1
|
Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01174-7. [PMID: 38904746 DOI: 10.1007/s10334-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Park DB, Kim L, Hwang JH, Kim KT, Park JE, Choi JS, An HJ. Temporal quantitative profiling of sialyllactoses and sialic acids after oral administration of sialyllactose to mini-pigs with osteoarthritis. RSC Adv 2023; 13:1115-1124. [PMID: 36686942 PMCID: PMC9811936 DOI: 10.1039/d2ra05912f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Sialyllactose (SL) is the most abundant acidic oligosaccharide in human breast milk and plays a primary role in various biological processes. Recently, SL has attracted attention as an excellent dietary supplement for arthritis because it is effective in cartilage protection and treatment. Despite the superior function of SL, there are few pharmacological studies of SL according to blood concentrations in arthritis models. In this study, we investigated quantitative changes in SL and sialic acids in the plasma obtained from mini-pigs with osteoarthritis throughout exogenous administration of SL using liquid chromatography-multiple reaction monitoring mass spectrometry. Plasma concentrations of SL and sialic acids in the SL-fed group showed a significant difference compared to the control group. Mini pigs were fed only Neu5Ac bound to SL, but the concentration patterns of the two types of sialic acid, Neu5Ac and Neu5Gc, were similar. In addition, the relative mRNA expression level of matrix metalloproteinases (MMPs), which is known as a critical factor in cartilage matrix degradation, was remarkably decreased in the synovial membrane of the SL-fed group. Consequently, the temporal quantitative profiling suggests that dietary SL can be metabolized and utilized in the body and may protect against cartilage degradation by suppressing MMP expression during osteoarthritis progression.
Collapse
Affiliation(s)
- Dan Bi Park
- GeneChem Inc. Yuseong-gu Daejeon 34025 Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
| | - Lila Kim
- GeneChem Inc. Yuseong-gu Daejeon 34025 Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology Jeollabukdo 56212 Republic of Korea
| | - Kyung-Tai Kim
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology Jeollabukdo 56212 Republic of Korea
| | - Ji Eun Park
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Asia Glycomics Reference Site Daejeon 34134 Republic of Korea
| | - Jong-Soon Choi
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Research Center for Materials Analysis, Korea Basic Science Institute Daejeon 34133 Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Asia Glycomics Reference Site Daejeon 34134 Republic of Korea
| |
Collapse
|
3
|
Terracciano R, Carcamo-Bahena Y, Royal ALR, Demarchi D, Labis JS, Harris JD, Weiner BK, Gupta N, Filgueira CS. Quantitative high-resolution 7T MRI to assess longitudinal changes in articular cartilage after anterior cruciate ligament injury in a rabbit model of post-traumatic osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100259. [DOI: 10.1016/j.ocarto.2022.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
|
4
|
Kremen TJ, Stefanovic T, Tawackoli W, Salehi K, Avalos P, Reichel D, Perez JM, Glaeser JD, Sheyn D. A Translational Porcine Model for Human Cell-Based Therapies in the Treatment of Posttraumatic Osteoarthritis After Anterior Cruciate Ligament Injury. Am J Sports Med 2020; 48:3002-3012. [PMID: 32924528 PMCID: PMC7945314 DOI: 10.1177/0363546520952353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND There is a high incidence of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) injury, and these injuries represent an enormous health care economic burden. In an effort to address this unmet clinical need, there has been increasing interest in cell-based therapies. PURPOSE To establish a translational large animal model of PTOA and demonstrate the feasibility of intra-articular human cell-based interventions. STUDY DESIGN Descriptive laboratory study. METHODS Nine Yucatan mini-pigs underwent unilateral ACL transection and were monitored for up to 12 weeks after injury. Interleukin 1 beta (IL-1β) levels and collagen breakdown were evaluated longitudinally using enzyme-linked immunosorbent assays of synovial fluid, serum, and urine. Animals were euthanized at 4 weeks (n = 3) or 12 weeks (n = 3) after injury, and injured and uninjured limbs underwent magnetic resonance imaging (MRI) and histologic analysis. At 2 days after ACL injury, an additional 3 animals received an intra-articular injection of 107 human bone marrow-derived mesenchymal stem cells (hBM-MSCs) combined with a fibrin carrier. These cells were labeled with the luciferase reporter gene (hBM-MSCs-Luc) as well as fluorescent markers and intracellular iron nanoparticles. These animals were euthanized on day 0 (n = 1) or day 14 (n = 2) after injection. hBM-MSC-Luc viability and localization were assessed using ex vivo bioluminescence imaging, fluorescence imaging, and MRI. RESULTS PTOA was detected as early as 4 weeks after injury. At 12 weeks after injury, osteoarthritis could be detected grossly as well as on histologic analysis. Synovial fluid analysis showed elevation of IL-1β shortly after ACL injury, with subsequent resolution by 2 weeks after injury. Collagen type II protein fragments were elevated in the synovial fluid and serum after injury. hBM-MSCs-Luc were detected immediately after injection and at 2 weeks after injection using fluorescence imaging, MRI, and bioluminescence imaging. CONCLUSION This study demonstrates the feasibility of reproducing the chondral changes, intra-articular cytokine alterations, and body fluid biomarker findings consistent with PTOA after ACL injury in a large animal model. Furthermore, we have demonstrated the ability of hBM-MSCs to survive and express transgene within the knee joint of porcine hosts without immunosuppression for at least 2 weeks. CLINICAL RELEVANCE This model holds great potential to significantly contribute to investigations focused on the development of cell-based therapies for human ACL injury-associated PTOA in the future (see Appendix Figure A1, available online).
Collapse
Affiliation(s)
- Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Address correspondence to Thomas J. Kremen Jr, MD, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 1225 15th Street, Suite 2100, Santa Monica, CA 90404, USA () (Twitter: @ThomasKremenMD); or Dmitriy Sheyn, PhD, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP A8308, Los Angeles, CA 90048, USA () (Twitter: @Sheynlab)
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Derek Reichel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - J. Manual Perez
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Juliane D. Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Address correspondence to Thomas J. Kremen Jr, MD, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 1225 15th Street, Suite 2100, Santa Monica, CA 90404, USA () (Twitter: @ThomasKremenMD); or Dmitriy Sheyn, PhD, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP A8308, Los Angeles, CA 90048, USA () (Twitter: @Sheynlab)
| | | |
Collapse
|
5
|
Bascuñán AL, Biedrzycki A, Banks SA, Lewis DD, Kim SE. Large Animal Models for Anterior Cruciate Ligament Research. Front Vet Sci 2019; 6:292. [PMID: 31555675 PMCID: PMC6727067 DOI: 10.3389/fvets.2019.00292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Large animal (non-rodent mammal) models are commonly used in ACL research, but no species is currently considered the gold standard. Important considerations when selecting a large animal model include anatomical differences, the natural course of ACL pathology in that species, and biomechanical differences between humans and the chosen model. This article summarizes recent reports related to anatomy, pathology, and biomechanics of the ACL for large animal species (dog, goat, sheep, pig, and rabbit) commonly used in ACL research. Each species has unique features and benefits as well as potential drawbacks, which are highlighted in this review. This information may be useful in the selection process when designing future studies.
Collapse
Affiliation(s)
- Ana Luisa Bascuñán
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Adam Biedrzycki
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Scott A Banks
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Daniel D Lewis
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Stanley E Kim
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Contribution of IL-1β, 6 and TNF-α to the form of post-traumatic osteoarthritis induced by “idealized” anterior cruciate ligament reconstruction in a porcine model. Int Immunopharmacol 2018; 65:212-220. [DOI: 10.1016/j.intimp.2018.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/15/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
|
7
|
Unger MD, Murthy NS, Kanwar R, Strand KA, Maus TP, Beutler AS. Clinical magnetic resonance-enabled characterization of mono-iodoacetate-induced osteoarthritis in a large animal species. PLoS One 2018; 13:e0201673. [PMID: 30075007 PMCID: PMC6075758 DOI: 10.1371/journal.pone.0201673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is the most common form of arthritis. Medical and surgical treatments have yet to substantially diminish the global health and economic burden of OA. Due to recent advances in clinical imaging, including magnetic resonance imaging (MRI), a correlation has been established between structural joint damage and OA-related pain and disability. Existing preclinical animal models of OA are useful tools but each suffers specific roadblocks when translating structural MRI data to humans. Intraarticular injection of mono-iodoacetate (MIA) is a reliable, well-studied method to induce OA in small animals but joint size discrepancy precludes the use of clinical grade MRI to study structural disease. The porcine knee is suited for clinical MRI and demonstrates homology with humans. We set out to establish the first large animal model of MIA-induced knee OA in swine characterized by structural MRI. MATERIALS AND METHODS Yucatan swine (n = 27) underwent ultrasound-guided injection of knees with 1.2, 4, 12, or 40 mg MIA. MRI was performed at several time points over 12 weeks (n = 54 knees) and images were assessed according to a modified clinical grading scheme. Knees were harvested and graded up to 35 weeks after injection. RESULTS MIA-injected knees (n = 25) but not control knees (n = 29) developed gross degeneration. A total of n = 6,000 MRI measurements were recorded by two radiologists. MRI revealed progressive cartilage damage, bone marrow edema, erosions, and effusions in MIA-injected knees. Lesion severity and progression was influenced by time, dose, and inter-individual variability. CONCLUSIONS Intraarticular injection of MIA produced structural knee degradation that was reliably characterized using clinical MRI in swine. Destruction was progressive and, similar to human OA, lesion severity was heterogeneous between and within treatment groups.
Collapse
Affiliation(s)
- Mark D. Unger
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School, Rochester, MN, United States of America
| | - Naveen S. Murthy
- Department of Radiology (Section of Interventional Pain Management), Mayo Clinic, Rochester, MN, United States of America
| | - Rahul Kanwar
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School, Rochester, MN, United States of America
| | - Kasey A. Strand
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School, Rochester, MN, United States of America
| | - Timothy P. Maus
- Department of Radiology (Section of Interventional Pain Management), Mayo Clinic, Rochester, MN, United States of America
| | - Andreas S. Beutler
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School, Rochester, MN, United States of America
| |
Collapse
|
8
|
Mittelstaedt D, Kahn D, Xia Y. Detection of early osteoarthritis in canine knee joints 3 weeks post ACL transection by microscopic MRI and biomechanical measurement. J Orthop Surg (Hong Kong) 2018; 26:2309499018778357. [PMID: 29871538 PMCID: PMC6388617 DOI: 10.1177/2309499018778357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To detect early osteoarthritis (OA) in a canine Pond-Nuki model 3 weeks after anterior cruciate ligament (ACL) transection surgery, both topographically over the medial tibial surface and depth-dependently over the cartilage thickness. METHODS Four topographical locations on each OA and contralateral medial tibia were imaged individually by magnetic resonance imaging (MRI) at 17.6 µm transverse resolution. The quantitative MRI T2 relaxation data were correlated with the biomechanical stress-relaxation measurements from adjacent locations. RESULTS OA cartilage was thinner than the contralateral tissue and had a lower modulus compared to the contralateral cartilage for the exterior, interior, and central medial tibia locations. Depth-dependent and topographical variations were detected in OA cartilage by a number of parameters (compressive modulus, glycosaminoglycan concentration, bulk and zonal thicknesses, T2 at 0° and 55° specimen orientations in the magnet). T2 demonstrated significant differences at varying depths between OA and contralateral cartilage. CONCLUSION ACL transection caused a number of changes in the tibial cartilage at 3 weeks after the surgery. The characteristics of these changes, which are topographic and depth-dependent, likely reflect the complex degradation in this canine model of OA at the early developmental stage.
Collapse
Affiliation(s)
- Daniel Mittelstaedt
- Department of Physics, Center for Biomedical Research, Oakland University, Rochester, MI, USA
| | - David Kahn
- Department of Physics, Center for Biomedical Research, Oakland University, Rochester, MI, USA,Stony Brook University Hospital, Department of Radiation Oncology, Stony Brook, NY 11794, USA
| | - Yang Xia
- Department of Physics, Center for Biomedical Research, Oakland University, Rochester, MI, USA
| |
Collapse
|
9
|
Badar F, Xia Y. Image interpolation improves the zonal analysis of cartilage T2 relaxation in MRI. Quant Imaging Med Surg 2017; 7:227-237. [PMID: 28516048 DOI: 10.21037/qims.2017.03.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND This project aimed to investigate the improvement in the detection of osteoarthritis (OA) in cartilage by the interpolation of T2 images, in the situation when the native MRI resolution is insufficient to resolve the depth-dependent T2 characteristics in articular cartilage (AC). METHODS Eighteen intact canine knee joints that were healthy or had mild (contralateral) or severe OA were T2-imaged in a 7T/20 cm MRI system at 200 µm/pixel resolution (macro-MRI). Two image analysis methods were used to interpolate the images to 100 µm/pixel, i.e., by Fourier-transforming the time-domain FID (Free Induction Decay) signal using the Varian NMR software and by interpolating the 2D T2 image using the ImageJ software. RESULTS The T2 profiles from 30 individual ROI of each healthy [6], mild [6] and OA [6] cartilage at 200 µm and the interpolated 100 µm resolutions were subdivided into two equal-thickness regions and three-equal thickness regions based on clinical MRI protocols. A new method divided the T2 profiles into three-unequal thickness zones according to the T2 profiles at 17.6 µm/pixel from the same cartilage imaged in a 7 Tesla/9 cm µMRI system. Both interpolation methods improved the depth-dependent T2 images/profiles in macro-MRI. The unequal zone division in T2 had better OA sensitivity than the equal zone division. The three-equal zone division of T2 profiles had better OA sensitivity than the two-equal zone division. The statistical significant difference between the healthy and mild OA cartilage is detected (P=0.0018) only by the unequal zone division method at 100 µm resolution. CONCLUSIONS Data interpolation improves the T2 sensitivity in MRI of cartilage OA. Unequal division of tissue thickness enables better early stage of OA detection than the equal division.
Collapse
Affiliation(s)
- Farid Badar
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI, USA
| |
Collapse
|
10
|
Reisig G, Kreinest M, Richter W, Wagner-Ecker M, Dinter D, Attenberger U, Schneider-Wald B, Fickert S, Schwarz ML. Osteoarthritis in the Knee Joints of Göttingen Minipigs after Resection of the Anterior Cruciate Ligament? Missing Correlation of MRI, Gene and Protein Expression with Histological Scoring. PLoS One 2016; 11:e0165897. [PMID: 27820852 PMCID: PMC5098790 DOI: 10.1371/journal.pone.0165897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction The Göttingen Minipig (GM) is used as large animal model in articular cartilage research. The aim of the study was to introduce osteoarthritis (OA) in the GM by resecting the anterior cruciate ligament (ACLR) according to Pond and Nuki, verified by histological and magnetic resonance imaging (MRI) scoring as well as analysis of gene and protein expression. Materials and Methods The eight included skeletally mature female GM were assessed after ACLR in the left and a sham operation in the right knee, which served as control. 26 weeks after surgery the knee joints were scanned using a 3-Tesla high-field MR tomography unit with a 3 T CP Large Flex Coil. Standard proton-density weighted fat saturated sequences in coronal and sagittal direction with a slice thickness of 3 mm were used. The MRI scans were assessed by two radiologists according to a modified WORMS-score, the X-rays of the knee joints by two evaluators. Osteochondral plugs with a diameter of 4mm were taken for histological examination from either the main loading zone or the macroscopic most degenerated parts of the tibia plateau or condyle respectively. The histological sections were blinded and scored by three experts according to Little et al. Gene expression analysis was performed from surrounding cartilage. Expression of adamts4, adamts5, acan, col1A1, col2, il-1ß, mmp1, mmp3, mmp13, vegf was determined by qRT-PCR. Immunohistochemical staining (IH) of Col I and II was performed. IH was scored using a 4 point grading (0—no staining; 3-intense staining). Results and Discussion Similar signs of OA were evident both in ACLR and sham operated knee joints with the histological scoring result of the ACLR joints with 6.48 ± 5.67 points and the sham joints with 6.86 ± 5.84 points (p = 0.7953) The MRI scoring yielded 0.34 ± 0.89 points for the ACLR and 0.03 ± 0.17 for the sham knee joints. There was no correlation between the histological and MRI scores (r = 0.10021). The gene expression profiles as well as the immunohistochemical findings showed no significant differences between ACLR and sham knee joints. In conclusion, both knee joints showed histological signs of OA after 26 weeks irrespective of whether the ACL was resected or not. As MRI results did not match the histological findings, MRI was obviously unsuitable to diagnose the OA in GM. The analysis of the expression patterns of the 10 genes could not shed light on the question, whether sham operation also induced cartilage erosion or if the degeneration was spontaneous. The modified Pond-Nuki model may be used with reservation in the adult minipig to induce an isolated osteoarthritis.
Collapse
Affiliation(s)
- Gregor Reisig
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kreinest
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Mechthild Wagner-Ecker
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Dietmar Dinter
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Ulrike Attenberger
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Barbara Schneider-Wald
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fickert
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus L. Schwarz
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|