1
|
Tan ET, Zochowski KC, Sneag DB. Diffusion MRI fiber diameter for muscle denervation assessment. Quant Imaging Med Surg 2022; 12:80-94. [PMID: 34993062 PMCID: PMC8666740 DOI: 10.21037/qims-21-313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND To develop and evaluate a diffusion MRI-based apparent muscle fiber diameter (AFD) method in patients with muscle denervation. It was hypothesized that AFD differences between denervated, non-denervated and control muscles would be greater than those from standard diffusion metrics. METHODS A spin-echo diffusion acquisition with multi-b-valued diffusion sampling was used. An orientation-invariant dictionary approach utilized a cylinder-based forward model and multi-compartment model for obtaining restricted and free fractions. Simulations were performed to determine precision, bias, and optimize dictionary parameters. In all, 18 exams of patients with muscle denervation and 8 exams of healthy subjects were performed at 3T. Six regions of interests (ROIs) within separate shoulder muscles were selected, yielding three groups consisting 47 control (healthy), 36 non-denervated (patients), and 68 denervated (patients) muscle ROIs. Two-sample t-tests (α=0.05) between groups were performed with Holm-Bonferroni correction. T2- and fat fraction (FF)-mapping were acquired for comparison. RESULTS Mean AFD was 89.7±13.6 µm in control, 71.6±15.3 µm in non-denervated, and 60.7±15.9 µm in denervated muscles and were significantly different (P<0.001) in paired comparisons and in 10/12 individual muscle region comparisons. Correlation between AFD and FF (-0.331, P<0.001) was low, but correlation between FA and FF was negligible (0.197, P=0.016). Correlation was low between AFD and T2 (-0.395, P<0.001) and between FA and T2 (0.359, P<0.001). CONCLUSIONS Diffusion MRI-based AFD complements T2- and FF-mapping techniques to non-invasively assess muscle denervation.
Collapse
Affiliation(s)
| | - Kelly C. Zochowski
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Darryl B. Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
2
|
Sneag DB, Zochowski KC, Tan ET. MR Neurography of Peripheral Nerve Injury in the Presence of Orthopedic Hardware: Technical Considerations. Radiology 2021; 300:246-259. [PMID: 34184933 DOI: 10.1148/radiol.2021204039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the frequency of orthopedic procedures performed each year in the United States continues to increase, evaluation of peripheral nerve injury (PNI) in the presence of pre-existing metallic hardware is in higher demand. Advances in metal artifact reduction techniques have substantially improved the capability to reduce the susceptibility effect at MRI, but few reports have documented the use of MR neurography in the evaluation of peripheral nerves in the presence of orthopedic hardware. This report delineates the challenges of MR neurography around metal given the high spatial resolution often required to adequately depict small peripheral nerves. It offers practical tips, including strategies for prescan assessment and protocol optimization, including use of more conventional two-dimensional proton density and T2-weighted fat-suppressed sequences and specialized three-dimensional techniques, such as reversed free-induction steady-state precession and multispectral imaging, which enable vascular suppression and metal artifact reduction, respectively. Finally, this article emphasizes the importance of real-time monitoring by radiologists to optimize the diagnostic yield of MR neurography in the presence of orthopedic hardware. © RSNA, 2021.
Collapse
Affiliation(s)
- Darryl B Sneag
- From the Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70th St, Room 2P-040, New York, NY 10021
| | - Kelly C Zochowski
- From the Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70th St, Room 2P-040, New York, NY 10021
| | - Ek T Tan
- From the Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70th St, Room 2P-040, New York, NY 10021
| |
Collapse
|
3
|
Yu S, Su H, Lu J, Zhao F, Jiang F. Combined T2 Mapping and Diffusion Tensor Imaging: A Sensitive Tool to Assess Myofascial Trigger Points in a Rat Model. J Pain Res 2021; 14:1721-1731. [PMID: 34163230 PMCID: PMC8214538 DOI: 10.2147/jpr.s313966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Myofascial trigger points (MTrPs) are defined as very small and hypersensitive points in skeletal muscle that are palpable, and produce localized pain on compression. The aim of this study was to explore the feasibility of combining T2 mapping with diffusion tensor imaging (DTI) for assessing MTrPs in a rat model and to investigate properties of the pathophysiological mechanisms. Methods Twenty-four Sprague-Dawley rats (model group, n = 14; control group, n = 10) underwent a magnetic resonance imaging (MRI) examination on a 3 T-MRI-scanner with a protocol consisting of T2 mapping and DTI. The MTrPs were established by blunt strike in combination with eccentric exercise. Enzyme-linked immunosorbent assays (ELISAs) were used to detect the levels of interleukin-1ß (IL-1ß) and interleukin-2 (IL-2) and their results were correlated with T2 values. Parameters from MRI including T2 values, fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) were compared between the two groups. Histological analysis was applied to provide an additional supply for MRI findings. Results The MTrPs of rats displayed significantly increased T2 values and FA (= 0.000) compared with normal controls, whereas MD and RD values were significantly lower (P= 0.031, = 0.000, respectively). There was no statistically significant difference in AD between the two groups (P= 0.400). These differences were accompanied by elevated levels of IL-1ß and interleukin-2 IL-2 in the MTrP group compared with controls. T2 values were positively correlated with elevated IL-1ß levels (r = 0.543, P < 0.05) but were not correlated with IL-2 levels (P > 0.05). Conclusion Combining T2 and DTI sequences creates a sensitive tool to assess MTrPs in a rat model. These data clarify a hypothesis that a trigger point is a chronic and mild muscle injury with inflammation.
Collapse
Affiliation(s)
- Shuangcheng Yu
- Department of Radiology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530001, People's Republic of China
| | - Haiqing Su
- Department of Medical Ultrasound, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530001, People's Republic of China
| | - Jianchang Lu
- Department of Radiology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530001, People's Republic of China
| | - Fanyu Zhao
- Department of Radiology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530001, People's Republic of China
| | - Fangyan Jiang
- Department of Medical Ultrasound, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530001, People's Republic of China
| |
Collapse
|
4
|
Argentieri EC, Tan ET, Whang JS, Queler SC, Feinberg JH, Lin B, Sneag DB. Quantitative T 2 -mapping magnetic resonance imaging for assessment of muscle motor unit recruitment patterns. Muscle Nerve 2021; 63:703-709. [PMID: 33501678 DOI: 10.1002/mus.27186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION In this study, we aimed to determine whether muscle transverse relaxation time (T2 ) magnetic resonance (MR) mapping results correlate with motor unit loss, as defined by motor unit recruitment patterns on electromyography (EMG). METHODS EMG and 3-Tesla MRI exams were acquired no more than 31 days apart in subjects referred for peripheral nerve MRI. Two musculoskeletal radiologists qualitatively graded T2 -weighted, fat-suppressed sequences for severity of muscle edema-like patterns and manually placed regions of interest within muscles to obtain T2 values from T2 -mapping sequences. Concordance was calculated between qualitative and quantitative MR grades and EMG recruitment categories (none, discrete, decreased) as well as interobserver agreement for both MR grades. RESULTS Thirty-four muscles (21 abnormal, 13 control) were assessed in 13 subjects (5 females and 8 males; mean age, 46 years) with 14 EMG-MRI pairs. T2 -relaxation times were significantly (P < .001) increased in all EMG recruitment categories compared with control muscles. T2 differences were not significant between EMG grades of motor unit recruitment (P = .151-.702). T2 and EMG score concordance was acceptable (Harrell's concordance index [c index]: rater A, 0.71; 95% confidence interval [CI], 0.51-0.87; rater B, 0.77; 95% CI, 0.57-0.91). Qualitative MRI and EMG score concordance was poor to acceptable (c index: rater A, 0.60; 95% CI, 0.50-0.79; rater B, 0.72; 95% CI, 0.55-0.89). T2 values had moderate-to-substantial ability to distinguish between absent vs incomplete (ie, decreased or discrete) motor unit recruitment (c index: rater A, 0.78; 95% CI, 0.50-1.00; rater B, 0.86; 95% CI, 0.57-1.00). DISCUSSION Quantitative T2 MR muscle mapping is a promising tool for noninvasive evaluation of the degree of motor unit recruitment loss.
Collapse
Affiliation(s)
- Erin C Argentieri
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Ek Tsoon Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Jeremy S Whang
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Sophie C Queler
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Joseph H Feinberg
- Departments of Physiatry and Sports Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Bin Lin
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
5
|
Diffusion tensor imaging of the human thigh: consideration of DTI-based fiber tracking stop criteria. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:343-355. [DOI: 10.1007/s10334-019-00791-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
|
6
|
Wang Y, Zhang R, Zhang B, Wang C, Wang H, Zhang X, Zhao K, Yang M, Wang X, Zhang J. Simultaneous R2, R2' and R2* measurement of skeletal muscle in a rabbit model of unilateral artery embolization. Magn Reson Imaging 2019; 61:149-157. [PMID: 31129281 DOI: 10.1016/j.mri.2019.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/27/2023]
Abstract
PURPOSE To demonstrate the feasibility of using a susceptibility-based MRI technique with multi-echo gradient and spin echo (MEGSE) sequence to achieve simultaneous R2, R2' and R2* measurement and assess skeletal muscle oxygenation alternations in a rabbit model of unilateral artery embolization. MATERIALS AND METHODS Approved by the local institutional review board for experimental animal studies, nine New Zealand White rabbits were included in this study. The MEGSE sequence consists of embedding a set of gradient echoes around the echo of a single spin-echo sequence using several gradient echoes to collect the magnetization intensity during the formation and attenuation of spin-echo simultaneously after 180° radio frequency pulse. Within-session and between-day tests were conducted to evaluate the reproducibility of this skeletal muscle oxygenation alternations measurement. Furthermore, all the MEGSE scans of skeletal muscle were conducted using a 3-T clinical MRI scanner during resting state (before unilateral artery embolization operation, pre), 1 h after unilateral artery embolization operation (post1) and 2 h after unilateral artery embolization operation (post2) model to verify the feasibility and sensitivity of this method. RESULTS The within-session coefficient of variations (CVs) of R2, R2' and R2* measurements were 1.57%, 3.33% and 2.57%, while the between-day CVs of were 1.42%, 5.85% and 2.85%. In all rabbits, the mean R2 decreased significantly from 36.46 ± 1.03 s-1 (pre) to 30.58 ± 2.11 s-1 (post1,**P < 0.01, relative to pre) and 28.62 ± 1.53 s-1 (post2, **P < 0.01, relative to post1), and the mean R2' went up markedly from 9.88 ± 2.14 s-1 (pre) to 16.10 ± 2.74 s-1 (post1, **P < 0.01) and 17.33 ± 2.25 s-1 (post2, **P < 0.05). The mean R2* increased from 43.27 ± 3.75 s-1 (pre) to 47.90 ± 5.08 s-1 (post1, *P < 0.05) and to 48.04 ± 4.42 s-1 (post2, NS, P > 0.05). CONCLUSION This study demonstrates the feasibility of simultaneous R2, R2' and R2* measurement method for the evaluation of skeletal muscle ischemia. Besides, this study indicates the sensitivity of the R2 and R2' compared with R2* and especially the necessity of R2 and R2' measurement for the further evaluation of skeletal muscle ischemia which always causes both edema and hypoxia in a rabbit model of unilateral artery embolization.
Collapse
Affiliation(s)
- Yao Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rui Zhang
- College of Engineering, Peking University, Beijing, China
| | - Bihui Zhang
- Department of Interventional Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Chengyan Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Haochen Wang
- Department of Interventional Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Kai Zhao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Min Yang
- Department of Interventional Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Department of Radiology, Peking University First Hospital, Beijing, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
7
|
Qi L, Xu L, Wang WT, Zhang YD, Zhang R, Zou YF, Shi HB. Dynamic contrast-enhanced magnetic resonance imaging in denervated skeletal muscle: Experimental study in rabbits. PLoS One 2019; 14:e0215069. [PMID: 30951550 PMCID: PMC6450635 DOI: 10.1371/journal.pone.0215069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose To investigate the value of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for evaluating denervated skeletal muscle in rabbits. Materials and methods 24 male rabbits were randomly divided into an irreversible neurotmesis group and a control group. In the experimental group, the sciatic nerves of rabbits were transected for irreversible neurotmesis model. A sham operation was performed in the control group. MRI of rabbit lower legs was performed before nerve surgery and 1 day, 3 days, 5 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 10 weeks, and 12 weeks after surgery. Results Signal intensity changes were seen in the left gastrocnemius muscle on the T2-weighted images. DCE-MRI derived parameters (Ktrans, Kep, and Vp) were measured in vivo. In the irreversible neurotmesis group, T2-weighted images showed increased signal intensity in the left gastrocnemius muscle. Ktrans, Vp values changes occur as early as 1 day after denervation, and increased gradually until 4 weeks after surgery. There are significant increases in both Ktrans and Vp values compared with those in the control group after surgery (P < 0.05). Kep values show no significant difference between the irreversible neurotmesis group and the control group. Conclusion DCE-MRI hold the promise of an early and sensitive diagnosis of denervated skeletal muscle.
Collapse
Affiliation(s)
- Liang Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lei Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wen-Tao Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Rui Zhang
- Department of Neurosurgery, Nanjing Children’s Hospital, Nanjing, PR China
| | - Yue-Fen Zou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
- * E-mail:
| |
Collapse
|
8
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
9
|
Liu LS, Zheng ZZ, Yuan HS. Significance of Diffusion Tensor Imaging of Vastus Medialis Oblique in Recurrent Patellar Dislocation. Chin Med J (Engl) 2017; 130:642-646. [PMID: 28303844 PMCID: PMC5358411 DOI: 10.4103/0366-6999.201607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Numerous studies have investigated the influence of osseous factors on patellofemoral joint instability, but research on the influence of dynamic muscle factors in vivo is still in the exploratory stage. This study aimed to use magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to evaluate vastus medialis oblique (VMO) fiber bundles in patients with recurrent patellar dislocation to explore the changes in muscle morphology and function. Methods: This prospective study involved 30 patients (7 males and 23 females; average age, 21.4 ± 3.8 years) clinically diagnosed with recurrent patellar dislocation in Peking University Third Hospital and 30 healthy volunteers matched for age, sex, and body mass index in our medical school between January 2014 and October 2014. None of the patients had a recent history of traumatic patellar dislocation or transient patellar dislocation. All patients underwent conventional MRI and DTI of the knee. The cross-sectional area of the VMO on MRI and the fractional anisotropy (FA), apparent diffusion coefficient (ADC), and primary (λ1), secondary (λ2), and three-level characteristic (λ3) values on DTI were measured. The independent-samples t-test was used to compare these parameters between the two groups. Results: Compared with the control group, the patient group showed significantly higher FA values (0.39 ± 0.05 vs. 0.33 ± 0.03) and significantly lower ADC (1.51 ± 0.13 vs. 1.58 ± 0.07), λ2 (4.96 ± 0.13 vs. 5.04 ± 0.07), and λ3 values (4.44 ± 0.14 vs. 4.58 ± 0.07; t = 5.99, t = –2.58, t = –3.02, and t = –4.88, respectively; all P < 0.05). Cross-sectional VMO area and λ1 values did not differ between the two groups (t = –1.82 and t = 0.22, respectively; both P > 0.05). Conclusions: The functional status of the VMO is closely associated with recurrent patellar dislocation. MRI, especially DTI (FA, ADC, λ2, and λ3), can detect early changes in VMO function and might facilitate the noninvasive monitoring of the functional status of the VMO in patients with recurrent patellar dislocation.
Collapse
Affiliation(s)
- Li-Si Liu
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Zhuo-Zhao Zheng
- Department of Radiology, Tsinghua Changgung Hospital, Beijing 102218, China
| | - Hui-Shu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
10
|
Donahue PMC, Crescenzi R, Scott AO, Braxton V, Desai A, Smith SA, Jordi J, Meszoely IM, Grau AM, Kauffmann RM, Sweeting RS, Spotanski K, Ridner SH, Donahue MJ. Bilateral Changes in Deep Tissue Environment After Manual Lymphatic Drainage in Patients with Breast Cancer Treatment-Related Lymphedema. Lymphat Res Biol 2017; 15:45-56. [PMID: 28323572 DOI: 10.1089/lrb.2016.0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Breast cancer treatment-related lymphedema (BCRL) arises from a mechanical insufficiency following cancer therapies. Early BCRL detection and personalized intervention require an improved understanding of the physiological processes that initiate lymphatic impairment. Here, internal magnetic resonance imaging (MRI) measures of the tissue microenvironment were paired with clinical measures of tissue structure to test fundamental hypotheses regarding structural tissue and muscle changes after the commonly used therapeutic intervention of manual lymphatic drainage (MLD). METHODS AND RESULTS Measurements to identify lymphatic dysfunction in healthy volunteers (n = 29) and patients with BCRL (n = 16) consisted of (1) limb volume, tissue dielectric constant, and bioelectrical impedance (i.e., non-MRI measures); (2) qualitative 3 Tesla diffusion-weighted, T1-weighted and T2-weighted MRI; and (3) quantitative multi-echo T2 MRI of the axilla. Measurements were repeated in patients immediately following MLD. Normative control and BCRL T2 values were quantified and a signed Wilcoxon Rank-Sum test was applied (significance: two-sided p < 0.05). Non-MRI measures yielded significant capacity for discriminating between arms with versus without clinical signs of BCRL, yet yielded no change in response to MLD. Alternatively, a significant increase in deep tissue T2 on the involved (pre T2 = 0.0371 ± 0.003 seconds; post T2 = 0.0389 ± 0.003; p = 0.029) and contralateral (pre T2 = 0.0365 ± 0.002; post T2 = 0.0395 ± 0.002; p < 0.01) arms was observed. Trends for larger T2 increases on the involved side after MLD in patients with stage 2 BCRL relative to earlier stages 0 and 1 BCRL were observed, consistent with tissue composition changes in later stages of BCRL manifesting as breakdown of fibrotic tissue after MLD in the involved arm. Contrast consistent with relocation of fluid to the contralateral quadrant was observed in all stages. CONCLUSION Quantitative deep tissue T2 MRI values yielded significant changes following MLD treatment, whereas non-MRI measurements did not vary. These findings highlight that internal imaging measures of tissue composition may be useful for evaluating how current and emerging therapies impact tissue function.
Collapse
Affiliation(s)
- Paula M C Donahue
- 1 Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center , Nashville, Tennessee.,2 Vanderbilt Dayani Center for Health and Wellness , Nashville, Tennessee
| | - Rachelle Crescenzi
- 3 Department of Radiology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Allison O Scott
- 3 Department of Radiology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Vaughn Braxton
- 3 Department of Radiology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Aditi Desai
- 3 Department of Radiology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Seth A Smith
- 3 Department of Radiology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - John Jordi
- 4 Benchmark Physical Therapy , Chattanooga, Tennessee
| | - Ingrid M Meszoely
- 5 Department of Surgical Oncology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Ana M Grau
- 5 Department of Surgical Oncology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Rondi M Kauffmann
- 5 Department of Surgical Oncology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Raeshell S Sweeting
- 5 Department of Surgical Oncology, Vanderbilt University Medical Center , Nashville, Tennessee
| | | | | | - Manus J Donahue
- 3 Department of Radiology, Vanderbilt University Medical Center , Nashville, Tennessee.,7 Department of Psychiatry, Vanderbilt University Medical Center , Nashville, Tennessee.,8 Department of Neurology, Vanderbilt University Medical Center , Nashville, Tennessee.,9 Department of Physics and Astronomy, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
11
|
Schlaffke L, Rehmann R, Froeling M, Kley R, Tegenthoff M, Vorgerd M, Schmidt-Wilcke T. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters. J Magn Reson Imaging 2017; 46:1137-1148. [DOI: 10.1002/jmri.25650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/12/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lara Schlaffke
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | - Robert Rehmann
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | | | - Rudolf Kley
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | - Martin Tegenthoff
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | - Matthias Vorgerd
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | - Tobias Schmidt-Wilcke
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
- St. Mauritius Therapieklinik; Meerbusch Germany
- Institute of Clinical Neuroscience and Medical Psychology; University of Düsseldorf; Düsseldorf Germany
| |
Collapse
|