1
|
Tóth A, Berente Z, Bogner P, Környei B, Balogh B, Czeiter E, Amrein K, Dóczi T, Büki A, Schwarcz A. Cerebral Microbleeds Temporarily Become Less Visible or Invisible in Acute Susceptibility Weighted Magnetic Resonance Imaging: A Rat Study. J Neurotrauma 2019; 36:1670-1677. [PMID: 30421664 PMCID: PMC6531906 DOI: 10.1089/neu.2018.6004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previously, we reported human traumatic brain injury cases demonstrating acute to subacute microbleed appearance changes in susceptibility-weighted imaging (SWI—magnetic resonance imaging [MRI]). This study aims to confirm and characterize such temporal microbleed appearance alterations in an experimental model. To elicit microbleed formation, brains of male Sprague Dawley rats were pierced in a depth of 4 mm, in a parasagittal position bilaterally using 159 μm and 474 μm needles, without the injection of autologous blood or any agent. Rats underwent 4.7 T MRI immediately, then at multiple time points until 125 h. Volumes of hypointensities consistent with microbleeds in SWI were measured using an intensity threshold-based approach. Microbleed volumes across time points were compared using repeated measures analysis of variance. Microbleeds were assessed by Prussian blue histology at different time points. Hypointensity volumes referring to microbleeds were significantly decreased (corrected p < 0.05) at 24 h compared with the immediate or the 125 h time points. By visual inspection, microbleeds were similarly detectable at the immediate and 125 h imaging but were decreased in extent or completely absent at 24 h or 48 h. Histology confirmed the presence of microbleeds at all time points and in all animals. This study confirmed a general temporary reduction in visibility of microbleeds in the acute phase in SWI. Such short-term appearance dynamics of microbleeds should be considered when using SWI as a diagnostic tool for microbleeds in traumatic brain injury and various diseases.
Collapse
Affiliation(s)
- Arnold Tóth
- 1 Department of Neurosurgery, Pécs Medical School, Pécs, Hungary.,2 Department of Radiology, Pécs Medical School, Pécs, Hungary.,3 MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Zoltán Berente
- 4 Department of Biochemistry and Medical Chemistry, Pécs Medical School, Pécs, Hungary.,5 János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,6 Research Group for Experimental Diagnostic Imaging, Pécs Medical School, Pécs, Hungary
| | - Péter Bogner
- 2 Department of Radiology, Pécs Medical School, Pécs, Hungary
| | - Bálint Környei
- 1 Department of Neurosurgery, Pécs Medical School, Pécs, Hungary
| | - Bendegúz Balogh
- 2 Department of Radiology, Pécs Medical School, Pécs, Hungary
| | - Endre Czeiter
- 1 Department of Neurosurgery, Pécs Medical School, Pécs, Hungary.,3 MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary.,5 János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztina Amrein
- 1 Department of Neurosurgery, Pécs Medical School, Pécs, Hungary.,5 János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamás Dóczi
- 1 Department of Neurosurgery, Pécs Medical School, Pécs, Hungary.,3 MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary.,7 Diagnostic Center of Pécs, Pécs, Hungary
| | - András Büki
- 1 Department of Neurosurgery, Pécs Medical School, Pécs, Hungary.,5 János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Attila Schwarcz
- 1 Department of Neurosurgery, Pécs Medical School, Pécs, Hungary
| |
Collapse
|
2
|
Liu S, Buch S, Chen Y, Choi HS, Dai Y, Habib C, Hu J, Jung JY, Luo Y, Utriainen D, Wang M, Wu D, Xia S, Haacke EM. Susceptibility-weighted imaging: current status and future directions. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3552. [PMID: 27192086 PMCID: PMC5116013 DOI: 10.1002/nbm.3552] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 05/14/2023]
Abstract
Susceptibility-weighted imaging (SWI) is a method that uses the intrinsic nature of local magnetic fields to enhance image contrast in order to improve the visibility of various susceptibility sources and to facilitate diagnostic interpretation. It is also the precursor to the concept of the use of phase for quantitative susceptibility mapping (QSM). Nowadays, SWI has become a widely used clinical tool to image deoxyhemoglobin in veins, iron deposition in the brain, hemorrhages, microbleeds and calcification. In this article, we review the basics of SWI, including data acquisition, data reconstruction and post-processing. In particular, the source of cusp artifacts in phase images is investigated in detail and an improved multi-channel phase data combination algorithm is provided. In addition, we show a few clinical applications of SWI for the imaging of stroke, traumatic brain injury, carotid vessel wall, siderotic nodules in cirrhotic liver, prostate cancer, prostatic calcification, spinal cord injury and intervertebral disc degeneration. As the clinical applications of SWI continue to expand both in and outside the brain, the improvement of SWI in conjunction with QSM is an important future direction of this technology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Saifeng Liu
- The MRI Institute for Biomedical Research, Waterloo, ON, Canada
| | - Sagar Buch
- The MRI Institute for Biomedical Research, Waterloo, ON, Canada
| | - Yongsheng Chen
- Department of Radiology, Wayne State University, Detroit, MI, US
| | - Hyun-Seok Choi
- Department of Radiology, St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yongming Dai
- The MRI Institute of Biomedical Research, Detroit, Michigan, US
| | - Charbel Habib
- Department of Radiology, Wayne State University, Detroit, MI, US
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, US
| | - Joon-Yong Jung
- Department of Radiology, St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yu Luo
- Department of Radiology, the Branch of Shanghai First Hospital, Shanghai, China
| | - David Utriainen
- The MRI Institute of Biomedical Research, Detroit, Michigan, US
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - E. Mark Haacke
- The MRI Institute for Biomedical Research, Waterloo, ON, Canada
- Department of Radiology, Wayne State University, Detroit, MI, US
- The MRI Institute of Biomedical Research, Detroit, Michigan, US
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
- Address correspondence to: E. Mark Haacke, Ph.D., 3990 John R Street, MRI Concourse, Detroit, MI 48201. 313-745-1395,
| |
Collapse
|
3
|
Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 2014; 33:1-25. [PMID: 25267705 DOI: 10.1016/j.mri.2014.09.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 01/13/2023]
Abstract
Quantitative susceptibility mapping (QSM) is a new technique for quantifying magnetic susceptibility. It has already found various applications in quantifying in vivo iron content, calcifications and changes in venous oxygen saturation. The accuracy of susceptibility mapping is dependent on several factors. In this review, we evaluate the entire process of QSM from data acquisition to individual data processing steps. We also show preliminary results of several new concepts introduced in this review in an attempt to improve the quality and accuracy for certain steps. The uncertainties in estimating susceptibility differences using susceptibility maps, phase images, and T2* maps are analyzed and compared. Finally, example clinical applications are presented. We conclude that QSM holds great promise in quantifying iron and becoming a standard clinical tool.
Collapse
Affiliation(s)
- E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
| | - Saifeng Liu
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Sagar Buch
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Weili Zheng
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yongquan Ye
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
The role of susceptibility weighted imaging in functional MRI. Neuroimage 2012; 62:923-9. [PMID: 22245649 DOI: 10.1016/j.neuroimage.2012.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/15/2011] [Accepted: 01/01/2012] [Indexed: 11/21/2022] Open
Abstract
The development of functional brain magnetic resonance imaging (fMRI) has been a boon for neuroscientists and radiologists alike. It provides for fundamental information on brain function and better diagnostic tools to study disease. In this paper, we will review some of the early concepts in high resolution gradient echo imaging with a particular emphasis on susceptibility weighted imaging (SWI) and MR angiography (MRA). We begin with the history of our own experience in this area, followed by a discussion of the role of high resolution in studying the vasculature of the brain and how this relates to the BOLD (blood oxygenation level dependent) signal. We introduce the role of SWI and susceptibility mapping (SWIM) in fMRI and close with recommendations for future high resolution experiments.
Collapse
|
5
|
Pierce IT, Gatehouse PD, Xu XY, Firmin DN. MR phase-contrast velocity mapping methods for measuring venous blood velocity in the deep veins of the calf. J Magn Reson Imaging 2011; 34:634-44. [PMID: 21761470 DOI: 10.1002/jmri.22655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/28/2011] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate the feasibility of using un-gated, real-time MRI for venous blood velocity mapping in the calf, comparing an interleaved spiral k-space sequence (ISP) against a standard segmented gradient echo sequence (GRE). MATERIALS AND METHODS A flow phantom with a variable flow-rate was scanned using both GRE and ISP sequences for an in vitro comparison. Seven subjects were scanned prone, performing metronome guided breathing, using the (externally triggered) segmented GRE and real-time ISP sequences. The segmented GRE acquisition duration was 2.5 mins (22 guided respiratory cycles) and the ISP sequence ran continuously for 35 s, 4 full guided respiratory cycles. Mean velocity from each of the deep veins was measured and peak mean velocity, peak flow rate and cumulative volume flow over a respiratory cycle compared between sequences. RESULTS The two sequences compared well both in vitro and in vivo. The real-time ISP sequence showed short-term variations in mean velocity superimposed on the respiratory induced flow, which were averaged out using the segmented GRE sequence. CONCLUSION Real-time ISP provides comparable time-averaged flow results to the standard sequence with additional information on real-time flow variations and so could be used for further investigation into venous blood flow in the lower leg.
Collapse
Affiliation(s)
- Iain T Pierce
- CMR Unit, National Heart and Lung Institute, Imperial College London, United Kingdom.
| | | | | | | |
Collapse
|