1
|
Muccio M, Sun Z, Chu D, Damadian BE, Minkoff L, Bonanni L, Ge Y. The impact of body position on neurofluid dynamics: present insights and advancements in imaging. Front Aging Neurosci 2024; 16:1454282. [PMID: 39582951 PMCID: PMC11582045 DOI: 10.3389/fnagi.2024.1454282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
The intricate neurofluid dynamics and balance is essential in preserving the structural and functional integrity of the brain. Key among these forces are: hemodynamics, such as heartbeat-driven arterial and venous blood flow, and hydrodynamics, such as cerebrospinal fluid (CSF) circulation. The delicate interplay between these dynamics is crucial for maintaining optimal homeostasis within the brain. Currently, the widely accepted framework for understanding brain functions is the Monro-Kellie's doctrine, which posits a constant sum of intracranial CSF, blood flow and brain tissue volumes. However, in recent decades, there has been a growing interest in exploring the dynamic interplay between these elements and the impact of external factors, such as daily changes in body position. CSF circulation in particular plays a crucial role in the context of neurodegeneration and dementia, since its dysfunction has been associated with impaired clearance mechanisms and accumulation of toxic substances. Despite the implementation of various invasive and non-invasive imaging techniques to investigate the intracranial hemodynamic or hydrodynamic properties, a comprehensive understanding of how all these elements interact and are influenced by body position remains wanted. Establishing a comprehensive overview of this topic is therefore crucial and could pave the way for alternative care approaches. In this review, we aim to summarize the existing understanding of intracranial hemodynamic and hydrodynamic properties, fundamental for brain homeostasis, along with factors known to influence their equilibrium. Special attention will be devoted to elucidating the effects of body position shifts, given their significance and remaining ambiguities. Furthermore, we will explore recent advancements in imaging techniques utilized for real time and non-invasive measurements of dynamic body fluid properties in-vivo.
Collapse
Affiliation(s)
- Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - David Chu
- FONAR Corporation, Melville, NY, United States
| | - Brianna E. Damadian
- Department of Radiology, Northwell Health-Lenox Hill Hospital, New York, NY, United States
| | | | | | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
2
|
Vikner T, Johnson KM, Cadman RV, Betthauser TJ, Wilson RE, Chin N, Eisenmenger LB, Johnson SC, Rivera-Rivera LA. CSF dynamics throughout the ventricular system using 4D flow MRI: associations to arterial pulsatility, ventricular volumes, and age. Fluids Barriers CNS 2024; 21:68. [PMID: 39215377 PMCID: PMC11363656 DOI: 10.1186/s12987-024-00570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) dynamics are increasingly studied in aging and neurological disorders. Models of CSF-mediated waste clearance suggest that altered CSF dynamics could play a role in the accumulation of toxic waste in the CNS, with implications for Alzheimer's disease and other proteinopathies. Therefore, approaches that enable quantitative and volumetric assessment of CSF flow velocities could be of value. In this study we demonstrate the feasibility of 4D flow MRI for simultaneous assessment of CSF dynamics throughout the ventricular system, and evaluate associations to arterial pulsatility, ventricular volumes, and age. METHODS In a cognitively unimpaired cohort (N = 43; age 41-83 years), cardiac-resolved 4D flow MRI CSF velocities were obtained in the lateral ventricles (LV), foramens of Monro, third and fourth ventricles (V3 and V4), the cerebral aqueduct (CA) and the spinal canal (SC), using a velocity encoding (venc) of 5 cm/s. Cerebral blood flow pulsatility was also assessed with 4D flow (venc = 80 cm/s), and CSF volumes were obtained from T1- and T2-weighted MRI. Multiple linear regression was used to assess effects of age, ventricular volumes, and arterial pulsatility on CSF velocities. RESULTS Cardiac-driven CSF dynamics were observed in all CSF spaces, with region-averaged velocity range and root-mean-square (RMS) velocity encompassing from very low in the LVs (RMS 0.25 ± 0.08; range 0.85 ± 0.28 mm/s) to relatively high in the CA (RMS 6.29 ± 2.87; range 18.6 ± 15.2 mm/s). In the regression models, CSF velocity was significantly related to age in 5/6 regions, to CSF space volume in 2/3 regions, and to arterial pulsatility in 3/6 regions. Group-averaged waveforms indicated distinct CSF flow propagation delays throughout CSF spaces, particularly between the SC and LVs. CONCLUSIONS Our findings show that 4D flow MRI enables assessment of CSF dynamics throughout the ventricular system, and captures independent effects of age, CSF space morphology, and arterial pulsatility on CSF motion.
Collapse
Affiliation(s)
- Tomas Vikner
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Diagnostics and Intervention, Umeå University, Umeå, S-90187, Sweden
| | - Kevin M Johnson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Robert V Cadman
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Rachael E Wilson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Nathaniel Chin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Laura B Eisenmenger
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Leonardo A Rivera-Rivera
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
| |
Collapse
|
3
|
Rusafa Neto E, Paiva WS, Brock RS, Hayashi CY, Nagumo MM, Segurado MO, Zaninotto AL, Amorim RL. Non-invasive Intracranial Pressure Waveform Analysis in Chiari Malformation Type 1: A Pilot Trial. World Neurosurg 2024; 182:e178-e185. [PMID: 38000673 DOI: 10.1016/j.wneu.2023.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE This pilot study aimed to investigate the role of Posterior Fossa Decompression (PFD) on the intracranial pressure (ICP) waveform in patients with Chiari Malformation type 1 (CM1). It also sought to explore the relationship between symptom improvement and ICP waveform behavior. METHODS This exploratory cohort study evaluated adult patients diagnosed with CM1. The patients underwent PFD using a standard technique at our institution, which involved a 3 × 3 cm posterior craniectomy and excision of the posterior arch of C1. The ICP waveform was measured using an external strain-gauge device connected to a pin attached to the skull. Measurements were collected pre- and post-PFD, and the P2/P1 ratio was calculated pre- and postoperatively. RESULTS The pilot study comprised 6 participants, 3 men and 3 women, with ages ranging from 39 to 68 years. The primary symptoms were cerebellar ataxia and typical headaches. The study found that most patients who showed clinical improvement, as judged by the Gestalt method, had a postoperative decrease in the P2/P1 ratio. However, 1 patient did not show an improvement in the P2/P1 ratio despite a good clinical outcome. CONCLUSIONS This study suggests that the P2/P1 ratio may decrease after PFD. However, we highlight the need for further research with a larger sample size to confirm these preliminary results.
Collapse
Affiliation(s)
- Eloy Rusafa Neto
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Wellingson Silva Paiva
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Róger Schimidt Brock
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cintya Yukie Hayashi
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcia Mitie Nagumo
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Ana Luiza Zaninotto
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Róbson Luis Amorim
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Podgoršak A, Trimmel NE, Oertel MF, Arras M, Weisskopf M, Schmid Daners M. The influence of upright posture on craniospinal, arteriovenous, and abdominal pressures in a chronic ovine in-vivo trial. Fluids Barriers CNS 2023; 20:83. [PMID: 37946223 PMCID: PMC10634040 DOI: 10.1186/s12987-023-00485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Most investigations into postural influences on craniospinal and adjacent physiology have been performed in anesthetized animals. A comprehensive study evaluating these physiologies while awake has yet been completed. METHODS Six awake sheep had telemetric pressure sensors (100 Hz) implanted to measure intracranial, intrathecal, arterial, central venous, cranial, caudal, dorsal, and ventral intra-abdominal pressure (ICP, ITP, ABP, CVP, IAPcr, IAPcd, IAPds, IAPve, respectively). They were maneuvered upright by placing in a chair for two minutes; repeated 25 times over one month. Changes in mean and pulse pressure were calculated by comparing pre-chair, P0, with three phases during the maneuver: P1, chair entrance; P2, chair halftime; P3, prior to chair exit. Statistical significance (p ≤ .05) was assessed using repeated measures ANOVA. RESULTS Significant mean pressure changes of (P1 - P0) and (P3 - P0) were measured at - 12.1 ± 3.1 and - 14.2 ± 3.0(p < .001), 40.8 ± 10.5 and 37.7 ± 3.5(p = .019), 9.7 ± 8.3 and 6.2 ± 5.3(p = .012), 22.3 ± 29.8 and 12.5 ± 12.1(p = .042), and 11.7 ± 3.9 and 9.0 ± 5.2(p = .014) mmHg, for ICP, ITP, IAPds, IAPcr, IAPca, respectively. For pulse pressures, significant changes of (P1 - P0) and (P3 - P0) were measured at - 1.3 ± 0.7 and - 2.0 ± 1.1(p < .001), 4.7 ± 2.3 and 1.4 ± 1.4(p < .001), 15.0 ± 10.2 and 7.3 ± 5.5(p < .001), - 0.7 ± 1.8 and - 1.7 ± 1.7(p < .001), - 1.3 ± 4.2 and - 1.4 ± 4.7(p = .006), and 0.3 ± 3.9 and - 1.0 ± 1.3(p < .001) mmHg, for ICP, ITP, ABP, IAPds, IAPcr, IAPca, respectively. CONCLUSIONS Pressures changed posture-dependently to differing extents. Changes were most pronounced immediately after entering upright posture (P1) and became less prominent over the chair duration (P2-to-P3), suggesting increased physiologic compensation. Dynamic changes in IAP varied across abdominal locations, motivating the abdominal cavity not to be considered as a unified entity, but sub-compartments with individual dynamics.
Collapse
Affiliation(s)
- Anthony Podgoršak
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Nina Eva Trimmel
- Center for Preclinical Development, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Florian Oertel
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Margarete Arras
- Center for Preclinical Development, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Center for Preclinical Development, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Literature Commentary. J Neuroophthalmol 2023; 43:e26-e36. [PMID: 37626015 DOI: 10.1097/wno.0000000000001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this issue of JNO, Drs. Mark L. Moster, Marc J. Dinkin, and Deborah I. Friedman discuss the following 6 articles:Piehl F, Eriksson-Dufva A, Budzianowska A, Feresiadou A, Hansson W, Hietala MA, Håkansson I, Johansson R, Jons D, Kmezic I, Lindberg C, Lindh J, Lundin F, Nygren I, Punga AR, Press R, Samuelsson K, Sundström P, Wickberg O, Brauner S, Frisell T. Efficacy and safety of rituximab for new-onset generalized myasthenia gravis: the RINOMAX randomized clinical trial. JAMA Neurol. 2022;79:1105-1112.Cortese R, Carrasco FP, Tur C, Bianchi A, Brownlee W, De Angelis F, De La Paz I, Grussu F, Haider L, Jacob A, Kanber B, Magnollay L, Nicholas RS, Trip A, Yiannakas M, Toosy AT, Hacohen Y, Barkhof F, Ciccarelli O. Differentiating multiple sclerosis from AQP4-neuromyelitis optica spectrum disorder and MOG-antibody disease with imaging. Neurology. 2022. doi: 10.1212/WNL.0000000000201465.Carelli V, Newman NJ, Yu-Wai-Man P, Biousse V, Moster ML, Subramanian PS, Vignal-Clermont C, Wang AG, Donahue SP, Leroy BP, Sergott RC, Klopstock T, Sadun AA, Rebolleda Fernández G, Chwalisz BK, Banik R, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA; the LHON Study Group. Indirect comparison of Lenadogene Nolparvovec gene therapy versus natural history in patients with leber hereditary optic neuropathy carrying the m.11778G>A MT-ND4 mutation. Ophthalmol Ther. 2022. doi: 10.1007/s40123-022-00611-x.Noll C, Hiltensperger M, Aly L, Wicklein R, Afzali AM, Mardin C, Gasperi C, Berthele A, Hemmer B, Korn T, Knier B. Association of the retinal vasculature, intrathecal immunity, and disability in multiple sclerosis. Front Immunol. 2022;13:997043.Mitchell JL, Buckham R, Lyons H, Walker JK, Yiangou A, Sassani M, Thaller M, Grech O, Alimajstorovic Z, Julher M, Tsermoulas G, Brock K, Mollan SP, Sinclair AJ. Evaluation of diurnal and postural intracranial pressure employing telemetric monitoring in idiopathic intracranial hypertension. Fluids Barriers CNS. 2022;19:85.Pan Y, Chen YX, Zhang J, Lin ML, Liu GM, Xu XL, Fan XQ, Zhong Y, Li Q, Ai SM, Xu W, Tan J, Zhou HF, Xu DD, Zhang HY, Xu B, Wang S, Ma JJ, Zhang S, Gan LY, Cui JT, Li L, Xie YY, Guo X, Pan-Doh N, Zhu ZT, Lu Y, Shi YX, Xia YW, Li ZY, Liang D. Doxycycline vs placebo at 12 weeks in patients with mild thyroid-associated ophthalmopathy: a randomized clinical trial. JAMA Ophthalmol. 2022;140:1076-1083.
Collapse
|
6
|
van Zandwijk JK, Kuijer KM, Stassen CM, ten Haken B, Simonis FF. Internal Jugular Vein Geometry Under Multiple Inclination Angles with 3D Low-Field MRI in Healthy Volunteers. J Magn Reson Imaging 2022; 56:1302-1308. [PMID: 35322920 PMCID: PMC9790417 DOI: 10.1002/jmri.28182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cerebral venous pathways are subjected to geometrical and patency changes due to body position. The internal jugular veins (IJVs) are the main venous drainage pathway in supine position. Their patency and geometry should be evaluated under different body inclination angles over a three-dimensional (3D) volume in the healthy situation to better understand pathological cases. PURPOSE To investigate whether positional changes in the body can affect the geometrical properties and patency of the venous system. STUDY TYPE Prospective. POPULATION 15 healthy volunteers, of which seven males and median age 22 years in a range of 19-59. FIELD STRENGTH/SEQUENCE A 0.25-T tiltable MRI system was used to scan volunteers in 90° (sitting position), 69°, 45°, 21°, and 0° (supine position) in the transverse plane with the top at vertebra C2. A gradient echo sequence was used. ASSESSMENT Three observers assessed IJVs on patency and created automatic centerlines from which diameter and patency were analysed perpendicular to the vessel at every 4 mm starting at the level of C2. STATISTICAL TESTS A Student's t test was used to find statistical difference (p < 0.05) in average IJV diameters per inclination angle. RESULTS The amount of fully collapsed IJVs increased from 33% to 93% (left IJV) and 14% to 80% (right IJV) when increasing the inclination angle from 0° to 90°. In both IJVs, the mean diameter (±SD) of the open vessels was significantly higher at 0° than 90° with 6.3 ± 0.5 mm vs. 4.4 ± 0.1 mm (left IJV) and 6.6 ± 0.6 mm vs. 4.3 ± 0.4 mm (right IJV). DATA CONCLUSION Tiltable low-field MRI can be used to assess IJV geometry and its associated venous pathways in 3D under multiple inclination angles. Next to a higher amount of collapsed vessels, the average diameter of noncollapsed vessels decreases with increasing inclination angles for both left and right IJVs. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jordy K. van Zandwijk
- Magnetic Detection & Imaging, TechMed CentreUniversity of TwenteEnschedeThe Netherlands,Department of Vascular SurgeryMedisch Spectrum TwenteEnschedeThe Netherlands
| | - Koen M. Kuijer
- Magnetic Detection & Imaging, TechMed CentreUniversity of TwenteEnschedeThe Netherlands
| | - Chrit M. Stassen
- Department of RadiologyZiekenhuisgroep TwenteHengeloThe Netherlands
| | - Bernard ten Haken
- Magnetic Detection & Imaging, TechMed CentreUniversity of TwenteEnschedeThe Netherlands
| | - Frank F.J. Simonis
- Magnetic Detection & Imaging, TechMed CentreUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
7
|
Lopes DN, Marques LC, Cunha KS. Editorial for "Internal Jugular Vein Geometry Under Multiple Inclination Angles with 3D Low-Field MRI in Healthy Volunteers". J Magn Reson Imaging 2022; 56:1309-1310. [PMID: 35324051 DOI: 10.1002/jmri.28178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Danielle Nobre Lopes
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Brazil
| | - Letícia Côgo Marques
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Brazil
| | - Karin Soares Cunha
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
8
|
Muccio M, Chu D, Minkoff L, Kulkarni N, Damadian B, Damadian RV, Ge Y. Upright versus supine MRI: effects of body position on craniocervical CSF flow. Fluids Barriers CNS 2021; 18:61. [PMID: 34952607 PMCID: PMC8710028 DOI: 10.1186/s12987-021-00296-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/11/2021] [Indexed: 01/17/2023] Open
Abstract
Background Cerebrospinal fluid (CSF) circulation between the brain and spinal canal, as part of the glymphatic system, provides homeostatic support to brain functions and waste clearance. Recently, it has been observed that CSF flow is strongly driven by cardiovascular brain pulsation, and affected by body orientation. The advancement of MRI has allowed for non-invasive examination of the CSF hydrodynamic properties. However, very few studies have addressed their relationship with body position (e.g., upright versus supine). It is important to understand how CSF hydrodynamics are altered by body position change in a single cardiac phase and how cumulative long hours staying in either upright or supine position can affect craniocervical CSF flow. Methods In this study, we investigate the changes in CSF flow at the craniocervical region with flow-sensitive MRI when subjects are moved from upright to supine position. 30 healthy volunteers were imaged in upright and supine positions using an upright MRI. The cranio-caudal and caudo-cranial CSF flow, velocity and stroke volume were measured at the C2 spinal level over one cardiac cycle using phase contrast MRI. Statistical analysis was performed to identify differences in CSF flow properties between the two positions. Results CSF stroke volume per cardiac cycle, representing CSF volume oscillating in and out of the cranium, was ~ 57.6% greater in supine (p < 0.0001), due to a ~ 83.8% increase in caudo-cranial CSF peak velocity during diastole (p < 0.0001) and extended systolic phase duration when moving from upright (0.25 ± 0.05 s) to supine (0.34 ± 0.08 s; p < 0.0001). Extrapolation to a 24 h timeframe showed significantly larger total CSF volume exchanged at C2 with 10 h spent supine versus only 5 h (p < 0.0001). Conclusions In summary, body position has significant effects on CSF flow in and out of the cranium, with more CSF oscillating in supine compared to upright position. Such difference was driven by an increased caudo-cranial diastolic CSF velocity and an increased systolic phase duration when moving from upright to supine position. Extrapolation to a 24 h timeframe suggests that more time spent in supine position increases total amount of CSF exchange, which may play a beneficial role in waste clearance in the brain.
Collapse
Affiliation(s)
- Marco Muccio
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, 660 First Avenue, 4th floor, New York, NY, 10016, USA
| | - David Chu
- FONAR Corporation, Melville, NY, USA
| | | | | | | | | | - Yulin Ge
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, 660 First Avenue, 4th floor, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Kadoya Y, Miyati T, Kobayashi S, Ohno N, Gabata T. Evaluation of gravity effect on inferior vena cava and abdominal aortic flow using multi-posture MRI. Acta Radiol 2021; 62:1122-1128. [PMID: 32799558 DOI: 10.1177/0284185120950112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Inferior vena cava flow (IVCF) and abdominal aortic flow (AAF) are essential components of the systemic circulation. Although postural changes might alter IVCF and AAF by the gravity effect, the exact details are unknown. PURPOSE To evaluate the effect of gravity on IVCF and AAF using a novel magnetic resonance imaging (MRI) system that can image in any position. MATERIAL AND METHODS Caval velocity-mapped images were obtained using the cine phase-contrast technique in the upright and supine positions with multi-posture MRI (n = 12). The mean IVCF/AAF velocity, maximum IVCF/AAF velocity, cross-sectional area of IVC/AA, mean IVCF/AAF, maximum IVCF/AAF, and heart rate in the two positions were assessed. RESULTS The mean IVCF velocity, maximum IVCF velocity, cross-sectional area of IVC, mean IVCF, maximum IVCF, mean AAF velocity, maximum AAF velocity, mean AAF, and maximum AAF were significantly lower in the upright position compared with the supine position (P < 0.05 for all), with differences of 52% ± 33%, 36% ± 19%, 56% ± 18%, 26% ± 18%, 19% ± 11%, 33% ± 13%, 33% ± 22%, 42% ± 21%, and 37% ± 28%, respectively. Heart rate was significantly higher in the upright position compared with the supine position (116% ± 9.2%; P = 0.003). There were no differences in cross-sectional area of AA between the two positions (108% ± 22%; P = 0.583). CONCLUSION The effect of gravity decreases IVCF and AAF. Clarifying the effect of gravity on IVCF and AAF during a postural change may help to improve the management of patients with circulatory disease.
Collapse
Affiliation(s)
- Yoshisuke Kadoya
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Diagnostic Imaging, The Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Tosiaki Miyati
- Department of Quantum Medical Imaging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Satoshi Kobayashi
- Department of Quantum Medical Imaging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Naoki Ohno
- Department of Quantum Medical Imaging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
10
|
Williams G, Thyagaraj S, Fu A, Oshinski J, Giese D, Bunck AC, Fornari E, Santini F, Luciano M, Loth F, Martin BA. In vitro evaluation of cerebrospinal fluid velocity measurement in type I Chiari malformation: repeatability, reproducibility, and agreement using 2D phase contrast and 4D flow MRI. Fluids Barriers CNS 2021; 18:12. [PMID: 33736664 PMCID: PMC7977612 DOI: 10.1186/s12987-021-00246-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/03/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed. METHODS An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model. RESULTS Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively). CONCLUSION Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.
Collapse
Affiliation(s)
- Gwendolyn Williams
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Suraj Thyagaraj
- Department of Mechanical Engineering, Conquer Chiari Research Center, University of Akron, Akron, OH, 44325, USA
| | - Audrey Fu
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, 83844, USA
| | - John Oshinski
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Daniel Giese
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Alexander C Bunck
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Eleonora Fornari
- CIBM, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Mark Luciano
- Department of Neurosurgery, John Hopkins University, Baltimore, MD, USA
| | - Francis Loth
- Department of Mechanical Engineering, Conquer Chiari Research Center, University of Akron, Akron, OH, 44325, USA
| | - Bryn A Martin
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA.
- Alcyone Therapeutics Inc, Lowell, MA, USA.
| |
Collapse
|
11
|
Alperin N, Burman R, Lee SH. Role of the spinal canal compliance in regulating posture-related cerebrospinal fluid hydrodynamics in humans. J Magn Reson Imaging 2021; 54:206-214. [PMID: 33491833 DOI: 10.1002/jmri.27505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/06/2022] Open
Abstract
Mechanical compliance of a compartment is defined by the change in its volume with respect to a change in the inside pressure. The compliance of the spinal canal regulates the intracranial pressure (ICP) under postural changes. Understanding how gravity affects ICP is beneficial for poorly understood cerebrospinal fluid (CSF)-related disorders. The aim of this study was to evaluate postural effects on cranial hemo- and hydrodynamics. This was a prospective study, which included 10 healthy volunteers (three males, seven females, mean ± standard deviation age: 29 ± 7 years). Cine gradient-echo phase-contrast sequence acquired at 0.5 T, "GE double-doughnut" scanner was used. Spinal contribution to overall craniospinal compliance (CSC), craniospinal CSF stroke volume (SV), magnetic resonance (MR)-derived ICP (MR-ICP), and total cerebral blood flow (TCBF) were measured in supine and upright postures using automated blood and CSF flows quantification. Statistical tests performed were two-sided Student's t-test, Cohen's d, and Pearson correlation coefficient. MR-ICP and the craniospinal CSF SV were significantly correlated with the spinal contribution to the overall CSC (r = 0.83, p < 0.05) and (r = 0.62, p < 0.05), respectively. Cranial contribution to CSC increased from 44.5% ± 16% in supine to 74.9% ± 8.4% in upright posture. The average MR-ICP dropped from 9.9 ± 3.4 mmHg in supine to -3.5 ± 1.5 mmHg. The CSF SV was over 2.5 times higher in the supine position (0.55 ± 0.14 ml) than in the upright position (0.21 ± 0.13 ml). In contrast, TCBF was slightly higher in the supine posture (822 ± 152 ml/min) than in the upright posture (761 ± 139 ml/min), although not statistically significant (p = 0.16). The spinal-canal compliance contribution to CSC is larger than the cranial contribution in the supine posture and smaller in the upright posture. Thereby, the spinal canal plays a role in modulating ICP upon postural changes. The lower pressure craniospinal CSF system was more affected by postural changes than the higher-pressure cerebral vascular system. Craniospinal hydrodynamics is affected by gravity and is likely to be altered by its absence in space. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Noam Alperin
- Radiology Department, University of Miami, Miami, Florida, USA.,Biomedical Engineering Department, University of Miami, Miami, Florida, USA
| | - Ritambhar Burman
- Radiology Department, University of Miami, Miami, Florida, USA.,Biomedical Engineering Department, University of Miami, Miami, Florida, USA
| | - Sang H Lee
- Radiology Department, University of Miami, Miami, Florida, USA
| |
Collapse
|
12
|
Effect of gravity on brain structure as indicated on upright computed tomography. Sci Rep 2021; 11:392. [PMID: 33431952 PMCID: PMC7801697 DOI: 10.1038/s41598-020-79695-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
We aimed to use upright computed tomography (CT) to depict posture-related changes in the brain tissue under normal gravity. Thirty-two asymptomatic volunteers underwent upright CT in the sitting position and conventional CT in the supine position on the same day. We compared the shift of the pineal body, cerebellar tonsil, the length of pituitary stalk, optic nerve sheath area and perimeter (ONSA and ONSP, respectively), and lateral ventricular volume between the supine and sitting positions. We also compared shape changes of the cerebrospinal fluid (CSF) spaces at different sites between both positions. In the sitting position, the pineal body shifted 0.68 ± 0.27 mm in the ventral direction and 0.76 ± 0.24 mm in the caudal direction, the length of pituitary stalk decreased by 1.23 ± 0.71 mm, the cerebellar tonsil descended by 2.10 ± 0.86 mm, the right ONSA decreased by 15.21 ± 6.54%, the left ONSA decreased by 15.30 ± 7.37%, the right ONSP decreased by 8.52 ± 3.91%, the left ONSP decreased by 8.20 ± 4.38%, and the lateral ventricular volume decreased by 5.07 ± 3.24% (all P < 0.001). We also observed changes in the shape of CSF spaces with changes in posture. We concluded that the intracranial structure of healthy subjects and volume of ventricles changed according to posture on Earth.
Collapse
|
13
|
Thomale UW. Integrated understanding of hydrocephalus - a practical approach for a complex disease. Childs Nerv Syst 2021; 37:3313-3324. [PMID: 34114082 PMCID: PMC8578093 DOI: 10.1007/s00381-021-05243-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Most of childhood hydrocephalus are originating during infancy. It is considered to be a complex disease since it is developed on the basis of heterogeneous pathophysiological mechanisms and different pathological conditions as well as during different age groups. Hence, it is of relevant importance to have a practical concept in mind, how to categorize hydrocephalus to surgically better approach this disease. The current review should offer further basis of discussion on a disease still most frequently seen in Pediatric Neurosurgery. Current literature on pathophysiology and classification of pediatric hydrocephalus has been reviewed to integrate the different published concepts of hydrocephalus for pediatric neurosurgeons. The current understanding of infant and childhood hydrocephalus pathophysiology is summarized. A simplified concept based on seven factors of CSF dynamics is elaborated and discussed in the context of recent discussions. The seven factors such as pulsatility, CSF production, major CSF pathways, minor CSF pathways, CSF absorption, venous outflow, and respiration may have different relevance and may also overlap for the individual hydrocephalic condition. The surgical options available for pediatric neurosurgeons to approach hydrocephalus must be adapted to the individual condition. The heterogeneity of hydrocephalus causes mostly developing during infancy warrant a simplified overview and understanding for an everyday approach. The proposed guide may be a basis for further discussion and may serve for a more or less simple categorization to better approach hydrocephalus as a pathophysiological complex disease.
Collapse
Affiliation(s)
- U. W. Thomale
- grid.6363.00000 0001 2218 4662Pediatric Neurosurgery, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
14
|
Price DA, Grzybowski A, Eikenberry J, Januleviciene I, Verticchio Vercellin AC, Mathew S, Siesky B, Harris A. Review of non-invasive intracranial pressure measurement techniques for ophthalmology applications. Br J Ophthalmol 2019; 104:887-892. [PMID: 31704702 DOI: 10.1136/bjophthalmol-2019-314704] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 11/04/2022]
Abstract
Assessment and monitoring of intracranial pressure (ICP) are important in the management of traumatic brain injury and other cerebral pathologies. In the eye, ICP elevation and depression both correlate with optic neuropathies, the former because of papilledema and the latter related to glaucoma. While the relationship between ICP elevation and papilledema is well established, the relationship between low ICP and glaucoma is still poorly understood. So far, ICP monitoring is performed invasively, but this entails risks including infection, spurring the study of non-invasive alternatives. We review 11 methods of non-invasive estimation of ICP including correlation to optic nerve sheath diameter, intraocular pressure, ophthalmodynamometry and two-depth transcranial Doppler of the ophthalmic artery. While none of these methods can fully replace invasive techniques, certain measures show great potential for specific applications. Although only used in small studies to date, a MRI based method known as MR-ICP, appears to be the best non-invasive technique for estimating ICP, with two-depth transcranial ultrasound and ophthalmodynamometry showing potential as well.
Collapse
Affiliation(s)
- David Andrew Price
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrzej Grzybowski
- Department of Ophthalmology, Poznan City Hospital, Poznan, Poland.,Medcial Faculty, University of Warmia and Mazury, Olsztyn, Poland
| | - Jennifer Eikenberry
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - Sunu Mathew
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brent Siesky
- Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York City, New York, USA
| | - Alon Harris
- Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York City, New York, USA
| |
Collapse
|
15
|
Smith DW, Lee CJ, Morgan W, Gardiner BS. Estimating three-dimensional outflow and pressure gradients within the human eye. PLoS One 2019; 14:e0214961. [PMID: 30964894 PMCID: PMC6456205 DOI: 10.1371/journal.pone.0214961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/23/2019] [Indexed: 12/22/2022] Open
Abstract
In this paper we set the previously reported pressure-dependent, ordinary differential equation outflow model by Smith and Gardiner for the human eye, into a new three-dimensional (3D) porous media outflow model of the eye, and calibrate model parameters using data reported in the literature. Assuming normal outflow through anterior pathways, we test the ability of 3D flow model to predict the pressure elevation with a silicone oil tamponade. Then assuming outflow across the retinal pigment epithelium is normal, we test the ability of the 3D model to predict the pressure elevation in Schwartz-Matsuo syndrome. For the first time we find the flow model can successfully model both conditions, which helps to build confidence in the validity and accuracy of the 3D pressure-dependent outflow model proposed here. We employ this flow model to estimate the translaminar pressure gradient within the optic nerve head of a normal eye in both the upright and supine postures, and during the day and at night. Based on a ratio of estimated and measured pressure gradients, we define a factor of safety against acute interruption of axonal transport at the laminar cribrosa. Using a completely independent method, based on the behaviour of dynein molecular motors, we compute the factor of safety against stalling the dynein molecule motors, and so compromising retrograde axonal transport. We show these two independent methods for estimating factors of safety agree reasonably well and appear to be consistent. Taken together, the new 3D pressure-dependent outflow model proves itself to capable of providing a useful modeling platform for analyzing eye behaviour in a variety of physiological and clinically useful contexts, including IOP elevation in Schwartz-Matsuo syndrome and with silicone oil tamponade, and potentially for risk assessment for optic glaucomatous neuropathy.
Collapse
Affiliation(s)
- David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Australia
- * E-mail:
| | - Chang-Joon Lee
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - William Morgan
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Bruce S. Gardiner
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
16
|
Holmlund P, Eklund A, Koskinen LOD, Johansson E, Sundström N, Malm J, Qvarlander S. Venous collapse regulates intracranial pressure in upright body positions. Am J Physiol Regul Integr Comp Physiol 2018; 314:R377-R385. [DOI: 10.1152/ajpregu.00291.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent interest in intracranial pressure (ICP) in the upright posture has revealed that the mechanisms regulating postural changes in ICP are not fully understood. We have suggested an explanatory model where the postural changes in ICP depend on well-established hydrostatic effects in the venous system and where these effects are interrupted by collapse of the internal jugular veins (IJVs) in more upright positions. The aim of this study was to investigate this relationship by simultaneous invasive measurements of ICP, venous pressure, and IJV collapse in healthy volunteers. ICP (monitored via the lumbar route), central venous pressure (peripherally inserted central catheter line), and IJV cross-sectional area (ultrasound) were measured in 11 healthy volunteers (47 ± 10 yr, mean ± SD) in 7 positions, from supine to sitting (0–69°). Venous pressure and anatomical distances were used to predict ICP in accordance with the explanatory model, and IJV area was used to assess IJV collapse. The hypothesis was tested by comparing measured ICP with predicted ICP. Our model accurately described the general behavior of the observed postural ICP changes (mean difference, −0.03 ± 2.7 mmHg). No difference was found between predicted and measured ICP for any tilt angle ( P values, 0.65–0.94). The results support the hypothesis that postural ICP changes are governed by hydrostatic effects in the venous system and IJV collapse. This improved understanding of postural ICP regulation may have important implications for the development of better treatments for neurological and neurosurgical conditions affecting ICP.
Collapse
Affiliation(s)
- P. Holmlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - A. Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - L.-O. D. Koskinen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - E. Johansson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - N. Sundström
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - J. Malm
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - S. Qvarlander
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Ringstad G, Lindstrøm EK, Vatnehol SAS, Mardal KA, Emblem KE, Eide PK. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging. PLoS One 2017; 12:e0188896. [PMID: 29190788 PMCID: PMC5708728 DOI: 10.1371/journal.pone.0188896] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/02/2017] [Indexed: 12/04/2022] Open
Abstract
Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of “true” normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations.
Collapse
Affiliation(s)
- Geir Ringstad
- Department of Radiology and Nuclear Medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Erika Kristina Lindstrøm
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Svein Are Sirirud Vatnehol
- Faculty of Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Kent-André Mardal
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | | - Per Kristian Eide
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
Bollela VR, Frigieri G, Vilar FC, Spavieri DL, Tallarico FJ, Tallarico GM, Andrade RAP, de Haes TM, Takayanagui OM, Catai AM, Mascarenhas S. Noninvasive intracranial pressure monitoring for HIV-associated cryptococcal meningitis. ACTA ACUST UNITED AC 2017; 50:e6392. [PMID: 28793057 PMCID: PMC5572848 DOI: 10.1590/1414-431x20176392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/31/2017] [Indexed: 11/22/2022]
Abstract
Mortality and adverse neurologic sequelae from HIV-associated cryptococcal meningitis (HIV-CM) remains high due to raised intracranial pressure (ICP) complications. Cerebrospinal fluid (CSF) high opening pressure occurs in more than 50% of HIV-CM patients. Repeated lumbar puncture with CSF drainage and external lumbar drainage might be required in the management of these patients. Usually, there is a high grade of uncertainty and the basis for clinical decisions regarding ICP hypertension tends to be from clinical findings (headache, nausea and vomiting), a low Glasgow coma scale score, and/or fundoscopic papilledema. Significant neurological decline can occur if elevated CSF pressures are inadequately managed. Various treatment strategies to address intracranial hypertension in this setting have been described, including: medical management, serial lumbar punctures, external lumbar and ventricular drain placement, and either ventricular or lumbar shunting. This study aims to evaluate the role of a non-invasive intracranial pressure (ICP-NI) monitoring in a critically ill HIV-CM patient.
Collapse
Affiliation(s)
- V R Bollela
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - G Frigieri
- Braincare Health Technology, São Carlos, SP, Brasil
| | - F C Vilar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - D L Spavieri
- Braincare Health Technology, São Carlos, SP, Brasil
| | | | | | | | - T M de Haes
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O M Takayanagui
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A M Catai
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | | |
Collapse
|
19
|
Intracranial volumetric changes govern cerebrospinal fluid flow in the Aqueduct of Sylvius in healthy adults. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2017.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Koppelmans V, Pasternak O, Bloomberg JJ, Dios YED, Wood SJ, Riascos R, Reuter-Lorenz PA, Kofman IS, Mulavara AP, Seidler RD. Intracranial Fluid Redistribution But No White Matter Microstructural Changes During a Spaceflight Analog. Sci Rep 2017; 7:3154. [PMID: 28600534 PMCID: PMC5466616 DOI: 10.1038/s41598-017-03311-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and axial body unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6° HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n = 12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging was used to quantify distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreases in the post-central gyrus and precuneus correlated negatively with balance changes. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.
Collapse
Affiliation(s)
- Vincent Koppelmans
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | - Scott J Wood
- NASA Johnson Space Center, Houston, TX, United States
- Azusa Pacific University, Azusa, CA, United States
| | - Roy Riascos
- The University of Texas Health Science Center, Houston, TX, United States
| | | | | | | | - Rachael D Seidler
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States.
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States.
- Neuroscience Program, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
21
|
Ishida S, Miyati T, Ohno N, Hiratsuka S, Alperin N, Mase M, Gabata T. MRI-based assessment of acute effect of head-down tilt position on intracranial hemodynamics and hydrodynamics. J Magn Reson Imaging 2017; 47:565-571. [PMID: 28577333 DOI: 10.1002/jmri.25781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To quantify the acute effect of the head-down tilt (HDT) posture on intracranial hemodynamics and hydrodynamics. MATERIALS AND METHODS We evaluated the intracranial physiological parameters, blood flow-related parameters, and brain morphology in the HDT (-6° and -12°) and the horizontal supine (HS) positions. Seven and 15 healthy subjects were scanned for each position using 3.0 T magnetic resonance imaging system. The peak-to-peak intracranial volume change, the peak-to-peak cerebrospinal fluid (CSF) pressure gradient (PGp-p ), and the intracranial compliance index were calculated from the blood and CSF flow determined using a cine phase-contrast technique. The brain volumetry was conducted using SPM12. The measurements were compared using the Wilcoxon signed-rank test or a paired t-test. RESULTS No measurements changed in the -6° HDT. The PGp-p and venous outflow of the internal jugular veins (IJVs) in the -12° HDT were significantly increased compared to the HS (P < 0.001 and P = 0.025, respectively). The cross-sectional areas of the IJVs were significantly larger (P < 0.001), and the maximum, minimum, and mean blood flow velocity of the IJVs were significantly decreased (P = 0.003, < 0.001, and = 0.001, respectively) in the -12° HDT. The mean blood flow velocities of the internal carotid arteries were decreased (P = 0.023). Neither position affected the brain volume. CONCLUSION Pressure gradient and venous outflow were increased in accordance with the elevation of the intracranial pressure as an acute effect of the HDT. However, the CSF was not constantly shifted from the spinal canal to the cranium. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:565-571.
Collapse
Affiliation(s)
- Shota Ishida
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.,Radiological center, University of Fukui Hospital, Fukui, Japan
| | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Naoki Ohno
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Shinnosuke Hiratsuka
- Department of Radiology, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Noam Alperin
- Department of Radiology, University of Miami, Miami, Florida, USA
| | - Mitsuhito Mase
- Department of Neurosurgery and Restorative Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Aichi, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Hospital, Ishikawa, Japan
| |
Collapse
|
22
|
Yildiz S, Thyagaraj S, Jin N, Zhong X, Heidari Pahlavian S, Martin BA, Loth F, Oshinski J, Sabra KG. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI. J Magn Reson Imaging 2017; 46:431-439. [DOI: 10.1002/jmri.25591] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 02/05/2023] Open
Affiliation(s)
- Selda Yildiz
- Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta Georgia USA
| | - Suraj Thyagaraj
- Department of Mechanical Engineering, Conquer Chiari Research Center; University of Akron; Akron Ohio USA
| | - Ning Jin
- MR R&D Collaborations; Siemens Healthcare; Columbus Ohio USA
| | - Xiaodong Zhong
- MR R&D Collaborations; Siemens Healthcare; Atlanta Georgia USA
- Department of Radiology; Emory University; Atlanta Georgia USA
| | - Soroush Heidari Pahlavian
- Department of Mechanical Engineering, Conquer Chiari Research Center; University of Akron; Akron Ohio USA
| | - Bryn A. Martin
- Department of Biological Engineering; University of Idaho; Moscow Idaho USA
| | - Francis Loth
- Department of Mechanical Engineering, Conquer Chiari Research Center; University of Akron; Akron Ohio USA
| | - John Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering; Emory University; Atlanta Georgia USA
| | - Karim G. Sabra
- Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta Georgia USA
| |
Collapse
|