1
|
Sparaco M, Bonavita S. Clinical Insights and Radiological Features on Multiple Sclerosis Comorbid with Migraine. J Clin Med 2025; 14:561. [PMID: 39860566 PMCID: PMC11765521 DOI: 10.3390/jcm14020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Multiple sclerosis (MS) and migraine are neurological diseases, affecting young women. Migraine is the most prevalent type of headache in people with MS (pwMS). Objectives: The aim of this review is to describe the clinical, radiological, and therapeutic features of MS and migraine comorbidity. The clinical section focuses on the characteristics of migraine in pwMS and of MS in co-occurrence with migraine, and on the presence of other possible comorbidities. The radiological section deals with the differential diagnosis of white matter lesions and changes in connectivity patterns on brain magnetic resonanceto investigate a possible link between MS and migraine. The therapeutic section evaluates the effects of MS-disease-modifying therapies on migraine and of prophylactic migraine treatments on MS. Methods: The literature search was conducted using PubMed as an electronic database. The papers that reported relevant clinical, radiological and therapeutic findings were selected. Results: Among 1351 results retrieved, at the end of screening procedures, 34 studies were selected. Migraine can impact the perception of some symptoms and the presence of some comorbidities, particularly relevant in MS. Furthermore, migraine and MS share some radiological features, leading to diagnostic challenges, however identifying some lesion characteristics and changes in the connectivity pathway may be supportive. Medications for migraine and MS should be administered considering both the adverse events and multiple drug interactions. Conclusions: The data emerging from this review illustrate the research efforts aimed at providing valuable insights into accurate diagnosis, effective clinical management, and the definition of targeted treatment schedules that could improve the quality of life for pwMS with migraine.
Collapse
Affiliation(s)
- Maddalena Sparaco
- 2nd Division of Neurology, University Hospital of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy;
| |
Collapse
|
2
|
John F, Kis-Jakab G, Komáromy H, Perlaki G, Orsi G, Bosnyák E, Rozgonyi R, Trauninger A, Eklics K, Kamson DO, Pfund Z. Differentiation of hemispheric white matter lesions in migraine and multiple sclerosis with similar radiological features using advanced MRI. Front Neurosci 2024; 18:1384073. [PMID: 38784095 PMCID: PMC11112078 DOI: 10.3389/fnins.2024.1384073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Background and aim White matter hyperintensities (WMHs), presented on T2-weighted or fluid-attenuated inversion recovery magnetic resonance imaging (MRI) sequences, are lesions in the human brain that can be observed in both migraine and multiple sclerosis (MS). Methods Seventeen migraine patients and 15 patients with relapsing-remitting multiple sclerosis with WMHs, and 17 healthy subjects age-and sex-matched to the migraine group were prospectively enrolled and underwent conventional and advanced MRI studies with diffusion-and perfusion-weighted imaging and single voxel proton magnetic resonance spectroscopy. Results In both disease groups, elevated T2 relaxation time, apparent diffusion coefficient (ADC) values, and decreased N-acetyl-aspartate levels were found in the intralesional white matter compared to the contralateral normal-appearing white matter (NAWM), while there was no difference between the hemispheres of the control subjects. Migraine patients had the lowest intralesional creatine + phosphocreatine and myo-inositol (mI) values among the three groups, while patients with MS showed the highest intralesional T1 and T2 relaxation times, ADC, and mI values. In the contralateral NAWM, the same trend with mI changes was observed in migraineurs and MS patients. No differences in perfusion variables were observed in any groups. Conclusion Our multimodal study showed that tissue damage is detectable in both diseases. Despite the differences in various advanced MRI measures, with more severe injury detected in MS lesions, we could not clearly differentiate the two white matter lesion types.
Collapse
Affiliation(s)
- Flóra John
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Gréta Kis-Jakab
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Hedvig Komáromy
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Perlaki
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Pécs Diagnostic Center, Pécs, Hungary
| | - Gergely Orsi
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Pécs Diagnostic Center, Pécs, Hungary
| | - Edit Bosnyák
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Renáta Rozgonyi
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Anita Trauninger
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Eklics
- Department of Languages for Biomedical Purposes and Communication, University of Pécs, Pécs, Hungary
| | - David Olayinka Kamson
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins Hospital, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Zoltán Pfund
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Eikermann-Haerter K, Huang SY. White Matter Lesions in Migraine. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1955-1962. [PMID: 33636178 DOI: 10.1016/j.ajpath.2021.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/16/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Migraine, the third most common disease worldwide, is a well-known independent risk factor for subclinical focal deep white matter lesions (WMLs), even in young and otherwise healthy individuals with no cardiovascular risk factors. These WMLs are more commonly seen in migraine patients with transient neurologic symptoms preceding their headaches, the so-called aura, and those with a high attack frequency. The pathophysiology of migraine-related deep white matter hyperintensities remains poorly understood despite their prevalence. Characteristic differences in their distribution related to chronic small vessel ischemic disease compared with that of common periventricular WMLs in the elderly suggest a different underlying mechanism. Both ischemic and inflammatory mechanisms have been proposed, as there is increased cerebral vulnerability to ischemia in migraineurs, whereas there is also evidence of blood-brain barrier disruption with associated release of proinflammatory substances during migraine attacks. An enhanced susceptibility to spreading depolarization, the electrophysiological event underlying migraine, may be the mechanism that causes repetitive episodes of cerebral hypoperfusion and neuroinflammation during migraine attacks. WMLs can negatively affect both physical and cognitive function, underscoring the public health importance of migraine, and suggesting that migraine is an important contributor to neurologic deficits in the general population.
Collapse
Affiliation(s)
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
4
|
Zacharzewska-Gondek A, Pokryszko-Dragan A, Gondek TM, Kołtowska A, Gruszka E, Budrewicz S, Sąsiadek M, Bladowska J. Apparent diffusion coefficient measurements in normal appearing white matter may support the differential diagnosis between multiple sclerosis lesions and other white matter hyperintensities. J Neurol Sci 2019; 397:24-30. [DOI: 10.1016/j.jns.2018.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
|
5
|
Cheng J, Wang Y, Zhang CF, Wang H, Wu WZ, Pan F, Hong N, Deng J. Chemotherapy response evaluation in a mouse model of gastric cancer using intravoxel incoherent motion diffusion-weighted MRI and histopathology. World J Gastroenterol 2017; 23:1990-2001. [PMID: 28373765 PMCID: PMC5360640 DOI: 10.3748/wjg.v23.i11.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the role of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) magnetic resonance imaging (MRI) using a bi-exponential model in chemotherapy response evaluation in a gastric cancer mouse model.
METHODS Mice bearing MKN-45 human gastric adenocarcinoma xenografts were divided into four treated groups (TG1, 2, 3 and 4, n = 5 in each group) which received Fluorouracil and Calcium Folinate and a control group (CG, n = 7). DW-MRI scans with 14 b-values (0-1500 s/mm2) were performed before and after treatment on days 3, 7, 14 and 21. Fast diffusion component (presumably pseudo-perfusion) parameters including the fast diffusion coefficient (D*) and fraction volume (fp), slow diffusion coefficient (D) and the conventional apparent diffusion coefficients (ADC) were calculated by fitting the IVIM model to the measured DW signals. The median changes from the baseline to each post-treatment time point for each measurement (ΔADC, ΔD* and Δfp) were calculated. The differences in the median changes between the two groups were compared using the mixed linear regression model by the restricted maximum likelihood method shown as z values. Histopathological analyses including Ki-67, CD31, TUNEL and H&E were conducted in conjunction with the MRI scans. The median percentage changes were compared with the histopathological analyses between the pre- and post-treatment for each measurement.
RESULTS Compared with the control group, D* in the treated group decreased significantly (ΔD*treated% = -30%, -34% and -20%, with z = -5.40, -4.18 and -1.95. P = 0.0001, 0.0001 and 0.0244) and fp increased significantly (Δfptreated% = 93%, 113% and 181%, with z = 4.63, 5.52, and 2.12, P = 0.001, 0.0001 and 0.0336) on day 3, 7 and 14, respectively. Increases in ADC in the treated group were higher than those in the control group on days 3 and 14 (z = 2.44 and 2.40, P = 0.0147 and P = 0.0164).
CONCLUSION Fast diffusion measurements derived from the bi-exponential IVIM model may be more sensitive imaging biomarkers than ADC to assess chemotherapy response in gastric adenocarcinoma.
Collapse
|
6
|
Nagy SA, Horváth R, Perlaki G, Orsi G, Barsi P, John F, Horváth A, Kovács N, Bogner P, Ábrahám H, Bóné B, Gyimesi C, Dóczi T, Janszky J. Age at onset and seizure frequency affect white matter diffusion coefficient in patients with mesial temporal lobe epilepsy. Epilepsy Behav 2016; 61:14-20. [PMID: 27232377 DOI: 10.1016/j.yebeh.2016.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 02/01/2023]
Abstract
In mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), structural abnormalities are present not only in the hippocampus but also in the white matter with ipsilateral predominance. Although the timing of epilepsy onset is commonly associated with clinical and semiological dissimilarities, limited data exist regarding white matter diffusion changes with respect to age at epilepsy onset. The aim of this study was to investigate diffusion changes in the white matter of patients with unilateral MTLE-HS with respect to clinical parameters and to compare them with an age- and sex-matched healthy control group. Apparent diffusion coefficients (ADCs) were derived using monoexponential approaches from 22 (11 early and 11 late age at onset) patients with unilateral MTLE-HS and 22 age- and sex-matched control subjects after acquiring diffusion-weighted images on a 3T MRI system. Data were analyzed using two-tailed t-tests and multiple linear regression models. In the group with early onset MTLE-HS, ADC was significantly elevated in the ipsilateral hemispheric (p=0.04) and temporal lobe white matter (p=0.01) compared with that in controls. These differences were not detectable in late onset MTLE-HS patients. Apparent diffusion coefficient of the group with early onset MTLE-HS was negatively related to age at epilepsy onset in the ipsilateral hemispheric white matter (p=0.03) and the uncinate fasciculus (p=0.03), while in patients with late onset MTLE-HS, ADC was no longer dependent on age at epilepsy onset itself but rather on the seizure frequency in the ipsilateral uncinate fasciculus (p=0.03). Such diffusivity pattern has been associated with chronic white matter degeneration, reflecting myelin loss and higher extracellular volume which are more pronounced in the frontotemporal regions and also depend on clinical features. In the group with early onset MTLE-HS, the timing of epilepsy seems to be the major cause of white matter abnormalities while in late onset disease, it has a secondary role in provoking diffusion changes.
Collapse
Affiliation(s)
- Szilvia A Nagy
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Neurobiology of Stress Research Group, H-7624 Pécs, Ifjúság Street 20., Hungary.
| | - Réka Horváth
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Gábor Perlaki
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary.
| | - Gergely Orsi
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary.
| | - Péter Barsi
- MR Research Centre, Semmelweis University, H-1083 Budapest, Balassa Street 6., Hungary.
| | - Flóra John
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Andrea Horváth
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; Department of Neurosurgery, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Norbert Kovács
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary.
| | - Péter Bogner
- Department of Radiology, University of Pécs, H-7624 Pécs, Ifjúság Street 13., Hungary.
| | - Hajnalka Ábrahám
- Department of Medical Biology, University of Pécs, H-7624 Pécs, Szigeti Street 12., Hungary; Central Electron Microscopic Laboratory, University of Pécs, H-7624 Pécs, Honvéd Street 1., Hungary.
| | - Beáta Bóné
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Tamás Dóczi
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary; Department of Neurosurgery, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - József Janszky
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary.
| |
Collapse
|
7
|
Horváth A, Perlaki G, Tóth A, Orsi G, Nagy S, Dóczi T, Horváth Z, Bogner P. Increased diffusion in the normal appearing white matter of brain tumor patients: is this just tumor infiltration? J Neurooncol 2015; 127:83-90. [PMID: 26614516 DOI: 10.1007/s11060-015-2011-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/22/2015] [Indexed: 10/22/2022]
Abstract
Altered diffusion in the normal appearing white matter (NAWM) of glioma patients has been explained by tumor infiltration. The goal of the present study was to test this explanation indirectly by examining whether these alterations were also present in the contralateral NAWM of non-infiltrative tumors like meningiomas; and to search for other possible reasons for this abnormality. Twenty-seven patients with histologically verified glioma (grade II-IV), 22 meningioma patients and two groups of age- and sex-matched healthy controls underwent diffusion weighted imaging (DWI) on a 3T MR. All patients were examined before treatment. Apparent diffusion coefficient (ADC) values were calculated in the entire NAWM of the hemisphere contralateral to the tumor. ADC values of the NAWM were compared between groups with Mann-Whitney U-test and multiple linear regression. The relations of ADC in NAWM to glioma grade and to tumor volume were also investigated. ADC values of the contralateral NAWM were significantly higher in both glioma and meningioma patients compared to controls (P = 0.0006 and 0.0099, respectively). ADC value was higher in the NAWM of high grade gliomas than in low grade gliomas (P = 0.0181) and in healthy control subjects (P = 0.0003). ADC did not depend on tumor volume in any of the patient groups. Elevated ADC in the NAWM of both glioma and meningioma patients might indicate that the effect of infiltrating tumor cells is not the only reason for the alteration as it has been previously suggested. Although the role of mass effect was not proved, other mechanisms might also contribute to ADC elevation.
Collapse
Affiliation(s)
- Andrea Horváth
- Diagnostic Center of Pécs, 2. Rét st., Pécs, 7623, Hungary.,Department of Neurosurgery, University of Pécs, Pécs, Hungary
| | - Gábor Perlaki
- Diagnostic Center of Pécs, 2. Rét st., Pécs, 7623, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Arnold Tóth
- Diagnostic Center of Pécs, 2. Rét st., Pécs, 7623, Hungary.,Department of Neurosurgery, University of Pécs, Pécs, Hungary.,Department of Radiology, University of Pécs, Pécs, Hungary
| | - Gergely Orsi
- Diagnostic Center of Pécs, 2. Rét st., Pécs, 7623, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Szilvia Nagy
- Diagnostic Center of Pécs, 2. Rét st., Pécs, 7623, Hungary.,MTA-PTE, Neurobiology of Stress Research Group, Pécs, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs, Pécs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs, Pécs, Hungary
| | - Péter Bogner
- Diagnostic Center of Pécs, 2. Rét st., Pécs, 7623, Hungary. .,Department of Radiology, University of Pécs, Pécs, Hungary.
| |
Collapse
|