1
|
Kim HS, Kang MJ, Kang J, Kim K, Kim B, Kim SH, Kim SJ, Kim YI, Kim JY, Kim JS, Kim H, Kim HJ, Nahm JH, Park WS, Park E, Park JK, Park JM, Song BJ, Shin YC, Ahn KS, Woo SM, Yu JI, Yoo C, Lee K, Lee DH, Lee MA, Lee SE, Lee IJ, Lee H, Im JH, Jang KT, Jang HY, Jun SY, Chon HJ, Jung MK, Chung YE, Chong JU, Cho E, Chie EK, Choi SB, Choi SY, Choi SJ, Choi JY, Choi HJ, Hong SM, Hong JH, Hong TH, Hwang SH, Hwang IG, Park JS. Practice guidelines for managing extrahepatic biliary tract cancers. Ann Hepatobiliary Pancreat Surg 2024; 28:161-202. [PMID: 38679456 PMCID: PMC11128785 DOI: 10.14701/ahbps.23-170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 05/01/2024] Open
Abstract
Backgrounds/Aims Reported incidence of extrahepatic bile duct cancer is higher in Asians than in Western populations. Korea, in particular, is one of the countries with the highest incidence rates of extrahepatic bile duct cancer in the world. Although research and innovative therapeutic modalities for extrahepatic bile duct cancer are emerging, clinical guidelines are currently unavailable in Korea. The Korean Society of Hepato-Biliary-Pancreatic Surgery in collaboration with related societies (Korean Pancreatic and Biliary Surgery Society, Korean Society of Abdominal Radiology, Korean Society of Medical Oncology, Korean Society of Radiation Oncology, Korean Society of Pathologists, and Korean Society of Nuclear Medicine) decided to establish clinical guideline for extrahepatic bile duct cancer in June 2021. Methods Contents of the guidelines were developed through subgroup meetings for each key question and a preliminary draft was finalized through a Clinical Guidelines Committee workshop. Results In November 2021, the finalized draft was presented for public scrutiny during a formal hearing. Conclusions The extrahepatic guideline committee believed that this guideline could be helpful in the treatment of patients.
Collapse
Affiliation(s)
- Hyung Sun Kim
- Department of Surgery, Pancreatobiliary Clinic, Yonsei University College of Medicine, Seoul, Korea
| | - Mee Joo Kang
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Jingu Kang
- Department of Internal Medicine, Kangdong Sacred Heart Hospital of Hallym University Medical Center, Seoul, Korea
| | - Kyubo Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Bohyun Kim
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Seong-Hun Kim
- Department of Internal Medicine, Jeonbuk National University Medical School and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Soo Jin Kim
- Department of Radiology, National Cancer Center, Goyang, Korea
| | - Yong-Il Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Young Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jin Sil Kim
- Department of Radiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Jung Kim
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Won Suk Park
- Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary’s Hospital College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Eunkyu Park
- Division of HBP Surgery, Department of Surgery, Chonnam National University Hospital, Gwangju, Korea
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Myung Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Byeong Jun Song
- Department of Internal Medicine, Myongji Hospital, Goyang, Korea
| | - Yong Chan Shin
- Department of Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Keun Soo Ahn
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, Hospital, Immuno-Oncology Branch Division of Rare and Refractory Center, Research Institute of National Cancer Center, Goyang, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Myung Ah Lee
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Eun Lee
- Department of Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ik Jae Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Huisong Lee
- Department of Surgery, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Jung Ho Im
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Young Jang
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Young Jun
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Jae Chon
- Department of Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Min Kyu Jung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yong Eun Chung
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Uk Chong
- Department of Surgery, National Health Insurance Services Ilsan Hospital, Goyang, Korea
| | - Eunae Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Sae Byeol Choi
- Department of Surgery, Korea Universtiy Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Seo-Yeon Choi
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Ji Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye-Jeong Choi
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Hyung Hong
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae Ho Hong
- Division of Hepato-Biliary and Pancreas Surgery, Department of Surgery, Seoul St. Mary’s Hospital College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Shin Hye Hwang
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - In Gyu Hwang
- Division of Hemato-Oncology, Department of Internal Medicine, Chung-Ang University Hospital Chung-Ang University College of Medicine, Seoul, Korea
| | - Joon Seong Park
- Department of Surgery, Pancreatobiliary Clinic, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Rushbrook SM, Kendall TJ, Zen Y, Albazaz R, Manoharan P, Pereira SP, Sturgess R, Davidson BR, Malik HZ, Manas D, Heaton N, Prasad KR, Bridgewater J, Valle JW, Goody R, Hawkins M, Prentice W, Morement H, Walmsley M, Khan SA. British Society of Gastroenterology guidelines for the diagnosis and management of cholangiocarcinoma. Gut 2023; 73:16-46. [PMID: 37770126 PMCID: PMC10715509 DOI: 10.1136/gutjnl-2023-330029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
These guidelines for the diagnosis and management of cholangiocarcinoma (CCA) were commissioned by the British Society of Gastroenterology liver section. The guideline writing committee included a multidisciplinary team of experts from various specialties involved in the management of CCA, as well as patient/public representatives from AMMF (the Cholangiocarcinoma Charity) and PSC Support. Quality of evidence is presented using the Appraisal of Guidelines for Research and Evaluation (AGREE II) format. The recommendations arising are to be used as guidance rather than as a strict protocol-based reference, as the management of patients with CCA is often complex and always requires individual patient-centred considerations.
Collapse
Affiliation(s)
- Simon M Rushbrook
- Department of Hepatology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, UK
| | - Timothy James Kendall
- Division of Pathology, University of Edinburgh, Edinburgh, UK
- University of Edinburgh MRC Centre for Inflammation Research, Edinburgh, UK
| | - Yoh Zen
- Department of Pathology, King's College London, London, UK
| | - Raneem Albazaz
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | - Richard Sturgess
- Digestive Diseases Unit, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Brian R Davidson
- Department of Surgery, Royal Free Campus, UCL Medical School, London, UK
| | - Hassan Z Malik
- Department of Surgery, University Hospital Aintree, Liverpool, UK
| | - Derek Manas
- Department of Surgery, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Nigel Heaton
- Department of Hepatobiliary and Pancreatic Surgery, King's College London, London, UK
| | - K Raj Prasad
- John Goligher Colorectal Unit, St. James University Hospital, Leeds, UK
| | - John Bridgewater
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Rebecca Goody
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - Maria Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Wendy Prentice
- King's College Hospital NHS Foundation Trust, London, UK
| | | | | | - Shahid A Khan
- Hepatology and Gastroenterology Section, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
3
|
Pang L, Mao W, Zhang Y, Liu G, Hu P, Chen S, Gu Y, Wang Y, Liu H, Shi H. Comparison of 18F-FDG PET/MR and PET/CT for pretreatment TNM staging of hilar cholangiocarcinoma. Abdom Radiol (NY) 2023; 48:2537-2546. [PMID: 37179282 DOI: 10.1007/s00261-023-03925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE 18F-FDG PET/MR has been applied to the diagnosis and preoperative staging in various tumor types; however, reports using PET/MR in hilar cholangiocarcinoma (HCCA) are rare. We investigated the value of PET/MR for preoperative staging and compared it with PET/CT in HCCA. METHODS Fifty-eight patients with HCCA confirmed by pathology were retrospectively analyzed. 18F-FDG PET/CT imaging was performed first, followed with whole-body PET/MR imaging. SUVmax of tumor and normal liver tissue were measured. Paired T test was used to compare SUVmax of tumor and normal liver tissue of PET/CT and PET/MR. In addition, McNemar test was used to compare the accuracy of TNM staging and Bismuth-Corlette typing between PET/CT and PET/MR. RESULTS There was no significant difference in SUVmax between PET/CT and PET/MR in primary tumor lesions (6.6 ± 5.5 vs. 6.8 ± 6.2, P = 0.439). SUVmax of PET/CT and PET/MR in normal liver parenchyma was significantly different (3.0 ± 0.5 vs. 2.1 ± 0.5, P < 0.001). The accuracy of PET/MR in diagnosing T staging and N staging was significantly higher than those of PET/CT (72.4% vs. 58.6%, P = 0.022 and 84.5% vs. 67.2%, P = 0.002). There was no significant difference between PET/CT and PET/MR in M staging (94.8% vs. 98.3%, P = 0.5). The classification accuracy of PET/MR in Bismuth-Corlette was significantly higher than that of PET/CT (89.7% vs. 79.3%), P = 0.031. CONCLUSIONS The diagnostic accuracy of 18F-FDG PET/MR was superior to that of PET/CT in preoperative T staging, N staging, and Bismuth-Corlette classification of HCCA. In M staging, the diagnostic accuracy of PET/MR was similar to that of PET/CT.
Collapse
Affiliation(s)
- Lifang Pang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuguang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
| | - Yueqi Wang
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China
- Biliary Tract Diseases Institute, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Houbao Liu
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China.
- Biliary Tract Diseases Institute, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, No. 966, Middle Huaihai Rd, Shanghai, 200031, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
|
5
|
Hwang JA, Min JH, Kim SH, Choi SY, Lee JE, Moon JY. Total Bilirubin Level as a Predictor of Suboptimal Image Quality of the Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI in Patients with Extrahepatic Bile Duct Cancer. Korean J Radiol 2022; 23:389-401. [PMID: 35029076 PMCID: PMC8961017 DOI: 10.3348/kjr.2021.0407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/16/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to determine a factor for predicting suboptimal image quality of the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI in patients with extrahepatic bile duct (EHD) cancer before MRI examination. Materials and Methods We retrospectively evaluated 259 patients (mean age ± standard deviation: 68.0 ± 8.3 years; 162 male and 97 female) with EHD cancer who underwent gadoxetic acid-enhanced MRI between 2011 and 2017. Patients were divided into a primary analysis set (n = 184) and a validation set (n = 75) based on the diagnosis date of January 2014. Two reviewers assigned the functional liver imaging score (FLIS) to reflect the HBP image quality. The FLIS consists of the sum of three HBP features, each scored on a 0–2 scale: liver parenchymal enhancement, biliary excretion, and signal intensity of the portal vein. Patients were classified into low-FLIS (0–3) or high-FLIS (4–6) groups. Multivariable analysis was performed to determine a predictor of low FLIS using serum biochemical and imaging parameters of cholestasis severity. The optimal cutoff value for predicting low FLIS was obtained using receiver operating characteristic analysis, and validation was performed. Results Of the 259 patients, 140 (54.0%) and 119 (46.0%) were classified into the low-FLIS and high-FLIS groups, respectively. In the primary analysis set, total bilirubin was an independent factor associated with low FLIS (adjusted odds ratio per 1-mg/dL increase, 1.62; 95% confidence interval [CI], 1.32–1.98). The optimal cutoff value of total bilirubin for predicting low FLIS was 2.1 mg/dL with a sensitivity of 95.1% (95% CI: 88.9–98.4) and a specificity of 89.0% (95% CI: 80.2–94.9). In the validation set, the total bilirubin cutoff showed a sensitivity of 92.1% (95% CI: 78.6–98.3) and a specificity of 83.8% (95% CI: 68.0–93.8). Conclusion Serum total bilirubin before acquisition of gadoxetic acid-enhanced MRI may help predict suboptimal HBP image quality in patients with EHD cancer.
Collapse
Affiliation(s)
- Jeong Ah Hwang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Hye Min
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Seong Hyun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seo-Youn Choi
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ji Eun Lee
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ji Yoon Moon
- Department of Radiology, Kangdong Seong-Sim Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Yoo J, Kim JH, Bae JS, Kang HJ. Prediction of prognosis and resectability using MR imaging, clinical, and histopathological findings in patients with perihilar cholangiocarcinoma. Abdom Radiol (NY) 2021; 46:4159-4169. [PMID: 33929600 DOI: 10.1007/s00261-021-03101-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE To predict poor overall survival (OS) and risk of residual tumor after surgery using MR imaging, clinical, and histopathological findings in perihilar cholangiocarcinoma. METHODS 196 patients with perihilar cholangiocarcinoma who underwent preoperative MRI and curative-intent surgery were retrospectively included. MRI findings were assessed by two radiologists. Clinical characteristics and histopathological results such as serum carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9), T and N stage, and resection status, were also investigated. Cox regression analysis and the Kaplan-Meier method were used to identify prognostic factors for OS. We further analyzed the correlation between MRI features and residual tumors using logistic regression analysis. RESULTS The median OS was 25.0 ± 26.6 months. T stage (hazard ratio [HR] 6.26, p = 0.014), N stage (HR 1.86, p = 0.002), CA-19-9 >37 U/mL (HR 2.06, p < 0.001), enlarged LN on MRI (HR 1.69, p = 0.006), and residual tumor (HR 1.52, p = 0.034) were important predictors of poor survival. The 5-year OS of the complete resection group (n = 107) was significantly better than that of the residual tumor group (n = 89) (35.5% vs. 18.8%, p = 0.002). Additionally, peritumoral fat stranding (odds ratio[OR] 2.09, p = 0.027), Bismuth type III/IV (OR 1.95, p = 0.022), and common bile duct (CBD) involvement (OR 2.3, p = 0.008) on MRI were important predictors of residual tumors in univariate analyses. However, absence of peritumoral fat stranding was a significant independent predictor for complete resection (OR 1.99, p = 0.048) and showed the highest sensitivity, at 79.8%. CONCLUSION MR imaging, clinical and histopathological results are useful for predicting poor survival after surgery for perihilar cholangiocarcinoma. Furthermore, MRI findings, including peritumoral fat stranding, CBD involvement, and Bismuth type, are important for the prediction of residual tumors.
Collapse
|
7
|
Lee DH. Current Status and Recent Update of Imaging Evaluation for Peri-Hilar Cholangiocarcinoma. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2021; 82:298-314. [PMID: 36238748 PMCID: PMC9431946 DOI: 10.3348/jksr.2021.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
간문주변부의 해부학적 복잡성으로 인해 간문주변부 담관암은 그 진단과 치료가 어려운 질환으로 알려져 있다. 간문주변부 담관암이 의심되는 환자에 있어서, 영상 검사는 이상 소견의 발견 및 감별 진단, 종양의 종축 침범 부위의 파악, 인접 혈관 침범과 원격 전이 유무의 파악, 그리고 최종적으로 수술적 절제 가능 유무의 평가에 있어 핵심적인 역할을 하고 있다. 이 종설에서는 간문주변부 담관암의 분류 및 종양의 평가를 위해 권고되는 표준 영상 검사의 기법과 간문주변부 담관암의 전형적인 영상 소견에 대해 기술할 예정이다. 종축 방향의 종양 침범 파악, 인접 혈관 침범 및 원격 전이 유무의 평가에 있어서 각 영상 검사 소견과 그 진단능에 대해 논의할 예정이다. 이후 전통적인 절제 가능성 평가의 개념에 대해 고찰하고, 최근의 경향을 소개한다.
Collapse
Affiliation(s)
- Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
8
|
Lee DH, Kim B, Lee ES, Kim HJ, Min JH, Lee JM, Choi MH, Seo N, Choi SH, Kim SH, Lee SS, Park YS, Chung YE. Radiologic Evaluation and Structured Reporting Form for Extrahepatic Bile Duct Cancer: 2019 Consensus Recommendations from the Korean Society of Abdominal Radiology. Korean J Radiol 2020; 22:41-62. [PMID: 32901457 PMCID: PMC7772383 DOI: 10.3348/kjr.2019.0803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Radiologic imaging is important for evaluating extrahepatic bile duct (EHD) cancers; it is used for staging tumors and evaluating the suitability of surgical resection, as surgery may be contraindicated in some cases regardless of tumor stage. However, the published general recommendations for EHD cancer and recommendations guided by the perspectives of radiologists are limited. The Korean Society of Abdominal Radiology (KSAR) study group for EHD cancer developed key questions and corresponding recommendations for the radiologic evaluation of EHD cancer and organized them into 4 sections: nomenclature and definition, imaging technique, cancer evaluation, and tumor response. A structured reporting form was also developed to allow the progressive accumulation of standardized data, which will facilitate multicenter studies and contribute more evidence for the development of recommendations.
Collapse
Affiliation(s)
- Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Bohyun Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Sun Lee
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyoung Jung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ji Hye Min
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nieun Seo
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seong Hyun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yang Shin Park
- Department of Radiology, Korea University Guro Hospital, Seoul, Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea.
| | | |
Collapse
|
9
|
Huang X, Yang J, Li J, Xiong Y. Comparison of magnetic resonance imaging and 18-fludeoxyglucose positron emission tomography/computed tomography in the diagnostic accuracy of staging in patients with cholangiocarcinoma: A meta-analysis. Medicine (Baltimore) 2020; 99:e20932. [PMID: 32871859 PMCID: PMC7458197 DOI: 10.1097/md.0000000000020932] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Accurate clinical staging of patients with cholangiocarcinoma (CCA) has a significant impact on treatment decisions. In this study, we aimed to compare the diagnostic value of magnetic resonance imaging (MRI) and 18-fludeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) for staging of CCA. METHODS We performed comprehensive systematic search in Web of Science (including MEDLINE) and Excerpta Medica Database for relevant diagnostic studies in accordance with the preferred reporting items for systematic reviews and meta-analysis statement. Based on data extracted from patient-based analysis, we calculated the pooled sensitivity and specificity with the 95% confidence intervals (CIs). In addition, the publication bias was assessed by Deek funnel plot of the asymmetry test. The potential heterogeneity was explored by threshold effect analysis and subgroup analyses. RESULTS Thirty-two studies with 1626 patients were included in present analysis. In T stage, the pooled sensitivity and specificity of MRI were 0.90 (95% CI 0.86-0.93), 0.84 (95% CI 0.73-0.91) respectively. The pooled sensitivity and specificity of F-FDG PET/CT were 0.91 (95% CI 0.83-0.95) and 0.85 (0.64-0.95) respectively. In N stage, the pooled sensitivity and specificity of MRI were 0.64 (95% CI 0.52-0.74) and 0.69 (95% CI 0.51-0.87) respectively. The pooled sensitivity and specificity of PET/CT were 0.52 (95% CI 0.37-0.66) and 0.92 (95% CI 0.79-0.97) respectively. In M stage, the pooled sensitivity and specificity of F-FDG PET/CT were 0.56 (95% CI, 0.42-0.69) and 0.95 (95% CI, 0.91-0.97) respectively. The Deek test revealed no significant publication bias. No threshold effect was identified. The subgroup analyses showed that pathological type (extrahepatic cholangiocarcinoma vs hilar cholangiocarcinoma/intrahepatic cholangiocarcinoma), country (Asia vs non-Asia) and type of MRI (1.5T vs. 3.0T) were potential causes for the heterogeneity of MRI studies and country (Asia vs non-Asia) was a potential source for F-FDG PET/CT studies. CONCLUSION The analysis suggested that both modalities provide reasonable diagnostic accuracy in T stage without significant differences between them. We recommend that both modalities be considered based on local availability and practice for the diagnosis of primary CCA tumors. In N stage, the diagnosis of lymph node metastasis (N) of CCA is still limited by MRI and F-FDG PET/CT, due to unsatisfactory diagnostic accuracy of both. Nevertheless, F-FDG PET/CT can be used to confirm lymph node metastasis while a negative result may not rule out metastasis. Furthermore, F-FDG PET/CT have a low sensitivity and a high specificity for detection of distant metastasis.
Collapse
Affiliation(s)
- Xujian Huang
- Department of Hepatocellular Surgery, Affiliated Hospital of North Sichuan Medical College
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Jialin Yang
- Department of Radiology, Nanchong Central Hospital/Second School of Clinical Medicine
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Jingdong Li
- Department of Hepatocellular Surgery, Affiliated Hospital of North Sichuan Medical College
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Yongfu Xiong
- Department of Hepatocellular Surgery, Affiliated Hospital of North Sichuan Medical College
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
10
|
Dondossola D, Ghidini M, Grossi F, Rossi G, Foschi D. Practical review for diagnosis and clinical management of perihilar cholangiocarcinoma. World J Gastroenterol 2020; 26:3542-3561. [PMID: 32742125 PMCID: PMC7366054 DOI: 10.3748/wjg.v26.i25.3542] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCC) is the most aggressive malignant tumor of the biliary tract. Perihilar CCC (pCCC) is the most common CCC and is burdened by a complicated diagnostic iter and its anatomical location makes surgical approach burden by poor results. Besides its clinical presentation, a multimodal diagnostic approach should be carried on by a tertiary specialized center to avoid miss-diagnosis. Preoperative staging must consider the extent of liver resection to avoid post-surgical hepatic failure. During staging iter, magnetic resonance can obtain satisfactory cholangiographic images, while invasive techniques should be used if bile duct samples are needed. Consistently, to improve diagnostic potential, bile duct drainage is not necessary in jaundice, while it is indicated in refractory cholangitis or when liver hypertrophy is needed. Once resecability criteria are identified, the extent of liver resection is secondary to the longitudinal spread of CCC. While in the past type IV pCCC was not considered resectable, some authors reported good results after their treatment. Conversely, in selected unresectable cases, liver transplantation could be a valuable option. Adjuvant chemotherapy is the standard of care for resected patients, while neoadjuvant approach has growing evidences. If curative resection is not achieved, radiotherapy can be added to chemotherapy. This multistep curative iter must be carried on in specialized centers. Hence, the aim of this review is to highlight the main steps and pitfalls of the diagnostic and therapeutic approach to pCCC with a peculiar attention to type IV pCCC.
Collapse
Affiliation(s)
- Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi of Milan, Milan 20122, Italy
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Francesco Grossi
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Giorgio Rossi
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi of Milan, Milan 20122, Italy
| | - Diego Foschi
- Department of Biomedical and Clinical Sciences "Luigi Sacco", L. Sacco Hospital, Università degli Studi of Milan, Milan 20157, Italy
| |
Collapse
|
11
|
The diagnostic accuracy of CT and MRI for the detection of lymph node metastases in gallbladder cancer: A systematic review and meta-analysis. Eur J Radiol 2018; 110:156-162. [PMID: 30599854 DOI: 10.1016/j.ejrad.2018.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lymph node metastases (LNM) are an ominous prognostic factor in gallbladder cancer (GBC) and, when present, should preclude surgery. However, uncertainty remains regarding the optimal imaging modality for pre-operative detection of LNM and international guidelines vary in their recommendations. The purpose of this study was to systematically review the diagnostic accuracy of computed tomography (CT) versus magnetic resonance imaging (MRI) in the detection of LNM of GBC. METHODS A literature search of studies published until November 2017 concerning the diagnostic accuracy of CT or MRI regarding the detection of LNM in GBC was performed. Data extraction and risk of bias assessment was performed independently by two reviewers. The sensitivity of CT and MRI in the detection of LNM was reviewed. Additionally, estimated summary sensitivity, specificity and diagnostic accuracy of MRI were calculated in a patient based meta-analysis. RESULTS Nine studies including 292 patients were included for narrative synthesis and 5 studies including 158 patients were selected for meta-analysis. Sensitivity of CT ranged from 0.25 to 0.93. Estimated summary diagnostic accuracy parameters of MRI were as follows: sensitivity 0.75 (95% CI 0.6 - 0.85), specificity 0.83 (95% CI 0.74 - 0.90), LR + 4.52 (95% CI 2.55-6.48) and LR- 0.3 (95% CI 0.15 - 0.45). Small (<10 mm) LNM were most frequently undetected on pre-operative imaging. Due to a lack of data, no subgroup analysis comparing the diagnostic accuracy of CT versus MRI could be performed. CONCLUSION The value of current imaging strategies for the pre-operative assessment of nodal status in GBC remains unclear, especially regarding the detection of small LNM. Additional research is warranted in order to establish uniformity in international guidelines, improve pre-operative nodal staging and to prevent futile surgery.
Collapse
|
12
|
Joo I, Lee JM, Yoon JH. Imaging Diagnosis of Intrahepatic and Perihilar Cholangiocarcinoma: Recent Advances and Challenges. Radiology 2018; 288:7-13. [DOI: 10.1148/radiol.2018171187] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ijin Joo
- From the Department of Radiology (I.J., J.M.L., J.H.Y.) and Institute of Radiation Medicine (J.M.L.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea; and Department of Radiology, Seoul National University College of Medicine, Seoul, Korea (I.J., J.M.L., J.H.Y.)
| | - Jeong Min Lee
- From the Department of Radiology (I.J., J.M.L., J.H.Y.) and Institute of Radiation Medicine (J.M.L.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea; and Department of Radiology, Seoul National University College of Medicine, Seoul, Korea (I.J., J.M.L., J.H.Y.)
| | - Jeong Hee Yoon
- From the Department of Radiology (I.J., J.M.L., J.H.Y.) and Institute of Radiation Medicine (J.M.L.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea; and Department of Radiology, Seoul National University College of Medicine, Seoul, Korea (I.J., J.M.L., J.H.Y.)
| |
Collapse
|
13
|
Diagnostic accuracy of magnetic resonance, computed tomography and contrast enhanced ultrasound in radiological multimodality assessment of peribiliary liver metastases. PLoS One 2017. [PMID: 28632786 PMCID: PMC5478136 DOI: 10.1371/journal.pone.0179951] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We compared diagnostic performance of Magnetic Resonance (MR), Computed Tomography (CT) and Ultrasound (US) with (CEUS) and without contrast medium to identify peribiliary metastasis. METHODS We identified 35 subjects with histological proven peribiliary metastases who underwent CEUS, CT and MR study. Four radiologists evaluated the presence of peribiliary lesions, using a 4-point confidence scale. Echogenicity, density and T1-Weigthed (T1-W), T2-W and Diffusion Weighted Imaging (DWI) signal intensity as well as the enhancement pattern during contrast studies on CEUS, CT and MR so as hepatobiliary-phase on MRI was assessed. RESULTS All lesions were detected by MR. CT detected 8 lesions, while US/CEUS detected one lesion. According to the site of the lesion, respect to the bile duct and hepatic parenchyma: 19 (54.3%) were periductal, 15 (42.8%) were intra-periductal and 1 (2.8%) was periductal-intrahepatic. According to the confidence scale MRI had the best diagnostic performance to assess the lesion. CT obtained lower diagnostic performance. There was no significant difference in MR signal intensity and contrast enhancement among all metastases (p>0.05). There was no significant difference in CT density and contrast enhancement among all metastases (p>0.05). CONCLUSIONS MRI is the method of choice for biliary tract tumors but it does not allow a correct differential diagnosis among different histological types of metastasis. The presence of biliary tree dilatation without hepatic lesions on CT and US/CEUS study may be an indirect sign of peribiliary metastases and for this reason the patient should be evaluated by MRI.
Collapse
|
14
|
Scali EP, Walshe T, Tiwari HA, Harris AC, Chang SD. A Pictorial Review of Hepatobiliary Magnetic Resonance Imaging With Hepatocyte-Specific Contrast Agents: Uses, Findings, and Pitfalls of Gadoxetate Disodium and Gadobenate Dimeglumine. Can Assoc Radiol J 2017; 68:293-307. [PMID: 28583364 DOI: 10.1016/j.carj.2016.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) has a well-established role as a highly specific and accurate modality for characterizing benign and malignant focal liver lesions. In particular, contrast-enhanced MRI using hepatocyte-specific contrast agents (HSCAs) improves lesion detection and characterization compared to other imaging modalities and MRI techniques. In this pictorial review, the mechanism of action of gadolinium-based MRI contrast agents, with a focus on HSCAs, is described. The clinical indications, protocols, and emerging uses of the 2 commercially available combined contrast agents available in the United States, gadoxetate disodium and gadobenate dimeglumine, are discussed. The MRI features of these agents are compared with examples of focal hepatic masses, many of which have been obtained within the same patient therefore allowing direct lesion comparison. Finally, the pitfalls in the use of combined contrast agents in liver MRI are highlighted.
Collapse
Affiliation(s)
- Elena P Scali
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Triona Walshe
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hina Arif Tiwari
- Department of Radiology, University of Arizona, Tuscon, Arizona, USA
| | - Alison C Harris
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Silvia D Chang
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Kinner S, Schubert TB, Said A, Mezrich JD, Reeder SB. Added value of gadoxetic acid-enhanced T1-weighted magnetic resonance cholangiography for the diagnosis of post-transplant biliary complications. Eur Radiol 2017; 27:4415-4425. [PMID: 28409358 DOI: 10.1007/s00330-017-4797-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/18/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Biliary complications after liver transplantation (LT) are common. This study aimed to ascertain the value of gadoxetic acid-enhanced T1-weighted (T1w) magnetic resonance cholangiography (MRC) to evaluate anastomotic strictures (AS), non-anastomotic strictures (NAS) and biliary casts (BC). METHODS Sixty liver-transplanted patients with suspicion of biliary complications and T2w-MRCP and T1w-MRC followed by endoscopic retrograde cholangiopancreatography (ERCP) or percutaneous transhepatic cholangiography (PTC) were analysed. Two readers reviewed the MRCs and rated image quality (IQ) and likelihood for AS/NAS/BC on Likert scales. Sensitivity, specificity and predictive values were calculated, ROC curve analysis performed, and inter-reader variability assessed. The subjective added value of T1w-MRC was rated. RESULTS IQ was high for all sequences without significant differences (2.83-2.88). In 39 patients ERCP/PTC detected a complication. Sensitivity and specificity for AS were 64-96 using T2w-MRCP, increasing to 79-100 using all sequences. Use of all sequences increased the sensitivity of detecting NAS/BC from 72-92% to 88-100% and 67-89% to 72-94%, respectively. Kappa values were substantial (0.45-0.62). T1w-MRC was found to be helpful in 75-83.3%. CONCLUSIONS Combining T1w-MRC and T2w-MRCP increased sensitivity and specificity and diagnostic confidence in patients after LT with suspected biliary complications. T1w-MRC is a valuable tool for evaluating post-transplant biliary complications. KEY POINTS • T1w-MRC is a valuable tool for evaluating post-transplant biliary complications. • Adding T1w-MRC to T2w-MRC increases diagnostic confidence for detection of biliary complications. • A combination of T1w-MRC and T2w-MRCP leads to the best results.
Collapse
Affiliation(s)
- Sonja Kinner
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA. .,Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.
| | - Tilman B Schubert
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Adnan Said
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua D Mezrich
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Emergency Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Differentiation grade for extrahepatic bile duct adenocarcinoma: Assessed by diffusion-weighted imaging at 3.0-T MR. Eur J Radiol 2016; 85:1980-1986. [PMID: 27776649 DOI: 10.1016/j.ejrad.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/29/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE- To assess the pathological differentiation grade in the patients with extrahepatic bile duct adenocarcinoma (EBDA) using diffusion-weighted imaging (DWI) at 3.0-T MR. METHODS- Sixty-eight patients who were clinically and histologically diagnosed with EBDA underwent abdominal DWI within 2 weeks before surgery. The lesion signal intensity, signal intensity ratio of the lesion and hepar (SIR-LH) value, and apparent diffusion coefficient (ADC) value in patients with EBDA were retrospectively analysed. RESULTS -In the 68 patients, 22 well-differentiated, 36 moderately-differentiated, and 10 poorly-differentiated EBDAs were histopathological confirmed. These EBDAs exhibited hyper-intensity on DWI in 95.59% of patients. Hyper-intensity lesions were found in 90.91% of patients with good-differentiation, in 97.22% with moderate-differentiation and in 100% with poor-differentiation. There showed no statistical difference for the lesion signal intensity (P=0.426) and SIR-LH value (P=0.766) on DWI among three groups. The median ADC value of the well-differentiated, moderately-differentiated and poorly-differentiated EBDAs were 1.506×10-3mm2/s, 1.275×10-3mm2/s and 1.154×10-3mm2/s, respectively. As the pathological differentiation grade decreased, the lesion ADC value of EBDA gradually declined (x2=51.220, P=0.000). The ADC value <1.184×10-3mm2/s can predict the poorly-differentiated EBDA with a sensitivity of 100% and a specificity of 94.83%. The ADC value >1.316×10-3mm2/s can forecast the well-differentiated EBDA with a sensitivity of 100% and a specificity of 84.78%. CONCLUSIONS- The histopathological differentiation grade of EBDA can be detected non-invasively using DWI at 3.0-T MR.
Collapse
|
17
|
Consensus Statements From a Multidisciplinary Expert Panel on the Utilization and Application of a Liver-Specific MRI Contrast Agent (Gadoxetic Acid). AJR Am J Roentgenol 2015; 204:498-509. [PMID: 25714278 DOI: 10.2214/ajr.13.12399] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
High Spatial Resolution, Respiratory-Gated, T1-Weighted Magnetic Resonance Imaging of the Liver and the Biliary Tract During the Hepatobiliary Phase of Gadoxetic Acid–Enhanced Magnetic Resonance Imaging. J Comput Assist Tomogr 2014; 38:360-6. [DOI: 10.1097/rct.0000000000000055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Thian YL, Riddell AM, Koh DM. Liver-specific agents for contrast-enhanced MRI: role in oncological imaging. Cancer Imaging 2013; 13:567-79. [PMID: 24434892 PMCID: PMC3893895 DOI: 10.1102/1470-7330.2013.0050] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
Liver-specific magnetic resonance (MR) contrast agents are increasingly used in evaluation of the liver. They are effective in detection and morphological characterization of lesions, and can be useful for evaluation of biliary tree anatomy and liver function. The typical appearances and imaging pitfalls of various tumours at MR imaging performed with these agents can be understood by the interplay of pharmacokinetics of these contrast agents and transporter expression of the tumour. This review focuses on the applications of these agents in oncological imaging.
Collapse
Affiliation(s)
- Yee Liang Thian
- Department of Diagnostic Imaging, National University Hospital Singapore, 5 Lower Kent Ridge Road, Singapore 119074; Department of Diagnostic Radiology, Royal Marsden Hospital Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - Angela M. Riddell
- Department of Diagnostic Imaging, National University Hospital Singapore, 5 Lower Kent Ridge Road, Singapore 119074; Department of Diagnostic Radiology, Royal Marsden Hospital Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - Dow-Mu Koh
- Department of Diagnostic Imaging, National University Hospital Singapore, 5 Lower Kent Ridge Road, Singapore 119074; Department of Diagnostic Radiology, Royal Marsden Hospital Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK
| |
Collapse
|