1
|
Neuroimaging in animal models of epilepsy. Neuroscience 2017; 358:277-299. [DOI: 10.1016/j.neuroscience.2017.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
2
|
Bhandare AM, Kapoor K, Powell KL, Braine E, Casillas-Espinosa P, O'Brien TJ, Farnham MM, Pilowsky PM. Inhibition of microglial activation with minocycline at the intrathecal level attenuates sympathoexcitatory and proarrhythmogenic changes in rats with chronic temporal lobe epilepsy. Neuroscience 2017; 350:23-38. [DOI: 10.1016/j.neuroscience.2017.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/19/2022]
|
3
|
Malheiros JM, Paiva FF, Longo BM, Hamani C, Covolan L. Manganese-Enhanced MRI: Biological Applications in Neuroscience. Front Neurol 2015. [PMID: 26217304 PMCID: PMC4498388 DOI: 10.3389/fneur.2015.00161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn2+) enhances MRI contrast in vivo. Due to similarities between Mn2+ and calcium (Ca2+), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca2+ channels. As such, MEMRI has been used to trace neuronal pathways, define morphological boundaries, and study connectivity in morphological and functional imaging studies. In this article, we provide a brief overview of MEMRI and discuss recently published data to illustrate the usefulness of this method, particularly in animal models.
Collapse
Affiliation(s)
- Jackeline Moraes Malheiros
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil ; Centro de Imagens e Espectroscopia In vivo por Ressonância Magnética, Institute of Physics of São Carlos, Universidade de São Paulo , São Carlos , Brazil
| | - Fernando Fernandes Paiva
- Centro de Imagens e Espectroscopia In vivo por Ressonância Magnética, Institute of Physics of São Carlos, Universidade de São Paulo , São Carlos , Brazil
| | - Beatriz Monteiro Longo
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil ; Research Imaging Centre, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil
| |
Collapse
|
4
|
Tutkun E, Abuşoğlu S, Yılmaz H, Gündüzöz M, Gıynas N, Bal CD, Ünlü A. Prolactin levels in manganese-exposed male welders. Pituitary 2014; 17:564-8. [PMID: 24337778 DOI: 10.1007/s11102-013-0545-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Early studies on manganese (Mn) exposure have demonstrated that this transition metal affects dopamine neurotransmission. Dopamine serves as a tonic inhibitor of prolactin release in the anterior hypophysis. Our aim was to determine the relation between serum prolactin levels and manganese-exposure. METHODS Whole blood was collected from 95 non-exposed control subjects and 179 manganese-exposed male welders. Whole blood manganese was analyzed by Inductively Coupled Plasma--Mass Spectrometer on Agilent 7700 (Agilent Technologies, USA). Serum prolactin levels (PRL), aspartate transaminase (AST), alanine transaminase (ALT), urea, creatinine, soduim (Na), potassium (K) were analyzed by immunological and spectrophotometric methods on Roche E170 Modular System (Roche Diagnostics, Mannheim, Germany). RESULTS The mean ages for control and manganese-exposed group were 40.5 ± 7.8 and 39.5 ± 8.7, respectively (p = 0.258). The mean working period (years) for control and manganese-exposed group were 17.4 ± 9.8 and 18.2 ± 7.7 years, respectively (p = 0.581). Serum AST and potassium levels were significantly higher in control group than manganese-exposed group (p = 0.002 and p = 0.048, respectively) and body-mass index (BMI) was significantly lower in control group than manganese-exposed group (p = 0.033). There was a significantly positive correlation between whole blood manganese levels and serum prolactin (r = 0.860, p < 0.001). Serum ALT levels were positively correlated with serum AST, urea and sodium (r = 0.315, p < 0.001; r = 0.121, p = 0.046; r = 0.130, p = 0.031). CONCLUSIONS Serum prolactin level is a diagnostic marker for determining the effect of manganese-exposure.
Collapse
Affiliation(s)
- Engin Tutkun
- Department of Toxicology, Occupational Diseases Hospital, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Epilepsy is one of the most common chronic neurological conditions worldwide. Anti-epileptic drugs (AEDs) can suppress seizures, but do not affect the underlying epileptic state, and many epilepsy patients are unable to attain seizure control with AEDs. To cure or prevent epilepsy, disease-modifying interventions that inhibit or reverse the disease process of epileptogenesis must be developed. A major limitation in the development and implementation of such an intervention is the current poor understanding, and the lack of reliable biomarkers, of the epileptogenic process. Neuroimaging represents a non-invasive medical and research tool with the ability to identify early pathophysiological changes involved in epileptogenesis, monitor disease progression, and assess the effectiveness of possible therapies. Here we will provide an overview of studies conducted in animal models and in patients with epilepsy that have utilized various neuroimaging modalities to investigate epileptogenesis.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Building 144, Royal Parade, Parkville, VIC, 3010, Australia,
| | | | | | | |
Collapse
|
6
|
Kamsu JM, Constans JM, Lamberton F, Courtheoux P, Denise P, Philoxene B, Coquemont M, Besnard S. Structural layers of ex vivo rat hippocampus at 7T MRI. PLoS One 2013; 8:e76135. [PMID: 24086700 PMCID: PMC3784442 DOI: 10.1371/journal.pone.0076135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) applied to the hippocampus is challenging in studies of the neurophysiology of memory and the physiopathology of numerous diseases such as epilepsy, Alzheimer’s disease, ischemia, and depression. The hippocampus is a well-delineated cerebral structure with a multi-layered organization. Imaging of hippocampus layers is limited to a few studies and requires high magnetic field and gradient strength. We performed one conventional MRI sequence on a 7T MRI in order to visualize and to delineate the multi-layered hippocampal structure ex vivo in rat brains. We optimized a volumic three-dimensional T2 Rapid Acquisition Relaxation Enhancement (RARE) sequence and quantified the volume of the hippocampus and one of its thinnest layers, the stratum granulare of the dentate gyrus. Additionally, we tested passive staining by gadolinium with the aim of decreasing the acquisition time and increasing image contrast. Using appropriated settings, six discrete layers were differentiated within the hippocampus in rats. In the hippocampus proper or Ammon’s Horn (AH): the stratum oriens, the stratum pyramidale of, the stratum radiatum, and the stratum lacunosum moleculare of the CA1 were differentiated. In the dentate gyrus: the stratum moleculare and the stratum granulare layer were seen distinctly. Passive staining of one brain with gadolinium decreased the acquisition time by four and improved the differentiation between the layers. A conventional sequence optimized on a 7T MRI with a standard receiver surface coil will allow us to study structural layers (signal and volume) of hippocampus in various rat models of neuropathology (anxiety, epilepsia, neurodegeneration).
Collapse
Affiliation(s)
| | - Jean-Marc Constans
- Service de Radiologie, Centre Hospitalier Universitaire D’Amiens, Amiens, France
| | - Franck Lamberton
- Unité Mixte de Recherche, UMR 6194 Centre National de Recherche Scientifique (CNRS), Commissariat à l’energie atomique (CEA), Université de Caen et Paris, Paris, France
| | - Patrick Courtheoux
- Unité Imagerie par Résonance Magnétique Pôle Imagerie, Centre Hospitalier Universitaire Côte de Nacre, Caen, France
- Service d’histologie, Hôpital Côte de Nacre, Centre Hospitalier Universitaire Côte de Nacre, Université de Caen, Caen, France
| | - Pierre Denise
- Unité Mixte de Recherche, UMR 1075, Université de Caen, Caen, France
| | - Bruno Philoxene
- Unité Mixte de Recherche, UMR 1075, Université de Caen, Caen, France
| | - Maelle Coquemont
- Unité Imagerie par Résonance Magnétique Pôle Imagerie, Centre Hospitalier Universitaire Côte de Nacre, Caen, France
- Service d’histologie, Hôpital Côte de Nacre, Centre Hospitalier Universitaire Côte de Nacre, Université de Caen, Caen, France
| | - Stephane Besnard
- Unité Mixte de Recherche, UMR 1075, Université de Caen, Caen, France
- * E-mail:
| |
Collapse
|
7
|
Topping GJ, Schaffer P, Hoehr C, Ruth TJ, Sossi V. Manganese-52 positron emission tomography tracer characterization and initial results in phantoms and in vivo. Med Phys 2013; 40:042502. [PMID: 23556918 DOI: 10.1118/1.4793756] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Manganese(II) is employed as a contrast agent with magnetic resonance imaging (MRI) for study of neuronal activation in rats and mice. However, at the concentrations required for MRI, Mn may induce pharmacological or toxic effects. Positron emission tomography (PET) imaging of (52)MnCl2 at tracer doses has the potential to allow similar Mn studies as manganese-enhanced MRI while providing quantitative results and avoiding toxic effects. In this work, (52)MnCl2 is produced and characterized as a PET tracer in phantoms and in rats. METHODS (52)MnCl2 was produced by proton irradiation of natural Cr foil and separated by column chromatography. Images were acquired on a Siemens Focus 120 small animal PET scanner. Phantom images were acquired to assess uniformity, resolution, cascade background correction, and count rate linearity. Images of rats were also acquired after systemic and intracerebroventricular (ICV) administration of (52)MnCl2 to investigate Mn(II) distribution in vivo. RESULTS Irradiation yield was 74.6 ± 8.5 kBq/μA min (52)Mn at end of bombardment with initial specific activity of at least 3.5 MBq/nmol. (52)Mn PET images show similar uniformity and resolution to (18)F. (18)F based detector efficiency normalization is adequate for (52)Mn imaging. Subtraction of a rescaled random events distribution from sinogram data is effective for cascade correction of (52)Mn PET data. After systemic injection, (52)Mn appears in structures throughout the body of rats, including bones, liver, intestines, and the pituitary gland, but does not appear detectably throughout the brain. After ICV injection, (52)Mn remains in the brain and spinal cord. CONCLUSIONS (52)Mn is a promising tracer for small animal PET imaging, yielding image quality comparable to (18)F. Potential applications include studies similar to Mn-enhanced neuronal MRI, and in other organ systems including bones, spinal cord, and the digestive tract.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
| | | | | | | | | |
Collapse
|
8
|
Bade AN, Zhou B, Epstein AA, Gorantla S, Poluektova LY, Luo J, Gendelman HE, Boska MD, Liu Y. Improved visualization of neuronal injury following glial activation by manganese enhanced MRI. J Neuroimmune Pharmacol 2013; 8:1027-36. [PMID: 23729245 DOI: 10.1007/s11481-013-9475-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/14/2013] [Indexed: 12/24/2022]
Abstract
Research directed at anatomical, integrative and functional activities of the central nervous system (CNS) can be realized through bioimaging. A wealth of data now demonstrates the utility of magnetic resonance imaging (MRI) towards unraveling complex neural connectivity operative in health and disease. A means to improve MRI sensitivity is through contrast agents and notably manganese (Mn²⁺). The Mn²⁺ ions enter neurons through voltage-gated calcium channels and unlike other contrast agents such as gadolinium, iron oxide, iron platinum and imaging proteins, provide unique insights into brain physiology. Nonetheless, a critical question that remains is the brain target cells serving as sources for the signal of Mn²⁺ enhanced MRI (MEMRI). To this end, we investigated MEMRI's abilities to detect glial (astrocyte and microglia) and neuronal activation signals following treatment with known inflammatory inducing agents. The idea is to distinguish between gliosis (glial activation) and neuronal injury for the MEMRI signal and as such use the agent as a marker for neural activity in inflammatory and degenerative disease. We now demonstrate that glial inflammation facilitates Mn²⁺ neuronal ion uptake. Glial Mn²⁺ content was not linked to its activation. MEMRI performed on mice injected intracranially with lipopolysaccharide was associated with increased neuronal activity. These results support the notion that MEMRI reflects neuronal excitotoxicity and impairment that can occur through a range of insults including neuroinflammation. We conclude that the MEMRI signal enhancement is induced by inflammation stimulating neuronal Mn²⁺ uptake.
Collapse
Affiliation(s)
- Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shultz SR, Cardamone L, Liu YR, Hogan RE, Maccotta L, Wright DK, Zheng P, Koe A, Gregoire MC, Williams JP, Hicks RJ, Jones NC, Myers DE, O'Brien TJ, Bouilleret V. Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia 2013; 54:1240-50. [PMID: 23718645 DOI: 10.1111/epi.12223] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Posttraumatic epilepsy (PTE) occurs in a proportion of traumatic brain injury (TBI) cases, significantly compounding the disability, and risk of injury and death for sufferers. To date, predictive biomarkers for PTE have not been identified. This study used the lateral fluid percussion injury (LFPI) rat model of TBI to investigate whether structural, functional, and behavioral changes post-TBI relate to the later development of PTE. METHODS Adult male Wistar rats underwent LFPI or sham injury. Serial magnetic resonance (MR) and positron emission tomography (PET) imaging, and behavioral analyses were performed over 6 months postinjury. Rats were then implanted with recording electrodes and monitored for two consecutive weeks using video-electroencephalography (EEG) to assess for PTE. Of the LFPI rats, 52% (n = 12) displayed spontaneous recurring seizures and/or epileptic discharges on the video-EEG recordings. KEY FINDINGS MRI volumetric and signal analysis of changes in cortex, hippocampus, thalamus, and amygdala, (18) F-fluorodeoxyglucose (FDG)-PET analysis of metabolic function, and behavioral analysis of cognitive and emotional changes, at 1 week, and 1, 3, and 6 months post-LFPI, all failed to identify significant differences on univariate analysis between the epileptic and nonepileptic groups. However, hippocampal surface shape analysis using large-deformation high-dimensional mapping identified significant changes in the ipsilateral hippocampus at 1 week postinjury relative to baseline that differed between rats that would go onto become epileptic versus those who did not. Furthermore, a multivariate logistic regression model that incorporated the 1 week, and 1 and 3 month (18) F-FDG PET parameters from the ipsilateral hippocampus was able to correctly predict the epileptic outcome in all of the LFPI cases. As such, these subtle changes in the ipsilateral hippocampus at acute phases after LFPI may be related to PTE and require further examination. SIGNIFICANCE These findings suggest that PTE may be independent of major structural, functional, and behavioral changes induced by TBI, and suggest that more subtle abnormalities are likely involved. However, there are limitations associated with studying acquired epilepsies in animal models that must be considered when interpreting these results, in particular the failure to detect differences between the groups may be related to the limitations of properly identifying/separating the epileptic and nonepileptic animals into the correct group.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, RMH, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jones NC, O'Brien TJ. Stress, epilepsy, and psychiatric comorbidity: how can animal models inform the clinic? Epilepsy Behav 2013; 26:363-9. [PMID: 23099287 DOI: 10.1016/j.yebeh.2012.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022]
Abstract
Psychiatric complaints afflict many patients with epilepsy, and these contribute significantly to the impaired quality of life experienced by sufferers of this common group of neurological conditions. Psychiatric disorders in epilepsy patients are under-diagnosed and under-treated. Moreover, evidence suggests that the psychiatric disorders may act as risk factors for some types of epilepsy and exacerbate disease progression in established cases, promoting the case for a bidirectional relationship between epilepsy and psychopathology. While cause and effect relationships can be difficult to establish in human studies, appropriate animal models provide valuable tools with which to study the interactions between epilepsy and stress-related disorders. Indeed, many epilepsy models exhibit behavioral phenotypes which are reflective of psychiatric disorders, and, conversely, stressful environments appear to promote a vulnerability to developing epilepsy. This review summarizes this research area, exploring the behavioral phenotypes in animal models of epilepsy and then examining the influence of stressful environments on susceptibility to seizures and epilepsy. The ultimate goal of this line of research is to be able to translate these findings to humans. Understanding the relationships between epilepsy and associated psychiatric disorders will facilitate effective treatment of mood disorders in epilepsy, inform about the pathophysiology of each individually, and potentially open up novel therapeutic disease-modifying strategies for patients with epilepsy.
Collapse
Affiliation(s)
- Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.
| | | |
Collapse
|
11
|
Dedeurwaerdere S, Fang K, Chow M, Shen YT, Noordman I, van Raay L, Faggian N, Porritt M, Egan G, O'Brien T. Manganese-enhanced MRI reflects seizure outcome in a model for mesial temporal lobe epilepsy. Neuroimage 2013; 68:30-8. [DOI: 10.1016/j.neuroimage.2012.11.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022] Open
|
12
|
Sun SW, Thiel T, Liang HF. Impact of repeated topical-loaded manganese-enhanced MRI on the mouse visual system. Invest Ophthalmol Vis Sci 2012; 53:4699-709. [PMID: 22700708 DOI: 10.1167/iovs.12-9715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Optic nerve degeneration in diseases such as glaucoma and multiple sclerosis evolves in months to years. The use of Mn(2+)-Enhanced Magnetic Resonance Imaging (MEMRI) in a time-course study may provide new insights into the disease progression. Previously, we demonstrated the feasibility of using a topical administration for Mn(2+) delivery to the visual system. This study is to evaluate the impact of biweekly or monthly repeated Mn(2+) topical administration and the pH levels of the Mn(2+) solutions for MEMRI on the mouse visual pathway. METHODS Using groups of mice, the MEMRI with an acidic or pH neutralized 1 M MnCl(2) solution was performed. To evaluate the feasibility of repeated MEMRIs, topical-loaded MEMRI was conducted biweekly seven times or monthly three times. The enhancement of MEMRI in the visual system was quantified. After repeated MEMRIs, the corneas were examined by optical coherence tomography. The retinal ganglion cells (RGCs) and optic nerves were examined by histology. RESULTS All mice exhibited consistent enhancements along the visual system following repeated MEMRIs. The acidic Mn(2+) solution induced a greater MEMRI enhancement as compared with a neutral pH Mn(2+) solution. Significant 20% RGC loss was found after three biweekly Mn(2+) inductions, but no RGC loss was found after three monthly Mn(2+) treatments. The corneal thickness was found increased after seven biweekly topical-loaded MEMRI. CONCLUSIONS Acidic Mn(2+) solutions enhanced the uptake of Mn(2+) observed on the MEMRI. Increasing the time intervals of repeated Mn(2+) topical administration reduced the adverse effects caused by MEMRI.
Collapse
Affiliation(s)
- Shu-Wei Sun
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|
13
|
Bagga P, Patel AB. Regional cerebral metabolism in mouse under chronic manganese exposure: implications for manganism. Neurochem Int 2011; 60:177-85. [PMID: 22107705 DOI: 10.1016/j.neuint.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/14/2011] [Accepted: 10/28/2011] [Indexed: 01/09/2023]
Abstract
Chronic manganese (Mn) exposure in rodents, non-human primates and humans has been linked to Parkinson's disease like condition known as Manganism. Mn being a cofactor for many enzymes in brain has been known to be accumulated in various regions differentially and thus exert toxic effect upon chronic overexposure. In present study, neuropathology of Manganism was investigated by evaluating regional neuronal and astroglial metabolism in mice under chronic Mn exposure. Male C57BL6 mice were treated with MnCl(2) (25 mg/kg, i.p.) for 21 days. Cerebral metabolism was studied by co-infusing [U-(13)C(6)]glucose and [2-(13)C]acetate, and monitoring (13)C labeling of amino acids in brain tissue extract using (1)H-[(13)C] and (13)C-[(1)H]-NMR spectroscopy. Glutamate, choline, N-acetyl aspartate and myo-inositol were found to be reduced in thalamus and hypothalamus indicating a loss in neuronal and astroglial cells due to Mn neurotoxicity. Reduced labeling of Glu(C4) from [U-(13)C(6)]glucose and [2-(13)C]acetate indicates an impairment of glucose oxidation by glutamatergic neurons and glutamate-glutamine neurotransmitter cycle in cortex, striatum, thalamus-hypothalamus and olfactory bulb with chronic Mn exposure. Additionally, reduced labeling of Gln(C4) from [2-(13)C]acetate indicates a decrease in acetate oxidation by astroglia in the same regions. However, GABAergic function was alleviated only in thalamus-hypothalamus. Our findings indicate that chronic Mn impairs excitatory (glutamatergic) function in the majority of regions of brain while inhibitory (GABAergic) activity is perturbed only in basal ganglia.
Collapse
Affiliation(s)
- Puneet Bagga
- NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | | |
Collapse
|