1
|
Truhn D, Zwingenberger KT, Schock J, Abrar DB, Radke KL, Post M, Linka K, Knobe M, Kuhl C, Nebelung S. No pressure, no diamonds? - Static vs. dynamic compressive in-situ loading to evaluate human articular cartilage functionality by functional MRI. J Mech Behav Biomed Mater 2021; 120:104558. [PMID: 33957568 DOI: 10.1016/j.jmbbm.2021.104558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 01/21/2023]
Abstract
Biomechanical Magnetic Resonance Imaging (MRI) of articular cartilage, i.e. its imaging under loading, is a promising diagnostic tool to assess the tissue's functionality in health and disease. This study aimed to assess the response to static and dynamic loading of histologically intact cartilage samples by functional MRI and pressure-controlled in-situ loading. To this end, 47 cartilage samples were obtained from the medial femoral condyles of total knee arthroplasties (from 24 patients), prepared to standard thickness, and placed in a standard knee joint in a pressure-controlled whole knee-joint compressive loading device. Cartilage samples' responses to static (i.e. constant), dynamic (i.e. alternating), and no loading, i.e. free-swelling conditions, were assessed before (δ0), and after 30 min (δ1) and 60 min (δ2) of loading using serial T1ρ maps acquired on a 3.0T clinical MRI scanner (Achieva, Philips). Alongside texture features, relative changes in T1ρ (Δ1, Δ2) were determined for the upper and lower sample halves and the entire sample, analyzed using appropriate statistical tests, and referenced to histological (Mankin scoring) and biomechanical reference measures (tangent stiffness). Histological, biomechanical, and T1ρ sample characteristics at δ0 were relatively homogenous in all samples. In response to loading, relative increases in T1ρ were strong and significant after dynamic loading (Δ1 = 10.3 ± 17.0%, Δ2 = 21.6 ± 21.8%, p = 0.002), while relative increases in T1ρ after static loading and in controls were moderate and not significant. Generally, texture features did not demonstrate clear loading-related associations underlying the spatial relationships of T1ρ. When realizing the clinical translation, this in-situ study suggests that serial T1ρ mapping is best combined with dynamic loading to assess cartilage functionality in humans based on advanced MRI techniques.
Collapse
Affiliation(s)
- Daniel Truhn
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Ken Tonio Zwingenberger
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Justus Schock
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany; Institute of Imaging and Computer Vision, RWTH Aachen University, D-52074, Aachen, Germany
| | - Daniel Benjamin Abrar
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany
| | - Karl Ludger Radke
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany
| | - Manuel Post
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Kevin Linka
- Hamburg University of Technology, Department of Continuum and Materials Mechanics, D-21073, Hamburg, Germany
| | - Matthias Knobe
- Cantonal Hospital Lucerne, Department of Orthopaedic and Trauma Surgery, CH-6000, Lucerne, Switzerland
| | - Christiane Kuhl
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Sven Nebelung
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany.
| |
Collapse
|
2
|
Cai L, Nauman EA, Pedersen CBW, Neu CP. Finite deformation elastography of articular cartilage and biomaterials based on imaging and topology optimization. Sci Rep 2020; 10:7980. [PMID: 32409711 PMCID: PMC7224212 DOI: 10.1038/s41598-020-64723-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/17/2020] [Indexed: 01/17/2023] Open
Abstract
Tissues and engineered biomaterials exhibit exquisite local variation in stiffness that defines their function. Conventional elastography quantifies stiffness in soft (e.g. brain, liver) tissue, but robust quantification in stiff (e.g. musculoskeletal) tissues is challenging due to dissipation of high frequency shear waves. We describe new development of finite deformation elastography that utilizes magnetic resonance imaging of low frequency, physiological-level (large magnitude) displacements, coupled to an iterative topology optimization routine to investigate stiffness heterogeneity, including spatial gradients and inclusions. We reconstruct 2D and 3D stiffness distributions in bilayer agarose hydrogels and silicon materials that exhibit heterogeneous displacement/strain responses. We map stiffness in porcine and sheep articular cartilage deep within the bony articular joint space in situ for the first time. Elevated cartilage stiffness localized to the superficial zone is further related to collagen fiber compaction and loss of water content during cyclic loading, as assessed by independent T2 measurements. We additionally describe technical challenges needed to achieve in vivo elastography measurements. Our results introduce new functional imaging biomarkers, which can be assessed nondestructively, with clinical potential to diagnose and track progression of disease in early stages, including osteoarthritis or tissue degeneration.
Collapse
Affiliation(s)
- Luyao Cai
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, US
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, US
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, US
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, US
| | | | - Corey P Neu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, US.
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, US.
| |
Collapse
|
3
|
Lefebvre PM, Van Reeth E, Ratiney H, Beuf O, Brusseau E, Lambert SA, Glaser SJ, Sugny D, Grenier D, Tse Ve Koon K. Active control of the spatial MRI phase distribution with optimal control theory. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:82-93. [PMID: 28558274 DOI: 10.1016/j.jmr.2017.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.
Collapse
Affiliation(s)
- Pauline M Lefebvre
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Eric Van Reeth
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Hélène Ratiney
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Olivier Beuf
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Elisabeth Brusseau
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Simon A Lambert
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Steffen J Glaser
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Dominique Sugny
- ICB, UMR 6303 CNRS-Université de Bourgogne, 9 avenue Alain Savary, F-21078 Dijon, France; Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 2a, D-85748 Garching, Germany.
| | - Denis Grenier
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| | - Kevin Tse Ve Koon
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 3 rue Victor Grignard, F-69616 Lyon, France.
| |
Collapse
|
4
|
Nebelung S, Post M, Raith S, Fischer H, Knobe M, Braun B, Prescher A, Tingart M, Thüring J, Bruners P, Jahr H, Kuhl C, Truhn D. Functional in situ assessment of human articular cartilage using MRI: a whole-knee joint loading device. Biomech Model Mechanobiol 2017; 16:1971-1986. [PMID: 28685238 DOI: 10.1007/s10237-017-0932-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
The response to loading of human articular cartilage as assessed by magnetic resonance imaging (MRI) remains to be defined in relation to histology and biomechanics. Therefore, an MRI-compatible whole-knee joint loading device for the functional in situ assessment of cartilage was developed and validated in this study. A formalin-fixed human knee was scanned by computed tomography in its native configuration and digitally processed to create femoral and tibial bone models. The bone models were covered by artificial femoral and tibial articular cartilage layers in their native configuration using cartilage-mimicking polyvinyl siloxane. A standardized defect of 8 mm diameter was created within the artificial cartilage layer at the central medial femoral condyle, into which native cartilage samples of similar dimensions were placed. After describing its design and specifications, the comprehensive validation of the device was performed using a hydraulic force gauge and digital electronic pressure-sensitive sensors. Displacement-controlled quasi-static uniaxial loading to 2.5 mm [Formula: see text] and 5.0 mm [Formula: see text] of the mobile tibia versus the immobile femur resulted in forces of [Formula: see text] N [Formula: see text] and [Formula: see text] N [Formula: see text] (on the entire joint) and local pressures of [Formula: see text] MPa [Formula: see text] and [Formula: see text] MPa [Formula: see text] (at the site of the cartilage sample). Upon confirming the MRI compatibility of the set-up, the response to loading of macroscopically intact human articular cartilage samples ([Formula: see text]) was assessed on a clinical 3.0-T MR imaging system using clinical standard proton-density turbo-spin echo sequences and T2-weighted multi-spin echo sequences. Serial imaging was performed at the unloaded state [Formula: see text] and at consecutive loading positions (i.e. at [Formula: see text] and [Formula: see text]. Biomechanical unconfined compression testing (Young's modulus) and histological assessment (Mankin score) served as the standards of reference. All samples were histologically intact (Mankin score, [Formula: see text]) and biomechanically reasonably homogeneous (Young's modulus, [Formula: see text] MPa). They could be visualized in their entirety by MRI and significant decreases in sample height [[Formula: see text]: [Formula: see text] mm; [Formula: see text]: [Formula: see text] mm; [Formula: see text]: [Formula: see text] mm; [Formula: see text] (repeated-measures ANOVA)] as well as pronounced T2 signal decay indicative of tissue pressurization were found as a function of compressive loading. In conclusion, our compression device has been validated for the noninvasive response-to-loading assessment of human articular cartilage by MRI in a close-to-physiological experimental setting. Thus, in a basic research context cartilage may be functionally evaluated beyond mere static analysis and in reference to histology and biomechanics.
Collapse
Affiliation(s)
- Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Stefan Raith
- Department of Dental Materials and Biomaterials Research, Aachen University Hospital, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, Aachen University Hospital, Aachen, Germany
| | - Matthias Knobe
- Department of Orthopaedic Trauma, Aachen University Hospital, Aachen, Germany
| | - Benedikt Braun
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Hospital, Homburg, Germany
| | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy, Aachen University Hospital, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany
| | - Johannes Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Holger Jahr
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
5
|
Mansour JM, Lee Z, Welter JF. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage. Ann Biomed Eng 2016; 44:733-49. [PMID: 26817458 PMCID: PMC4792725 DOI: 10.1007/s10439-015-1535-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/12/2015] [Indexed: 12/16/2022]
Abstract
In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue.
Collapse
Affiliation(s)
- Joseph M Mansour
- Departments of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA.
| | - Zhenghong Lee
- Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jean F Welter
- Biology (Skeletal Research Center), Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Nebelung S, Brill N, Müller F, Tingart M, Pufe T, Merhof D, Schmitt R, Jahr H, Truhn D. Towards Optical Coherence Tomography-based elastographic evaluation of human cartilage. J Mech Behav Biomed Mater 2016; 56:106-119. [DOI: 10.1016/j.jmbbm.2015.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
7
|
Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues. Ann Biomed Eng 2016; 44:705-24. [PMID: 26790865 DOI: 10.1007/s10439-015-1542-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
The elastic properties of engineered biomaterials and tissues impact their post-implantation repair potential and structural integrity, and are critical to help regulate cell fate and gene expression. The measurement of properties (e.g., stiffness or shear modulus) can be attained using elastography, which exploits noninvasive imaging modalities to provide functional information of a material indicative of the regeneration state. In this review, we outline the current leading elastography methodologies available to characterize the properties of biomaterials and tissues suitable for repair and mechanobiology research. We describe methods utilizing magnetic resonance, ultrasound, and optical coherent elastography, highlighting their potential for longitudinal monitoring of implanted materials in vivo, in addition to spatiotemporal limits of each method for probing changes in cell-laden constructs. Micro-elastography methods now allow acquisitions at length scales approaching 5-100 μm in two and three dimensions. Many of the methods introduced in this review are therefore capable of longitudinal monitoring in biomaterials and tissues approaching the cellular scale. However, critical factors such as anisotropy, heterogeneity and viscoelasity-inherent in many soft tissues-are often not fully described and therefore require further advancements and future developments.
Collapse
|
8
|
Ben-Abraham EI, Chen J, Felmlee JP, Rossman P, Manduca A, An KN, Ehman RL. Feasibility of MR elastography of the intervertebral disc. Magn Reson Imaging 2015; 39:132-137. [PMID: 26743429 DOI: 10.1016/j.mri.2015.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 12/27/2015] [Indexed: 01/07/2023]
Abstract
Low back pain (LBP) is a costly and widely prevalent health disorder in the U.S. One of the most common causes of LBP is degenerative disc disease (DDD). There are many imaging techniques to characterize disc degeneration; however, there is no way to directly assess the material properties of the intervertebral disc (IVD) within the intact spine. Magnetic resonance elastography (MRE) is an MRI-based technique for non-invasively mapping the mechanical properties of tissues in vivo. The purpose of this study was to investigate the feasibility of using MRE to detect shear wave propagation in and determine the shear stiffness of an axial cross-section of an ex vivo baboon IVD, and compare with shear displacements from a finite element model of an IVD motion segment in response to harmonic shear vibration. MRE was performed on two baboon lumbar spine motion segments (L3-L4) with the posterior elements removed at a range of frequencies (1000-1500Hz) using a standard clinical 1.5T MR scanner. Propagating waves were visualized in an axial cross-section of the baboon IVDs in all three motion-encoding directions, which resembled wave patterns predicted using finite element modeling. The baboon nucleus pulposus showed an average shear stiffness of 79±15kPa at 1000Hz. These results suggest that MRE is capable of visualizing shear wave propagation in the IVD, assessing the stiffness of the nucleus of the IVD, and can differentiate the nucleus and annulus regions.
Collapse
Affiliation(s)
- Ephraim I Ben-Abraham
- Mayo Graduate School, Biomedical Engineering and Physiology Track, Mayo Clinic, Rochester, Minnesota, USA.
| | - Jun Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Phil Rossman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
9
|
Urban MW, Nenadic IZ, Qiang B, Bernal M, Chen S, Greenleaf JF. Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2499-2507. [PMID: 26520332 PMCID: PMC4627930 DOI: 10.1121/1.4932170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/26/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Evaluation of tissue engineering constructs is performed by a series of different tests. In many cases it is important to match the mechanical properties of these constructs to those of native tissues. However, many mechanical testing methods are destructive in nature which increases cost for evaluation because of the need for additional samples reserved for these assessments. A wave propagation method is proposed for characterizing the shear elasticity of thin layers bounded by a rigid substrate and fluid-loading, similar to the configuration for many tissue engineering applications. An analytic wave propagation model was derived for this configuration and compared against finite element model simulations and numerical solutions from the software package Disperse. The results from the different models found very good agreement. Experiments were performed in tissue-mimicking gelatin phantoms with thicknesses of 1 and 4 mm and found that the wave propagation method could resolve the shear modulus with very good accuracy, no more than 4.10% error. This method could be used in tissue engineering applications to monitor tissue engineering construct maturation with a nondestructive wave propagation method to evaluate the shear modulus of a material.
Collapse
Affiliation(s)
- Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55902, USA
| | - Ivan Z Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55902, USA
| | - Bo Qiang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55902, USA
| | - Miguel Bernal
- Cardiovascular Dynamics Research Group, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Shigao Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55902, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55902, USA
| |
Collapse
|
10
|
Neu CP. Functional imaging in OA: role of imaging in the evaluation of tissue biomechanics. Osteoarthritis Cartilage 2014; 22:1349-59. [PMID: 25278049 PMCID: PMC4185127 DOI: 10.1016/j.joca.2014.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/06/2014] [Accepted: 05/17/2014] [Indexed: 02/02/2023]
Abstract
Functional imaging refers broadly to the visualization of organ or tissue physiology using medical image modalities. In load-bearing tissues of the body, including articular cartilage lining the bony ends of joints, changes in strain, stress, and material properties occur in osteoarthritis (OA), providing an opportunity to probe tissue function through the progression of the disease. Here, biomechanical measures in cartilage and related joint tissues are discussed as key imaging biomarkers in the evaluation of OA. Emphasis will be placed on the (1) potential of radiography, ultrasound, and magnetic resonance imaging to assess early tissue pathomechanics in OA, (2) relative utility of kinematic, structural, morphological, and biomechanical measures as functional imaging biomarkers, and (3) improved diagnostic specificity through the combination of multiple imaging biomarkers with unique contrasts, including elastography and quantitative assessments of tissue biochemistry. In comparison to other modalities, magnetic resonance imaging provides an extensive range of functional measures at the tissue level, with conventional and emerging techniques available to potentially to assess the spectrum of preclinical to advance OA.
Collapse
Affiliation(s)
- C P Neu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Yin Z, Schmid TM, Yasar TK, Liu Y, Royston TJ, Magin RL. Mechanical characterization of tissue-engineered cartilage using microscopic magnetic resonance elastography. Tissue Eng Part C Methods 2014; 20:611-9. [PMID: 24266395 DOI: 10.1089/ten.tec.2013.0408] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R(2)=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development.
Collapse
Affiliation(s)
- Ziying Yin
- 1 Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
12
|
Theoretical prediction of ultrasound elastography for detection of early osteoarthritis. ScientificWorldJournal 2013; 2013:565717. [PMID: 24307873 PMCID: PMC3836411 DOI: 10.1155/2013/565717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
Abstract
Ultrasound elastography could be used as a new noninvasive technique for detecting early osteoarthritis. As the first critical step, this study theoretically predicted the excitation power and the measurement errors in detecting cartilage detect. A finite element model was used to simulate wave propagation of elastography in the cartilage. The wave was produced by a force F, and the wave speed C was calculated. The normal cartilage model was used to define the relationship between the wave speed and elastic modulus. Various stiffness values were simulated. F = 10 N with a duration of 0.5 ms was required for having measurable deformation (10 μm) at the distal site. The deformation had a significant rise when the wave crossed the defect. The relationship between the wave speed and elastic parameters was found as C = 1.57 × (E)/(2 × ρ(1+μ)))1/2, where E was the elastic modulus, μ was Poisson's ratio, and ρ was the density. For the simulated defect with an elastic modulus of 7 MPa which was slightly stiffer than the normal cartilage, the measurement error was 0.1 MPa. The results suggested that, given the simulated conditions, this new technique could be used to detect the defect in early osteoarthritis.
Collapse
|
13
|
Numano T, Kawabata Y, Mizuhara K, Washio T, Nitta N, Homma K. Magnetic resonance elastography using an air ball-actuator. Magn Reson Imaging 2013; 31:939-46. [DOI: 10.1016/j.mri.2013.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/23/2013] [Accepted: 02/20/2013] [Indexed: 11/26/2022]
|
14
|
Sarvazyan AP, Urban MW, Greenleaf JF. Acoustic waves in medical imaging and diagnostics. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1133-46. [PMID: 23643056 PMCID: PMC3682421 DOI: 10.1016/j.ultrasmedbio.2013.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 05/03/2023]
Abstract
Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term ultrasonography, or its abbreviated version sonography, meant an imaging modality based on the use of ultrasonic compressional bulk waves. Beginning in the 1990s, there started to emerge numerous acoustic imaging modalities based on the use of a different mode of acoustic wave: shear waves. Imaging with these waves was shown to provide very useful and very different information about the biological tissue being examined. We discuss the physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities and frequencies that have been used in different imaging applications is presented. We discuss the potential for future shear wave imaging applications.
Collapse
|
15
|
Chan DD, Neu CP. Probing articular cartilage damage and disease by quantitative magnetic resonance imaging. J R Soc Interface 2013; 10:20120608. [PMID: 23135247 DOI: 10.1098/rsif.2012.0608] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a debilitating disease that reflects a complex interplay of biochemical, biomechanical, metabolic and genetic factors, which are often triggered by injury, and mediated by inflammation, catabolic cytokines and enzymes. An unmet clinical need is the lack of reliable methods that are able to probe the pathogenesis of early OA when disease-rectifying therapies may be most effective. Non-invasive quantitative magnetic resonance imaging (qMRI) techniques have shown potential for characterizing the structural, biochemical and mechanical changes that occur with cartilage degeneration. In this paper, we review the background in articular cartilage and OA as it pertains to conventional MRI and qMRI techniques. We then discuss how conventional MRI and qMRI techniques are used in clinical and research environments to evaluate biochemical and mechanical changes associated with degeneration. Some qMRI techniques allow for the use of relaxometry values as indirect biomarkers for cartilage components. Direct characterization of mechanical behaviour of cartilage is possible via other specialized qMRI techniques. The combination of these qMRI techniques has the potential to fully characterize the biochemical and biomechanical states that represent the initial changes associated with cartilage degeneration. Additionally, knowledge of in vivo cartilage biochemistry and mechanical behaviour in healthy subjects and across a spectrum of osteoarthritic patients could lead to improvements in the detection, management and treatment of OA.
Collapse
Affiliation(s)
- Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
16
|
Bosshard JC, McDougall MP, Wright SM. An insertable nonlinear gradient coil for phase compensation in SEA imaging. IEEE Trans Biomed Eng 2013; 61:217-23. [PMID: 23314767 DOI: 10.1109/tbme.2013.2238537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In magnetic resonance imaging with array coils with many elements, as the radiofrequency (RF) coil dimensions approach the voxel dimensions, the phase gradient due to the magnetic field pattern of the coil causes signal cancellation within each voxel. In single echo acquisition (SEA) imaging with coil arrays, a gradient pulse can be applied to compensate for this effect. However, because RF coil phase varies with distance from the array and reverses on opposite sides of a dual-sided array, this method of phase compensation can be optimized for only a single slice at a time. In this study, a nonlinear gradient coil was implemented to provide spatially varying phase compensation to offset the coil phase with slice position for dual-sided arrays of narrow coils. This nonlinear gradient coil allows the use of one phase compensation pulse for imaging multiple slices through a slab, and, importantly, is shown to enable simultaneous SEA imaging from opposite sides of a sample using a dual-sided receive array.
Collapse
|
17
|
Yasar TK, Royston TJ, Magin RL. Wideband MR elastography for viscoelasticity model identification. Magn Reson Med 2012; 70:479-89. [PMID: 23001852 DOI: 10.1002/mrm.24495] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 07/25/2012] [Accepted: 08/18/2012] [Indexed: 11/05/2022]
Abstract
The growing clinical use of MR elastography requires the development of new quantitative standards for measuring tissue stiffness. Here, we examine a soft tissue mimicking phantom material (Ecoflex) over a wide frequency range (200 Hz to 7.75 kHz). The recorded data are fit to a cohort of viscoelastic models of varying complexity (integer and fractional order). This was accomplished using multiple sample sizes by employing geometric focusing of the shear wave front to compensate for the changes in wavelength and attenuation over this broad range of frequencies. The simple axisymmetric geometry and shear wave front of this experiment allows us to calculate the frequency-dependent complex-valued shear modulus of the material. The data were fit to several common models of linear viscoelasticity, including those with fractional derivative operators, and we identified the best possible matches over both a limited frequency band (often used in clinical studies) and over the entire frequency span considered. In addition to demonstrating the superior capability of the fractional order viscoelastic models, this study highlights the advantages of measuring the complex-valued shear modulus over as wide a range of frequencies as possible.
Collapse
Affiliation(s)
- Temel K Yasar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W Taylor St. MC 251, Chicago, Illinois 60607, USA.
| | | | | |
Collapse
|
18
|
Kolipaka A, Aggarwal SR, McGee KP, Anavekar N, Manduca A, Ehman RL, Araoz PA. Magnetic resonance elastography as a method to estimate myocardial contractility. J Magn Reson Imaging 2012; 36:120-7. [PMID: 22334349 PMCID: PMC3355216 DOI: 10.1002/jmri.23616] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 01/13/2012] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine whether increasing epinephrine infusion in an in vivo pig model is associated with an increase in end-systolic magnetic resonance elastography (MRE)-derived effective stiffness. MATERIALS AND METHODS Finite element modeling (FEM) was performed to determine the range of myocardial wall thicknesses that could be used for analysis. Then MRE was performed on five pigs to measure the end-systolic effective stiffness with epinephrine infusion. Epinephrine was continuously infused intravenously in each pig to increase the heart rate in increments of 20%. For each such increase end-systolic effective stiffness was measured using MRE. In each pig, Student's t-test was used to compare effective end-systolic stiffness at baseline and at initial infusion of epinephrine. Least-square linear regression was performed to determine the correlation between normalized end-systolic effective stiffness and increase in heart rate with epinephrine infusion. RESULTS FEM showed that phase gradient inversion could be performed on wall thickness ≈≥1.5 cm. In pigs, effective end-systolic stiffness significantly increased from baseline to the first infusion in all pigs (P = 0.047). A linear correlation was found between normalized effective end-systolic stiffness and percent increase in heart rate by epinephrine infusion with R(2) ranging from 0.86-0.99 in four pigs. In one of the pigs the R(2) value was 0.1. A linear correlation with R(2) = 0.58 was found between normalized effective end-systolic stiffness and percent increase in heart rate when pooling data points from all pigs. CONCLUSION Noninvasive MRE-derived end-systolic effective myocardial stiffness may be a surrogate for myocardial contractility.
Collapse
Affiliation(s)
| | | | | | - Nandan Anavekar
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | | | | | | |
Collapse
|
19
|
Relationship between triphasic mechanical properties of articular cartilage and osteoarthritic grade. SCIENCE CHINA-LIFE SCIENCES 2012; 55:444-51. [DOI: 10.1007/s11427-012-4326-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
|
20
|
Niu HJ, Wang Q, Wang YX, Li DY, Fan YB, Chen WF. Ultrasonic reflection coefficient and surface roughness index of OA articular cartilage: relation to pathological assessment. BMC Musculoskelet Disord 2012; 13:34. [PMID: 22405078 PMCID: PMC3351369 DOI: 10.1186/1471-2474-13-34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early diagnosis of osteoarthritis (OA) is essential for preventing further cartilage destruction and decreasing severe complications. The aims of this study are to explore the relationship between OA pathological grades and quantitative acoustic parameters and to provide more objective criteria for ultrasonic microscopic evaluation of the OA cartilage. METHODS Articular cartilage samples were prepared from rabbit knees and scanned using ultrasound biomicroscopy (UBM). Three quantitative parameters, including the roughness index of the cartilage surface (URI), the reflection coefficients from the cartilage surface (R) and from the cartilage-bone interface (Rbone) were extracted. The osteoarthritis grades of these cartilage samples were qualitatively assessed by histology according to the grading standards of International Osteoarthritis Institute (OARSI). The relationship between these quantitative parameters and the osteoarthritis grades was explored. RESULTS The results showed that URI increased with the OA grade. URI of the normal cartilage samples was significantly lower than the one of the OA cartilage samples. There was no significant difference in URI between the grade 1 cartilage samples and the grade 2 cartilage samples. The reflection coefficient of the cartilage surface reduced significantly with the development of OA (p < 0.05), while the reflection coefficient of the cartilage-bone interface increased with the increase of grade. CONCLUSION High frequency ultrasound measurements can reflect the changes in the surface roughness index and the ultrasound reflection coefficients of the cartilage samples with different OA grades. This study may provide useful information for the quantitative ultrasonic diagnosis of early OA.
Collapse
Affiliation(s)
- Hai-jun Niu
- Key Laboratory of the Ministry of Education for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|
21
|
Othman SF, Curtis ET, Plautz SA, Pannier AK, Butler SD, Xu H. MR elastography monitoring of tissue-engineered constructs. NMR IN BIOMEDICINE 2012; 25:452-463. [PMID: 21387443 DOI: 10.1002/nbm.1663] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 11/15/2010] [Accepted: 12/03/2010] [Indexed: 05/30/2023]
Abstract
The objective of tissue engineering (TE) is to create functional replacements for various tissues; the mechanical properties of these engineered constructs are critical to their function. Several techniques have been developed for the measurement of the mechanical properties of tissues and organs; however, current methods are destructive. The field of TE will benefit immensely if biomechanical models developed by these techniques could be combined with existing imaging modalities to enable noninvasive, dynamic assessment of mechanical properties during tissue growth. Specifically, MR elastography (MRE), which is based on the synchronization of a mechanical actuator with a phase contrast imaging pulse sequence, has the capacity to measure tissue strain generated by sonic cyclic displacement. The captured displacement is presented in shear wave images from which the complex shear moduli can be extracted or simplified by a direct measure, termed the shear stiffness. MRE has been extended to the microscopic scale, combining clinical MRE with high-field magnets, stronger magnetic field gradients and smaller, more sensitive, radiofrequency coils, enabling the interrogation of smaller samples, such as tissue-engineered constructs. The following topics are presented in this article: (i) current mechanical measurement techniques and their limitations in TE; (ii) a description of the MRE system, MRE theory and how it can be applied for the measurement of mechanical properties of tissue-engineered constructs; (iii) a summary of in vitro MRE work for the monitoring of osteogenic and adipogenic tissues originating from human adult mesenchymal stem cells (MSCs); (iv) preliminary in vivo studies of MRE of tissues originating from mouse MSCs implanted subcutaneously in immunodeficient mice with an emphasis on in vivo MRE challenges; (v) future directions to resolve current issues with in vivo MRE in the context of how to improve the future role of MRE in TE.
Collapse
Affiliation(s)
- Shadi F Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Lötjönen P, Julkunen P, Tiitu V, Jurvelin JS, Töyräs J. Ultrasound speed varies in articular cartilage under indentation loading. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:2772-2780. [PMID: 23443716 DOI: 10.1109/tuffc.2011.2143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In ultrasound elastography, tissue strains are determined by localizing changes in ultrasound echoes during mechanical loading. The technique has been proposed for arthroscopic quantification of the mechanical properties of cartilage. The accuracy of ultrasound elastography depends on the invariability of sound speed in loaded tissue. In unconfined geometry, mechanical compression has been shown to induce variation in sound speed, leading to errors in the determined mechanical properties. This phenomenon has not been confirmed in indentation geometry, the only loading geometry applicable in situ or in vivo. In the present study, ultrasound speed during indentation of articular cartilage was characterized and the effect of variable sound speed on the strain measurements was investigated. Osteochondral samples (n = 7, diameter = 25.4 mm), prepared from visually intact bovine patellae (n = 7), were indented with a plane-ended ultrasound transducer (diameter = 5.6 mm, peak frequency: 8.1 MHz). A sequence of three compression tests (strain-rate = 10%/s, 2700-s relaxation) was applied using the mean strains of 2.2%, 4.5%, and 6.4%. Then, ultrasound speed during the ramp and stress-relaxation phases was determined using the time-of- flight technique. To investigate the role of cartilage structure and composition for sound speed in loaded articular cartilage, a sample-specific fibril-reinforced poroviscoelastic (FRPVE) finite element model was constructed and fitted to experimental mechanical data. Ultrasound speed in articular cartilage decreased significantly during dynamic indentation (p <; 0.05). The magnitude of the decrease in speed during indentation was related to the applied strain. However, the relative error in acoustically determined tissue strain was inversely related to the magnitude of true strain. The modeling results suggested that the compression-related variation in sound speed is controlled by changes in the collagen architecture during dynamic indentation. To conclude, variation in sound speed during dynamic indentation of articular cartilage may lead to significant errors in the values of measured mechanical parameters. Because the relative errors are inversely proportional to applied strain, higher strains should be used to minimize the errors in, e.g., in vivo measurements.
Collapse
|
23
|
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. AN OVERVIEW OF ELASTOGRAPHY - AN EMERGING BRANCH OF MEDICAL IMAGING. Curr Med Imaging 2011; 7:255-282. [PMID: 22308105 PMCID: PMC3269947 DOI: 10.2174/157340511798038684] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field.In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals.Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice.
Collapse
|
24
|
Li Y, Snedeker JG. Elastography: modality-specific approaches, clinical applications, and research horizons. Skeletal Radiol 2011; 40:389-97. [PMID: 20352427 DOI: 10.1007/s00256-010-0918-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 02/02/2023]
Abstract
Manual palpation has been used for centuries to provide a relative indication of tissue health and disease. Engineers have sought to make these assessments increasingly quantitative and accessible within daily clinical practice. Since many of the developed techniques involve image-based quantification of tissue deformation in response to an applied force (i.e., "elastography"), such approaches fall squarely within the domain of the radiologist. While commercial elastography analysis software is becoming increasingly available for clinical use, the internal workings of these packages often remain a "black box," with limited guidance on how to usefully apply the methods toward a meaningful diagnosis. The purpose of the present review article is to introduce some important approaches to elastography that have been developed for the most widely used clinical imaging modalities (e.g., ultrasound, MRI), to provide a basic sense of the underlying physical principles, and to discuss both current and potential (musculoskeletal) applications. The article also seeks to provide a perspective on emerging approaches that are rapidly developing in the research laboratory (e.g., optical coherence tomography, fibered confocal microscopy), and which may eventually gain a clinical foothold.
Collapse
Affiliation(s)
- Yufei Li
- Department of Orthopaedics, University Hospital Balgrist, Forchstrasse 340, 8008, Zurich, Switzerland
| | | |
Collapse
|
25
|
Snedeker JG, Ben Arav A, Zilberman Y, Pelled G, Gazit D. Functional Fibered Confocal Microscopy: A Promising Tool for Assessing Tendon Regeneration. Tissue Eng Part C Methods 2009; 15:485-91. [DOI: 10.1089/ten.tec.2008.0612] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jess G. Snedeker
- Laboratory for Orthopedic Research, University of Zurich, Uniklinik Balgrist, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ayelet Ben Arav
- Skeletal Biotechnology Laboratory, Hebrew University–Hadassah Medical Campus, Jerusalem, Israel
| | - Yoram Zilberman
- Skeletal Biotechnology Laboratory, Hebrew University–Hadassah Medical Campus, Jerusalem, Israel
| | - Gadi Pelled
- Skeletal Biotechnology Laboratory, Hebrew University–Hadassah Medical Campus, Jerusalem, Israel
| | - Dan Gazit
- Skeletal Biotechnology Laboratory, Hebrew University–Hadassah Medical Campus, Jerusalem, Israel
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, California
| |
Collapse
|
26
|
Abstract
Standardized magnetic resonance imaging (MRI) pulse sequences provide an accurate, reproducible assessment of cartilage morphology. Three-dimensional (3D) modeling techniques enable semiautomated models of the joint surface and thickness measurements, which may eventually prove essential in templating before partial or total joint resurfacing as well as focal cartilage repair. Quantitative MRI techniques, such as T2 mapping, T1 rho, and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), provide noninvasive information about cartilage and repair tissue biochemistry. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) demonstrate information regarding the regional anisotropic variation of cartilage ultrastructure. Further research strengthening the association between quantitative MRI and cartilage material properties may predict the functional capacity of native and repaired tissue. MRI provides an essential objective assessment of cartilage regenerative procedures.
Collapse
|
27
|
Characterization of the structure-function relationship at the ligament-to-bone interface. Proc Natl Acad Sci U S A 2008; 105:7947-52. [PMID: 18541916 DOI: 10.1073/pnas.0712150105] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soft tissues such as ligaments and tendons integrate with bone through a fibrocartilaginous interface divided into noncalcified and calcified regions. This junction between distinct tissue types is frequently injured and not reestablished after surgical repair. Its regeneration is also limited by a lack of understanding of the structure-function relationship inherent at this complex interface. Therefore, focusing on the insertion site between the anterior cruciate ligament (ACL) and bone, the objectives of this study are: (i) to determine interface compressive mechanical properties, (ii) to characterize interface mineral presence and distribution, and (iii) to evaluate insertion site-dependent changes in mechanical properties and matrix mineral content. Interface mechanical properties were determined by coupling microcompression with optimized digital image correlation analysis, whereas mineral presence and distribution were characterized by energy dispersive x-ray analysis and backscattered scanning electron microscopy. Both region- and insertion-dependent changes in mechanical properties were found, with the calcified interface region exhibiting significantly greater compressive mechanical properties than the noncalcified region. Mineral presence was only detectable within the calcified interface and bone regions, and its distribution corresponds to region-dependent mechanical inhomogeneity. Additionally, the compressive mechanical properties of the tibial insertion were greater than those of the femoral. The interface structure-function relationship elucidated in this study provides critical insight for interface regeneration and the formation of complex tissue systems.
Collapse
|
28
|
Lopez O, Amrami KK, Manduca A, Ehman RL. Characterization of the dynamic shear properties of hyaline cartilage using high-frequency dynamic MR elastography. Magn Reson Med 2008; 59:356-64. [PMID: 18228594 DOI: 10.1002/mrm.21474] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This work evaluated the feasibility of dynamic MR Elastography (MRE) to quantify structural changes in bovine hyaline cartilage induced by selective enzymatic degradation. The ability of the technique to quantify the frequency-dependent response of normal cartilage to shear in the kilohertz range was also explored. Bovine cartilage plugs of 8 mm in diameter were used for this study. The shear stiffness (mu(s)) of each cartilage plug was measured before and after 16 hr of enzymatic treatments by dynamic MRE at 5000 Hz of shear excitation. Collagenase and trypsin were used to selectively affect the collagen and proteoglycans contents of the matrix. Additionally, normal cartilage plugs were tested by dynamic MRE at shear-excitations of 3000-7000 Hz. Measured micro(s) of cartilage plugs showed a significant decrease (-37%, P < 0.05) after collagenase treatment and a significant decrease (-28%, P < 0.05) after trypsin treatment. Furthermore, a near-linear increase (R(2) = 0.9141) in the speed of shear wave propagation with shear-excitation frequency was observed in cartilage, indicating that wave speed is dominated by viscoelastic effects. These experiments suggest that dynamic MRE can provide a sensitive quantitative tool to characterize the degradation process and viscoelastic behavior of cartilage.
Collapse
Affiliation(s)
- Orlando Lopez
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
29
|
Neu CP, Walton JH. Displacement encoding for the measurement of cartilage deformation. Magn Reson Med 2008; 59:149-55. [PMID: 18050342 DOI: 10.1002/mrm.21464] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Articular cartilage is a load bearing and lubricating tissue in animal joints. Heterogeneous deformations arise in the structured and zonal tissue under the application of mechanical load. The character of these deformations is altered by degenerative joint disease. Here, we document an MRI-based technique for determining deformations throughout the volume of the tissue based on displacement encoding with stimulated echoes (DENSE) and a fast spin echo (FSE) readout. A DENSE-FSE technique was designed to image cartilage at 9.4 Tesla in a deformed state during the application of cyclic mechanical loading. Artifact elimination arising from stimulated echoes and FSE was accomplished by radio frequency pulse phase cycling. The error of the technique was random and was quantified in terms of precision as better than 0.17% strain. Heterogeneous deformation field patterns in axial, transverse, and shear directions were quantified in a single tissue explant loaded in simple uniaxial compression. The technique is appropriate for documenting tissue deformations during applied physiologically relevant stress levels and loading rates. It may also be applied to characterize the micromechanical strain environment in normal, diseased, or regenerated cartilage in response to applied mechanical loading.
Collapse
Affiliation(s)
- Corey P Neu
- Center for Tissue Regeneration and Repair, University of California at Davis Medical Center, Sacramento, California, USA.
| | | |
Collapse
|
30
|
Ehman RL. Quantitative assessment of the mechanical properties of tissues with magnetic resonance elastography. Comput Methods Biomech Biomed Engin 2008. [DOI: 10.1080/10255840802297234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|