 DOI: 10.1007/s00247-021-05098-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Gadolinium chelates have been used as standard contrast agents for clinical MRI for several decades. However, several investigators recently reported that rare Earth metals such as gadolinium are deposited in the brain for months or years. This is particularly concerning for children, whose developing brain is more vulnerable to exogenous toxins compared to adults. Therefore, a search is under way for alternative MR imaging biomarkers. The United States Food and Drug Administration (FDA)-approved iron supplement ferumoxytol can solve this unmet clinical need: ferumoxytol consists of iron oxide nanoparticles that can be detected with MRI and provide significant T1- and T2-signal enhancement of vessels and soft tissues. Several investigators including our research group have started to use ferumoxytol off-label as a new contrast agent for MRI. This article reviews the existing literature on the biodistribution of ferumoxytol in children and compares the diagnostic accuracy of ferumoxytol- and gadolinium-chelate-enhanced MRI. Iron oxide nanoparticles represent a promising new class of contrast agents for pediatric MRI that can be metabolized and are not deposited in the brain.
Collapse
Affiliation(s)
- Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | - Ashok J. Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Ali Rashidi
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Michael Iv
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Robbie G. Majzner
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | - Sheri L. Spunt
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | | | - Michael Moseley
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| |
Collapse
|
4
|
Theruvath AJ, Rashidi A, Nyalakonda R, Avedian R, Steffner R, Spunt SL, Daldrup-Link HE. Ferumoxytol magnetic resonance imaging detects joint and pleural infiltration of bone sarcomas in pediatric and young adult patients. Pediatr Radiol 2021; 51:2521-2529. [PMID: 34410452 PMCID: PMC8602726 DOI: 10.1007/s00247-021-05156-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The diagnosis of joint infiltration by a malignant bone tumor affects surgical management. The specificity of standard magnetic resonance imaging (MRI) for diagnosing joint infiltration is limited. During our MRI evaluations with ferumoxytol nanoparticles of pediatric and young adult patients with bone sarcomas, we observed a surprising marked T1 enhancement of joint and pleural effusions in some patients but not in others. OBJECTIVE To evaluate if nanoparticle extravasation differed between joints and pleura with and without tumor infiltration. MATERIALS AND METHODS We retrospectively identified 15 pediatric and young adult patients (mean age: 16±4 years) with bone sarcomas who underwent 18 MRI scans at 1 h (n=7) or 24 h (n=11) after intravenous ferumoxytol infusion. Twelve patients also received a gadolinium-enhanced MRI. We determined tumor invasion into the joint or pleural space based on histology (n=11) and imaging findings (n=4). We compared the signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) of the joint or pleural fluid for tumors with and without invasion using a Mann-Whitney U test. RESULTS MRI scans 24 h after intravenous ferumoxytol infusion demonstrated a positive T1 enhancement of the effusion in all joints and pleural spaces with tumor infiltration and no joint or pleural space without infiltration. Corresponding SNR (P=0.004) and CNR (P=0.004) values were significantly higher for joints and pleural spaces with tumor infiltration than without. By contrast, unenhanced MRI, gadolinium-enhanced MRI and 1-h post-contrast ferumoxytol MRI did not show any enhancement of the joint or pleural effusion, with or without tumor infiltration. CONCLUSION This pilot study suggests that 24-h post-contrast ferumoxytol MRI scans can noninvasively differentiate between joints with and without tumor infiltration.
Collapse
Affiliation(s)
- Ashok J. Theruvath
- Department of Radiology, Pediatric Molecular Imaging Program, Stanford University
| | - Ali Rashidi
- Department of Radiology, Pediatric Molecular Imaging Program, Stanford University
| | - Ramya Nyalakonda
- Department of Radiology, Pediatric Molecular Imaging Program, Stanford University
| | - Raffi Avedian
- Department of Orthopedic Surgery, Lucile Packard Children’s Hospital, Stanford University
| | - Robert Steffner
- Department of Orthopedic Surgery, Lucile Packard Children’s Hospital, Stanford University
| | - Sheri L. Spunt
- Department of Pediatrics, Pediatric Hematology/Oncology, Lucile Packard Children’s Hospital
| | - Heike E. Daldrup-Link
- Department of Radiology, Pediatric Molecular Imaging Program, Stanford University,Department of Pediatrics, Pediatric Hematology/Oncology, Lucile Packard Children’s Hospital
| |
Collapse
|
5
|
Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1740. [PMID: 34296533 DOI: 10.1002/wnan.1740] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
As a research hotspot, the development of magnetic resonance imaging (MRI) contrast agents has attracted great attention over the past decades for improving the accuracy of diagnosis. Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with core diameter smaller than 5.0 nm are expected to become a next generation of contrast agents owing to their excellent MRI performance, long blood circulation time upon proper surface modification, renal clearance capacity, and remarkable biosafety profile. On top of these merits, USPIO nanoparticles are used for developing not only T1 contrast agents, but also T2 /T1 switchable contrast agents via assembly/disassembly approaches. In recent years, as a new type of contrast agents, USPIO nanoparticles have shown considerable applications in the diagnosis of various diseases such as vascular pathological changes and inflammations apart from malignant tumors. In this review, we are focusing on the state-of-the-art developments and the latest applications of USPIO nanoparticles as MRI contrast agents to discuss their advantages and future prospects. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jiabin Cui
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China.,Shanghai University of Medicine and Health Sciences (SUMHS), Shanghai, China
| |
Collapse
|
6
|
Lu R, Zhang Y, Tao H, Zhou L, Li H, Chen T, Zhang P, Lu Y, Chen S. Gadolinium-hyaluronic acid nanoparticles as an efficient and safe magnetic resonance imaging contrast agent for articular cartilage injury detection. Bioact Mater 2020; 5:758-767. [PMID: 32637740 PMCID: PMC7317168 DOI: 10.1016/j.bioactmat.2020.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/24/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022] Open
Abstract
Accurate detection of cartilage injuries is critical for their proper treatment because these injuries lack the self-healing ability and lead to joint dysfunction. However, the low longitudinal T1 relaxivity (r1) and non-specificity of contrast agents (such as gadolinium(III)-diethylenetriamine-pentaacetic acid (Gd-DTPA)) significantly limit the efficiency of clinical magnetic resonance imaging (MRI) applications. To overcome these drawbacks, we integrated hyaluronic acid (HA) with Gd to synthesize a Gd-DTPA-HA composite, which was subsequently freeze-dried to produce nanoparticles (NPs). The resultant Gd-HA NPs demonstrated a greater r1 value (12.51 mM-1 s-1) compared with the bulk Gd-DTPA-HA (8.37 mM-1 s-1) and clinically used Gd-DTPA (3.88 mM-1 s-1). Moreover, the high affinity of HA to the cartilage allowed these NPs to penetrate deeper beyond the cartilage surface. As a result, Gd-HA NPs considerably increased the quality of cartilage and lesion MR images via their intra-articular injection in vivo. Specifically, 2 h after NP administration, the signal-to-noise ratio at the injured cartilage site was 2.3 times greater than the value measured before the injection. In addition, Gd-HA NPs exhibited good biosafety properties due to the absence of adverse effects in the blood or on the main organs. It was also showed that Gd NPs were first metabolized by the kidney and liver and then excreted from the body with urine. Thus, Gd-HA NPs can potentially serve as an efficient MRI contrast agent for improved detection of cartilage injuries.
Collapse
Affiliation(s)
- Rong Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuyang Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongyue Tao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huidi Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tianwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Peng Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Guangzhou, Guangdong, 510010, China
- Orthopedic Centre, Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Shuang Chen
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
7
|
Xu T, Xu X, Yang L, Chen X, Ju S. Noninvasive Visualization of Obesity-Boosted Inflammation in Orthotopic Pancreatic Ductal Adenocarcinoma Using an Octapod Iron Oxide Nanoparticle. ACS APPLIED BIO MATERIALS 2020; 3:6408-6418. [PMID: 35021772 DOI: 10.1021/acsabm.0c00841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment and promote the progression of tumors, including pancreatic ductal adenocarcinoma (PDAC). Obesity is a metabolic disease and a significant factor that affects tumor immunity and immunotherapy, contributing to a poorer tumor prognosis. However, TAMs as the link between obesity and poorer tumor prognosis has been less addressed and remains unclear. The current study aimed to noninvasively determine the effect of obesity on TAMs in orthotopic PDAC animal models, leptin-deficient transgenic obese (ob/ob) mice. Iron oxide nanoparticles, Octapod-30, with ultra high r2 values, were utilized for in vivo consecutive T2-weighted MR imaging. After Octapod-30 injection, the T2-weighted signal intensity of the tumor area of both lean wild-type (WT) and ob/ob mice decreased rapidly, and the signal intensity significantly decreased as early as 0.5 h after injection compared with preinjection. The signal intensity continually decreased until 2 h and sustained for 4 h. In addition, the quantified signal intensity in obese ob/ob mice bearing PDAC significantly decreased compared with that in lean WT mice. Further histopathological analysis demonstrated that CD68-marked TAMs were highly colocalized with Prussian blue-stained Octapod-30, which were significantly more infiltrated in the tumor tissue of ob/ob mice than in the WT group, in parallel with larger size of tumor, higher levels of Ki67-marked proliferation and CD31-marked angiogenesis. Our results suggested that obesity increased TAMs infiltration and Octopad-30 can rapidly noninvasively detect TAMs in vivo in orthotopic PDAC with high spatial resolution and temporal resolution. Furthermore, the application of ultra high r2 octagonal iron oxide nanoparticles with powerful clinical conversion potential could allow noninvasive and efficient quantitative analysis of TAMs in PDAC with or without obesity, providing a promising inspection approach for early detection, treatment management, and efficacy evaluation of tumors for clinical application.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Lijiao Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
8
|
Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Am J Cancer Res 2019; 9:7730-7748. [PMID: 31695797 PMCID: PMC6831464 DOI: 10.7150/thno.37306] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAM) are key players in the cancer microenvironment. Molecular imaging modalities such as MRI and PET can be used to track and monitor TAM dynamics in tumors non-invasively, based on specific uptake and quantification of MRI-detectable nanoparticles or PET-detectable radiotracers. Particular molecular signatures can be leveraged to target anti-inflammatory TAM, which support tumor growth, and pro-inflammatory TAM, which suppress tumor growth. In addition, TAM-directed imaging probes can be designed to include immune modulating properties, thereby leading to combined diagnostic and therapeutic (theranostic) effects. In this review, we will discuss the complementary role of TAM-directed radiotracers and iron oxide nanoparticles for monitoring cancer immunotherapies with PET and MRI technologies. In addition, we will outline how TAM-directed imaging and therapy is interdependent and can be connected towards improved clinical outcomes
Collapse
|
9
|
Wu L, Shen S. What potential do magnetic iron oxide nanoparticles have for the treatment of rheumatoid arthritis? Nanomedicine (Lond) 2019; 14:927-930. [PMID: 30925104 DOI: 10.2217/nnm-2019-0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lin Wu
- Department of Pharmacy, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Song Shen
- Department of Pharmaceutics, School of Pharmaceutical Science, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Mohanty S, Yerneni K, Theruvath JL, Graef CM, Nejadnik H, Lenkov O, Pisani L, Rosenberg J, Mitra S, Cordero AS, Cheshier S, Daldrup-Link HE. Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death Dis 2019; 10:36. [PMID: 30674867 PMCID: PMC6367456 DOI: 10.1038/s41419-018-1285-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
CD47 monoclonal antibodies (mAbs) activate tumor-associated macrophages (TAMs) in sarcomas to phagocytose and eliminate cancer cells. Though CD47 mAbs have entered clinical trials, diagnostic tests for monitoring therapy response in vivo are currently lacking. Ferumoxytol is an FDA-approved iron supplement which can be used "off label" as a contrast agent: the nanoparticle-based drug is phagocytosed by TAM and can be detected with magnetic resonance imaging (MRI). We evaluated if ferumoxytol-enhanced MRI can monitor TAM response to CD47 mAb therapy in osteosarcomas. Forty-eight osteosarcoma-bearing mice were treated with CD47 mAb or control IgG and underwent pre- and post-treatment ferumoxytol-MRI scans. Tumor enhancement, quantified as T2 relaxation times, was compared with the quantity of TAMs as determined by immunofluorescence microscopy and flow cytometry. Quantitative data were compared between experimental groups using exact two-sided Wilcoxon rank-sum tests. Compared to IgG-treated controls, CD47 mAb-treated tumors demonstrated significantly shortened T2 relaxation times on ferumoxytol-MRI scans (p < 0.01) and significantly increased F4/80+CD80+ M1 macrophages on histopathology (p < 0.01). CD47 mAb-treated F4/80+ macrophages demonstrated significantly augmented phagocytosis of ferumoxytol nanoparticles (p < 0.01). Thus, we conclude that ferumoxytol-MRI can detect TAM response to CD47 mAb in mouse models of osteosarcoma. The ferumoxytol-MRI imaging test could be immediately applied to monitor CD47 mAb therapies in clinical trials.
Collapse
Affiliation(s)
- Suchismita Mohanty
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Ketan Yerneni
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | | | - Claus Moritz Graef
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94305, USA
| | - Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Olga Lenkov
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Laura Pisani
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Jarrett Rosenberg
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Siddhartha Mitra
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alejandro Sweet Cordero
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Samuel Cheshier
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94305, USA
- Huntsman Cancer Institute, Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Salt Lake City, UT, 84132, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Aghighi M, Theruvath AJ, Pareek A, Pisani LL, Alford R, Muehe AM, Sethi TK, Holdsworth SJ, Hazard FK, Gratzinger D, Luna-Fineman S, Advani R, Spunt SL, Daldrup-Link HE. Magnetic Resonance Imaging of Tumor-Associated Macrophages: Clinical Translation. Clin Cancer Res 2018; 24:4110-4118. [PMID: 29764855 DOI: 10.1158/1078-0432.ccr-18-0673] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/31/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022]
Abstract
Purpose: Tumor-associated macrophages (TAMs) in malignant tumors have been linked to tumor aggressiveness and represent a new target for cancer immunotherapy. As new TAM-targeted immunotherapies are entering clinical trials, it is important to detect and quantify TAM with noninvasive imaging techniques. The purpose of this study was to determine if ferumoxytol-enhanced MRI can detect TAM in lymphomas and bone sarcomas of pediatric patients and young adults.Experimental Design: In a first-in-patient, Institutional Review Board-approved prospective clinical trial, 25 pediatric and young adult patients with lymphoma or bone sarcoma underwent ferumoxytol-enhanced MRI. To confirm ferumoxytol enhancement, five pilot patients (two lymphoma and three bone sarcoma) underwent pre- and postcontrast MRI. Subsequently, 20 patients (10 lymphoma and 10 bone sarcoma) underwent ferumoxytol-enhanced MRI 24 to 48 hours after i.v. injection, followed by tumor biopsy/resection and macrophage staining. To determine if ferumoxytol-MRI can differentiate tumors with different TAM content, we compared T2* relaxation times of lymphomas and bone sarcomas. Tumor T2* values of 20 patients were correlated with CD68+ and CD163+ TAM quantities on histopathology.Results: Significant ferumoxytol tumor enhancement was noted on postcontrast scans compared with precontrast scans (P = 0.036). Bone sarcomas and lymphomas demonstrated significantly different MRI enhancement and TAM density (P < 0.05). Within each tumor group, T2* signal enhancement on MR images correlated significantly with the density of CD68+ and CD163+ TAM (P < 0.05).Conclusions: Ferumoxytol-enhanced MRI is immediately clinically applicable and could be used to stratify patients with TAM-rich tumors to immune-targeted therapies and to monitor tumor response to these therapies. Clin Cancer Res; 24(17); 4110-8. ©2018 AACR.
Collapse
Affiliation(s)
- Maryam Aghighi
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Ashok J Theruvath
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany
| | - Anuj Pareek
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Laura L Pisani
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Raphael Alford
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Anne M Muehe
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Tarsheen K Sethi
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Samantha J Holdsworth
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Florette K Hazard
- Department of Pathology, Stanford Hospital, Stanford University, Stanford, California
| | - Dita Gratzinger
- Department of Pathology, Stanford Hospital, Stanford University, Stanford, California
| | - Sandra Luna-Fineman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ranjana Advani
- Department of Medicine, Stanford Hospital, Stanford University, Stanford, California
| | - Sheri L Spunt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Heike E Daldrup-Link
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
12
|
Labens R, Daniel C, Hall S, Xia XR, Schwarz T. Effect of intra-articular administration of superparamagnetic iron oxide nanoparticles (SPIONs) for MRI assessment of the cartilage barrier in a large animal model. PLoS One 2017; 12:e0190216. [PMID: 29287105 PMCID: PMC5747449 DOI: 10.1371/journal.pone.0190216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/11/2017] [Indexed: 11/22/2022] Open
Abstract
Early diagnosis of cartilage disease at a time when changes are limited to depletion of extracellular matrix components represents an important diagnostic target to reduce patient morbidity. This report is to present proof of concept for nanoparticle dependent cartilage barrier imaging in a large animal model including the use of clinical magnetic resonance imaging (MRI). Conditioned (following matrix depletion) and unconditioned porcine metacarpophalangeal cartilage was evaluated on the basis of fluorophore conjugated 30 nm and 80 nm spherical gold nanoparticle permeation and multiphoton laser scanning and bright field microscopy after autometallographic particle enhancement. Consequently, conditioned and unconditioned joints underwent MRI pre- and post-injection with 12 nm superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate particle permeation in the context of matrix depletion and use of a clinical 1.5 Tesla MRI scanner. To gauge the potential pro-inflammatory effect of intra-articular nanoparticle delivery co-cultures of equine synovium and cartilage tissue were exposed to an escalating dose of SPIONs and IL-6, IL-10, IFN-γ and PGE2 were assessed in culture media. The chemotactic potential of growth media samples was subsequently assessed in transwell migration assays on isolated equine neutrophils. Results demonstrate an increase in MRI signal following conditioning of porcine joints which suggests that nanoparticle dependent compositional cartilage imaging is feasible. Tissue culture and neutrophil migration assays highlight a dose dependent inflammatory response following SPION exposure which at the imaging dose investigated was not different from controls. The preliminary safety and imaging data support the continued investigation of nanoparticle dependent compositional cartilage imaging. To our knowledge, this is the first report in using SPIONs as intra-articular MRI contrast agent for studying cartilage barrier function, which could potentially lead to a new diagnostic technique for early detection of cartilage disease.
Collapse
Affiliation(s)
- Raphael Labens
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- * E-mail:
| | - Carola Daniel
- The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| | - Sarah Hall
- Animal & Veterinary Sciences, Scotland’s Rural College, Easter Bush Campus, Midlothian, United Kingdom
| | - Xin-Rui Xia
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tobias Schwarz
- Royal (Dick) School of Veterinary Studies, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
13
|
Abstract
Since ultrasmall superparamagnetic iron oxides (USPIOs) are not associated with a risk of nephrogenic sclerosis, they can serve as a safer contrast agents compared with gadolinium chelates for MR angiography, tissue perfusion studies, and atherosclerotic plaque and tumor imaging; USPIOs are especially beneficial for patients with renal insufficiency or patients with uncertain creatinine laboratory values. Amid mounting concerns about nephrogenic sclerosis and gadolinium deposition in the brain, physicians and patients alike are starting to question the use of gadolinium chelates for clinical magnetic resonance (MR) imaging. The search for safer alternatives is currently underway. In North America, the iron supplement ferumoxytol has gained considerable interest as an MR contrast agent. In Europe, ferumoxtran-10 is entering phase III clinical trials. As these agents are starting to be used by a new generation of radiologists, important clinical questions have re-emerged, including those that have been answered in the past. This article offers 10 important insights for the use of iron oxide nanoparticles in clinical MR imaging.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Department of Pediatrics, and Institute for Stem Cell Biology and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| |
Collapse
|
14
|
Hu HY, Lim NH, Juretschke HP, Ding-Pfennigdorff D, Florian P, Kohlmann M, Kandira A, Peter von Kries J, Saas J, Rudolphi KA, Wendt KU, Nagase H, Plettenburg O, Nazare M, Schultz C. In vivo visualization of osteoarthritic hypertrophic lesions. Chem Sci 2015; 6:6256-6261. [PMID: 30090244 PMCID: PMC6054140 DOI: 10.1039/c5sc01301a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases in the aging population. While disease progress in humans is monitored indirectly by X-ray or MRI, small animal OA lesions detection always requires surgical intervention and histology. Here we introduce bimodal MR/NIR probes based on cartilage-targeting 1,4,7,10-tetraazacyclododecane 1,4,7,10-tetraacetic acid amide (DOTAM) that are directly administered to the joint cavity. We demonstrate applications in healthy and diseased rat joints by MRI in vivo. The same joints are inspected post-mortem by fluorescence microscopy, showing not only the precise location of the reagents but also revealing details such as focal cartilage damage and chondrophyte or osteophyte formation. This allows for determining the distinct pathological state of the disease and the regeneration capability of the animal model and will help to correctly assess the effect of potential disease modifying OA drugs (DMOADs) in the future.
Collapse
Affiliation(s)
- Hai-Yu Hu
- European Molecular Biology Laboratory (EMBL) , Interdisciplinary Chemistry Group , Cell Biology and Biophysics Unit , Meyerhofstr. 1 , 69117 Heidelberg , Germany .
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica , Peking Union Medical College and Chinese Academy of Medical Sciences , 1 Xiannongtan Street , 100050 , Beijing , China
| | - Ngee-Han Lim
- Kennedy Institute of Rheumatology , University of Oxford , Roosevelt Drive , Headington , Oxford OX37FY , UK
| | - Hans-Paul Juretschke
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | | | - Peter Florian
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | - Markus Kohlmann
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | - Abdullah Kandira
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | - Jens Peter von Kries
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | - Joachim Saas
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | - Karl A Rudolphi
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | - K Ulrich Wendt
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | - Hideaki Nagase
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | - Oliver Plettenburg
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
| | - Marc Nazare
- Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65962 Frankfurt , Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Campus Berlin-Buch , Robert-Roessle-Str. 10 , 13125 Berlin , Germany .
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL) , Interdisciplinary Chemistry Group , Cell Biology and Biophysics Unit , Meyerhofstr. 1 , 69117 Heidelberg , Germany .
| |
Collapse
|
15
|
Kaneko C, Nitta N, Tsuchiya K, Watanabe S, Nitta-Seko A, Ohta S, Otani H, Sonoda A, Murata K, Shiomi M. MRI study of atherosclerotic plaque progression using ultrasmall superparamagnetic iron oxide in Watanabe heritable hyperlipidemic rabbits. Br J Radiol 2015; 88:20150167. [PMID: 26083261 DOI: 10.1259/bjr.20150167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate plaque progression by using MRI with ultrasmall superparamagnetic iron oxide (USPIO) and by histopathological studies. METHODS We divided 12 Watanabe heritable hyperlipidemic (WHHL) rabbits into 4 groups based on their age (3, 9, 14 and 26 months) and injected them intravenously with 0.8 mmol (Fe) kg(-1) of USPIO (size, 32 nm; concentration, 15 mg dl(-1)). On the fifth post-injection day, they were again given an intravenous injection with 40 μmol kg(-1) of the same USPIO, and MR angiography (MRA) was performed. The signal-to-noise ratio (SNR) in regions of interest in the wall of the upper abdominal aorta was calculated on coronal images. Specimens from the same level of the aorta were subjected to iron staining and RAM-11 immunostaining and used for histopathological study. For statistical analysis of the MRA and histopathological findings, we used analysis of variance [Tukey's honest significant difference (HSD) test]. RESULTS In 9-month-old rabbits, the SNR was significantly lower than in rabbits of the other ages (p < 0.01), and the area of RAM-11 (DAKO Corporation, Glostrup, Denmark) and iron uptake in the aortic wall was significantly larger (RAM-11, p < 0.01; iron, p < 0.05). These areas were the smallest in 3-month-old rabbits. CONCLUSION Histopathologically, the number of macrophages was the greatest in 9-month-old rabbits. Our findings indicate that the SNR on MRI scans reflects the number of macrophages in the aortic wall of WHHL rabbits. ADVANCES IN KNOWLEDGE USPIO-enhanced MRI visualized the accumulation of macrophages in early atherosclerotic plaques of WHHL rabbits in the course of natural progression.
Collapse
Affiliation(s)
- C Kaneko
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - N Nitta
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - K Tsuchiya
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - S Watanabe
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - A Nitta-Seko
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - S Ohta
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - H Otani
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - A Sonoda
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - K Murata
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - M Shiomi
- 2 Institute for Experimental Animals, Kobe University School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
16
|
Strehl C, Gaber T, Maurizi L, Hahne M, Rauch R, Hoff P, Häupl T, Hofmann-Amtenbrink M, Poole AR, Hofmann H, Buttgereit F. Effects of PVA coated nanoparticles on human immune cells. Int J Nanomedicine 2015; 10:3429-45. [PMID: 26056442 PMCID: PMC4431506 DOI: 10.2147/ijn.s75936] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology provides new opportunities in human medicine, mainly for diagnostic and therapeutic purposes. The autoimmune disease rheumatoid arthritis (RA) is often diagnosed after irreversible joint structural damage has occurred. There is an urgent need for a very early diagnosis of RA, which can be achieved by more sensitive imaging methods. Superparamagnetic iron oxide nanoparticles (SPION) are already used in medicine and therefore represent a promising tool for early diagnosis of RA. The focus of our work was to investigate any potentially negative effects resulting from the interactions of newly developed amino-functionalized amino-polyvinyl alcohol coated (a-PVA) SPION (a-PVA-SPION), that are used for imaging, with human immune cells. We analyzed the influence of a-PVA-SPION with regard to cell survival and cell activation in human whole blood in general, and in human monocytes and macrophages representative of professional phagocytes, using flow cytometry, multiplex suspension array, and transmission electron microscopy. We found no effect of a-PVA-SPION on the viability of human immune cells, but cytokine secretion was affected. We further demonstrated that the percentage of viable macrophages increased on exposure to a-PVA-SPION. This effect was even stronger when a-PVA-SPION were added very early in the differentiation process. Additionally, transmission electron microscopy analysis revealed that both monocytes and macrophages are able to endocytose a-PVA-SPION. Our findings demonstrate an interaction between human immune cells and a-PVA-SPION which needs to be taken into account when considering the use of a-PVA-SPION in human medicine.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany ; German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany ; German Rheumatism Research Centre (DRFZ), Berlin, Germany ; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Lionel Maurizi
- Powder Technology Laboratory, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martin Hahne
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany ; German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | - Roman Rauch
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany ; German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | - Paula Hoff
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany ; German Rheumatism Research Centre (DRFZ), Berlin, Germany ; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - A Robin Poole
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - Heinrich Hofmann
- Powder Technology Laboratory, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany ; German Rheumatism Research Centre (DRFZ), Berlin, Germany ; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
17
|
Amirabadi A, Vidarsson L, Miller E, Sussman MS, Patil K, Gahunia H, Peel SAF, Zhong A, Weiss R, Detzler G, Cheng HLM, Moineddin R, Doria AS. USPIO-related T1 and T2 mapping MRI of cartilage in a rabbit model of blood-induced arthritis: a pilot study. Haemophilia 2014; 21:e59-69. [DOI: 10.1111/hae.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
Affiliation(s)
- A. Amirabadi
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - L. Vidarsson
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - E. Miller
- Department of Diagnostic Imaging; Children's Hospital for Eastern Ontario; Ottawa ON Canada
| | - M. S. Sussman
- Department of Medical Imaging; Toronto General Hospital; the University Health Network; Toronto ON Canada
| | - K. Patil
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - H. Gahunia
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - S. A. F. Peel
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; University of Toronto; Toronto ON Canada
| | - A. Zhong
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - R. Weiss
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - G. Detzler
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - H. L. M. Cheng
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - R. Moineddin
- Department of Family and Community Medicine; University of Toronto; Toronto ON Canada
| | - A. S. Doria
- Department of Diagnostic Imaging; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| |
Collapse
|
18
|
Gramoun A, Crowe LA, Maurizi L, Wirth W, Tobalem F, Grosdemange K, Coullerez G, Eckstein F, Koenders MI, Van den Berg WB, Hofmann H, Vallée JP. Monitoring the effects of dexamethasone treatment by MRI using in vivo iron oxide nanoparticle-labeled macrophages. Arthritis Res Ther 2014; 16:R131. [PMID: 24957862 PMCID: PMC4095600 DOI: 10.1186/ar4588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic disease causing recurring inflammatory joint attacks. These attacks are characterized by macrophage infiltration contributing to joint destruction. Studies have shown that RA treatment efficacy is correlated to synovial macrophage number. The aim of this study was to experimentally validate the use of in vivo superparamagnetic iron oxide nanoparticle (SPION) labeled macrophages to evaluate RA treatment by MRI. Methods The evolution of macrophages was monitored with and without dexamethasone (Dexa) treatment in rats. Two doses of 3 and 1 mg/kg Dexa were administered two and five days following induction of antigen induced arthritis. SPIONs (7 mg Fe/rat) were injected intravenously and the knees were imaged in vivo on days 6, 10 and 13. The MR images were scored for three parameters: SPION signal intensity, SPION distribution pattern and synovial oedema. Using 3D semi-automated software, the MR SPION signal was quantified. The efficacy of SPIONs and gadolinium chelate (Gd), an MR contrast agent, in illustrating treatment effects were compared. Those results were confirmed through histological measurements of number and area of macrophages and nanoparticle clusters using CD68 immunostaining and Prussian blue staining respectively. Results Results show that the pattern and the intensity of SPION-labeled macrophages on MRI were altered by Dexa treatment. While the Dexa group had a uniform elliptical line surrounding an oedema pocket, the untreated group showed a diffused SPION distribution on day 6 post-induction. Dexa reduced the intensity of SPION signal 50-60% on days 10 and 13 compared to controls (P = 0.00008 and 0.002 respectively). Similar results were found when the signal was measured by the 3D tool. On day 13, the persisting low grade arthritis progression could not be demonstrated by Gd. Analysis of knee samples by Prussian blue and CD68 immunostaining confirmed in vivo SPION uptake by macrophages. Furthermore, CD68 immunostaining revealed that Dexa treatment significantly decreased the area and number of synovial macrophages. Prussian blue quantification corresponded to the macrophage measurements and both were in agreement with the MRI findings. Conclusions We have demonstrated the feasibility of MRI tracking of in vivo SPION-labeled macrophages to assess RA treatment effects.
Collapse
|
19
|
Clemente-Casares X, Santamaria P. Nanomedicine in autoimmunity. Immunol Lett 2014; 158:167-74. [PMID: 24406504 DOI: 10.1016/j.imlet.2013.12.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 11/15/2022]
Abstract
The application of nanotechnology to the diagnosis and therapy of human diseases is already a reality and is causing a real revolution in how we design new therapies and vaccines. In this review we focus on the applications of nanotechnology in the field of autoimmunity. First, we review scenarios in which iron oxide nanoparticles have been used in the diagnosis of autoimmune diseases, mostly through magnetic resonance imaging (MRI), both in animal models and patients. Second, we discuss the potential of nanoparticles as an immunotherapeutic platform for autoimmune diseases, for now exclusively in pre-clinical models. Finally, we discuss the potential of this field to generate the 'perfect drug' with the capacity to report on its therapeutic efficacy in real time, that is, the birth of theranostics in autoimmunity.
Collapse
Affiliation(s)
- Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada; Institut D'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
20
|
Zhong Y, Dai F, Deng H, Du M, Zhang X, Liu Q, Zhang X. A rheumatoid arthritis magnetic resonance imaging contrast agent based on folic acid conjugated PEG-b-PAA@SPION. J Mater Chem B 2014; 2:2938-2946. [DOI: 10.1039/c4tb00085d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FA-PEG-b-PAA@SPPION offers a unique contrast ability for MRI of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanqi Zhong
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing, PR China
- University of Chinese Academy of Sciences
| | - Fengying Dai
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing, PR China
| | - Heng Deng
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing, PR China
- University of Chinese Academy of Sciences
| | - Meihong Du
- Beijing Center for Physical and Chemical Analysis
- Beijing, PR China
| | | | - Qingjun Liu
- Beijing Center for Physical and Chemical Analysis
- Beijing, PR China
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing, PR China
| |
Collapse
|
21
|
Goebel JC, Bolbos R, Pham M, Galois L, Rengle A, Loeuille D, Netter P, Gillet P, Beuf O, Watrin-Pinzano A. In vivo high-resolution MRI (7T) of femoro-tibial cartilage changes in the rat anterior cruciate ligament transection model of osteoarthritis: a cross-sectional study. Rheumatology (Oxford) 2010; 49:1654-64. [PMID: 20488927 DOI: 10.1093/rheumatology/keq154] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To assess OA-related changes in mean compartmental femorotibial cartilage thickness in rat knees by three-dimensional (3D) MRI (7T). METHODS MRI was performed in vivo at 7T on OA and untouched contralateral knee joints. Gradient Echo Fast Imaging 3D MR images were acquired sequentially in surgically induced OA (D0) in 40 Wistar rats (anterior cruciate ligament transection). Mean femoral (trochlear, lateral and medial) and tibial (lateral and medial) cartilage thicknesses were quantified from a 2D MRI slide in weight-bearing areas and from a 3D MRI data set. At each time-point [Day (D)8, D14, D21, D40 and D60], eight animals (16 knees) were sacrificed for concomitant histomorphometry. RESULTS As body weight dramatically increased throughout the experiment (+150%, baseline vs endpoint), all compartmental mean cartilage thicknesses noticeably decreased (D8, D14) and then remained relatively stable. Femoral compartments in OA knees were thinner at the end of the experiment than in contralateral age-matched knees. Conversely, lateral and medial tibial cartilages were thicker than controls. Histological correlation was significant only in untouched healthy cartilages (3D better than 2D). CONCLUSIONS 3D MRI (7T) enables in vivo monitoring of compartmental changes in OA-related femorotibial rat cartilage thickness vs contralateral age-matched knees.
Collapse
Affiliation(s)
- Jean C Goebel
- UMR 7561 CNRS - Nancy University, Physiopathologie, Pharmacologie et Ingénierie Articulaires, Faculté de Médecine de Nancy, BP 184, Avenue de la Foret de Haye, F54505 Vandoeuvre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bruno MA. Invited Commentary. Radiographics 2010. [DOI: 10.1148/radiographics.30.1.0300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T. Eur Radiol 2009; 20:275-85. [PMID: 19705124 DOI: 10.1007/s00330-009-1572-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE MRI coupled with the intravenous injection of ultrasmall superparamagnetic particles of iron oxides (USPIOs) is a promising tool for the study of neuroinflammation. Quantification of the approximate number of magnetically labelled macrophages may provide an effective and efficient method for monitoring inflammatory cells. The purpose of the present study was to characterise the relaxation properties of macrophages labelled with two types of USPIOs, at 4.7 T and 7 T. METHODS USPIO-labelled bone-marrow-derived macrophage phantoms were compared with phantoms of free dispersed USPIOs with the same global iron concentration, using multi-parametric (T1, T2 and T2) quantitative MRI. The same protocol was then evaluated in living mice after intracerebral injection of iron-labelled macrophages vs free iron oxide. RESULTS A linear relationship was observed among R1, R2 and R2 values and iron concentration in vitro at 4.7 T and at 7 T. At a given field, T1 and T2 relaxivities of both types of USPIOs decreased following internalisation into macrophages, while T2 relaxivities increased. CONCLUSION There was fair overall agreement between the theoretical number of injected cells and the number estimated from T2 quantification and in vitro calibration curves, supporting the validity of the present in vitro calibration curves for in vivo investigation.
Collapse
|
24
|
USPIO-enhanced magnetic resonance imaging of the knee in asymptomatic volunteers. Eur Radiol 2009; 19:1715-22. [PMID: 19330333 DOI: 10.1007/s00330-009-1343-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 01/11/2009] [Indexed: 10/21/2022]
Abstract
The aim of this study was to compare signal characteristics of the synovium in knees of asymptomatic volunteers before and after intravenous administration of ultrasmall superparamagnetic iron oxide particles (USPIO). Ten knees of 10 asymptomatic volunteers were examined before and 36 h after intravenous administration of USPIO on a 1.5-T MR system using T1-weighted spin-echo, T2-weighted fast spin-echo, T2*-weighted gradient-echo (GRE), and short inversion time inversion-recovery sequences. In addition, synovial perfusion was measured using Gd-enhanced GRE imaging during the first imaging session. Images were analyzed qualitatively for any visual changes before and after USPIO administration. Signal-to-noise ratios (SNR) of the synovium were determined on unenhanced and USPIO-enhanced sequences. All MR images were reviewed for presence of any degenerative changes. Qualitative image analysis revealed no visually detectable changes of any knee joint before and after USPIO administration. The SNR values of the synovium on T1w, T2w, and T2*w images before and after USPIO administration showed no significant difference (T1, P = 0.86; T2, P = 0.95; T2*, P = 0.86). None of the volunteers showed any relevant degenerative changes of the knee and synovial perfusion was within normal limits. In knees of asymptomatic volunteers without any relevant degenerative changes and normal synovial perfusion neither visual changes nor changes of SNR values of the synovium can be depicted after USPIO administration. This means that USPIO-enhanced MRI may be used for assessment of knee disorders with increased macrophage activity.
Collapse
|
25
|
Beckmann N, Cannet C, Babin AL, Blé F, Zurbruegg S, Kneuer R, Dousset V. In vivo
visualization of macrophage infiltration and activity in inflammation using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:272-98. [DOI: 10.1002/wnan.16] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nicolau Beckmann
- Global Imaging Group, Novartis Institutes for BioMedical Research, CH‐4056 Basel, Switzerland
| | - Catherine Cannet
- Global Imaging Group, Novartis Institutes for BioMedical Research, CH‐4056 Basel, Switzerland
| | - Anna Louise Babin
- Global Imaging Group, Novartis Institutes for BioMedical Research, CH‐4056 Basel, Switzerland
- Respiratory Diseases Department, Novartis Institutes for BioMedical Research, CH‐4056 Basel, Switzerland
- Sackler Institute of Pulmonary Pharmacology, King's College, London SE1 1UL, UK
| | - François‐Xavier Blé
- Respiratory Diseases Department, Novartis Institutes for BioMedical Research, CH‐4056 Basel, Switzerland
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, Canada M5T 3H7
| | - Stefan Zurbruegg
- Global Imaging Group, Novartis Institutes for BioMedical Research, CH‐4056 Basel, Switzerland
| | - Rainer Kneuer
- Global Imaging Group, Novartis Institutes for BioMedical Research, CH‐4056 Basel, Switzerland
| | - Vincent Dousset
- University Victor Segalen Bordeaux 2, EA 2966 Neurobiology of Myelin Disease Laboratory, CHU de Bordeaux, F‐33076 Bordeaux, France
| |
Collapse
|
26
|
Breton E, Goetz C, Choquet P, Constantinesco A. Low field magnetic resonance imaging in rat in vivo. Ing Rech Biomed 2008. [DOI: 10.1016/j.rbmret.2008.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Saborowski O, Simon GH, Raatschen HJ, Wendland MF, Fu Y, Henning T, Baehner R, Corot C, Chen MH, Daldrup-Link HE. MR imaging of antigen-induced arthritis with a new, folate receptor-targeted contrast agent. CONTRAST MEDIA & MOLECULAR IMAGING 2008; 2:72-81. [PMID: 17385788 DOI: 10.1002/cmmi.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to investigate if the new folate receptor-targeted Gd-chelate P866 may enhance immune-mediated arthritis. A monoarthritis was induced in the right knee of 15 Sprague-Dawley rats. MR imaging of both knees was performed at 2 T before and up to 2 h and 24 h after injection (p.i.) of P866 (n = 3 dose finding study and n = 6, 0.02 mmol Gd/kg), the non-FR targeted P866 analog P1001 (n = 3 at 24 h after P866-administration, 0.02 mmol Gd/kg) or Gd-DOTA (n = 6, 0.1 mmol Gd/kg). Pulse sequences comprised T(1)-SPGR 80 degrees /50 ms/1.7 ms (flip angle/TR/TE) and inversion recovery 10 degrees /3000 ms/1500 ms/50-3050, 10 000 ms (flip angle/TR/TE/TI) sequences. DeltaSI-data and T(1)-relaxation times of arthritic knees and contralateral normal knees were determined. Folate receptor expression was confirmed with histopathology. All three contrast agents showed an initial perfusion effect with significantly higher DeltaSI-data of arthritic knees compared with normal knees (p < 0.05). In addition, P866, but not P1001 or Gd-DOTA, showed a prolonged enhancement of the synovitis. Compared with precontrast values, the T(1)-relaxation times of inflamed synovia were significantly decreased at 2 h p.i. of P866 (p < 0.05), but not P1001 or Gd-DOTA (p > 0.05). Histopathology confirmed the presence of folate receptors in the inflamed joints, but not normal joints. Thus, results suggest a specific accumulation of the folate receptor-targeted Gd-chelate P866 in this arthritis model.
Collapse
Affiliation(s)
- Olaf Saborowski
- Department of Radiology, UCSF Medical Center, University of California San Francisco, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Superparamagnetic iron oxide (SPIO) contrast agents, clinically established for high resolution magnetic resonance imaging of reticuloendothelial system containing anatomical structures, can additionally be exploited for the non-invasive characterization and quantification of pathology down to the molecular level. In this context, SPIOs can be applied for non-invasive cell tracking, quantification of tissue perfusion and target specific imaging, as well as for the detection of gene expression. This article provides an overview of new applications for clinically approved iron oxides as well of new, modified SPIO contrast agents for parametric and molecular imaging.
Collapse
Affiliation(s)
- L Matuszewski
- Institut für Klinische Radiologie, Universitätsklinikum Münster.
| | | | | | | |
Collapse
|
29
|
Simon GH, Daldrup-Link HE, Rummeny EJ. [Macrophage specific MRI imaging for antigen induced arthritides. A potential new strategy for the diagnosis of rheumatoid arthritis]. Radiologe 2007; 47:43-52. [PMID: 17221243 DOI: 10.1007/s00117-006-1453-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The present work describes the potential of iron oxides for the detection of macrophages in synovitis in experimental, antigen-induced arthritis. METHODS The pivotal role of macrophages in rheumatoid arthritis (RA) in humans and in antigen-induced arthritis (AIA) in animal models is discussed. The latter appear to be very similar in many aspects to the human RA. We show the potential for iron oxide-enhanced magnetic resonance imaging (MRI) to determine the macrophage content in the arthritic synovial membranes. The results of our own research, as well as those of other research groups, are presented and discussed. RESULTS MRI after the intravenous (i.v.) administration of iron oxides enables the depiction of macrophage content in arthritic synovial membranes in AIA through the effects of the intracellular compartmentalisation of iron oxide particles. These effects can be demonstrated in 24-h delayed images after i.v. contrast application, on T2-weighted spin-echo or turbo-spin-echo sequences, and especially on T2*-weighted gradient-echo sequences. The signal effects are not only apparent in high field strength (4.7 Tesla) but also on 1.5 Tesla clinical scanners. CONCLUSIONS AND PERSPECTIVES The use of iron oxides enables the determination of the macrophage content in synovitis in animals with AIA. This parameter represents a potential marker to determine disease activity, and possibly represents a marker to evaluate the effectiveness of specific therapies in human RA. Current knowledge of iron oxide-enhanced MRI is limited to animal models. The clinical evaluation of this new method in patients with RA has not yet been performed. However, based on the considerations presented here, significant progress in the diagnostic work-up of RA can be expected.
Collapse
Affiliation(s)
- G H Simon
- Institut für Radiologie, Technische Universität München, Klinikum rechts der Isar, München.
| | | | | |
Collapse
|
30
|
Hong J, Xu D, Yu J, Gong P, Ma H, Yao S. Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging. NANOTECHNOLOGY 2007; 18:135608. [PMID: 21730385 DOI: 10.1088/0957-4484/18/13/135608] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ultrasmall superparamagnetic iron oxide (USPIO) with synthetic polymer, based on magnetite core, was synthesized via facile photochemical in situ polymerization. A possible mechanism of photochemical in situ polymerization was proposed. The obtained polymer-enveloped UPSIO was characterized by transmission electron microscopy (TEM), photo-correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and vibrating sampling magnetometer (VSM) measurement. Properties such as ultrasmall particle size, hydrophilicity, strong magnetization and surface characteristics, which are desirable for magnetic resonance imaging (MRI) contrast agents, were evaluated in detail. The resultant USPIO-based MRI contrast agent holds considerable promise in molecular MR tracking, MR immune imaging, cell tracking and targeted intracellular hyperthermia, etc.
Collapse
Affiliation(s)
- Jun Hong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Wiart M, Davoust N, Pialat JB, Desestret V, Moucharrafie S, Moucharaffie S, Cho TH, Mutin M, Langlois JB, Beuf O, Honnorat J, Nighoghossian N, Berthezène Y. MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke 2006; 38:131-7. [PMID: 17122417 DOI: 10.1161/01.str.0000252159.05702.00] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE A growing body of evidence suggests that inflammatory processes are involved in the pathophysiology of stroke. Phagocyte cells, involving resident microglia and infiltrating macrophages, secrete both protective and toxic molecules and thus represent a potential therapeutic target. The aim of the present study was to monitor phagocytic activity after focal cerebral ischemia in mice. METHODS Ultrasmall superparamagnetic particles of iron oxide (USPIO) were intravenously injected after permanent middle cerebral artery occlusion and monitored by high resolution MRI for 72 hours. RESULTS We here present the first MRI data showing in vivo phagocyte-labeling obtained in mice with focal cerebral ischemia. USPIO-enhanced MRI kinetic analysis disclosed an inflammatory response surrounding the ischemic lesion and in the contralateral hemisphere via the corpus callosum. The imaging data collected during the first 36 hours postinjury suggested a spread of USPIO-related signal from ipsi- to contralateral hemisphere. Imaging data correlated with histochemical analysis showing inflammation remote from the lesion and ingestion of nanoparticles by microglia/macrophages. CONCLUSIONS The present study shows that MR-tracking of phagocyte cells is feasible in mice, which may have critical therapeutic implications given the potential neurotoxicity of activated microglia/macrophages in central nervous system disorders.
Collapse
|