1
|
Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01174-7. [PMID: 38904746 DOI: 10.1007/s10334-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Iida K, Hashimoto Y, Nishino K, Nishida Y, Nakamura H. Lateral meniscus autograft transplantation using hamstring tendon with a sandwiched bone marrow - derived fibrin clot: A case report. Int J Surg Case Rep 2023; 108:108444. [PMID: 37429203 PMCID: PMC10382839 DOI: 10.1016/j.ijscr.2023.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
INTRODUCTION AND IMPORTANCE Tendon autograft is a durable solution for the sub/total meniscus; however it is still considered a temporary solution. CASE PRESENTATION We report the case of a 17-year-old woman with history of subtotal lateral meniscectomy performed 6 years ago. We treated her with lateral meniscus autograft transplantation using a hamstring tendon with a sandwiched bone marrow aspirate (BMA)-derived fibrin clot. T2 relaxation times of the anterior and posterior horns of both menisci and of the cartilage were assessed. CLINICAL DISCUSSION Lateral meniscus autograft transplantation using a hamstring tendon with a sandwiched BMA clot improved clinical and radiographic outcomes at the 24-month follow-up. These findings suggest that the lateral meniscus autograft transplantation using a hamstring tendon with a sandwiched BMA clot transformed into a meniscus-like tissue and resulted in preservation of the articular cartilage. CONCLUSION Lateral meniscus autograft transplantation using a hamstring tendon with a sandwiched BMA clot can function as a meniscal transplant after total or subtotal meniscectomy in young patients.
Collapse
Affiliation(s)
- Ken Iida
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hashimoto
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Kazuya Nishino
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yohei Nishida
- Department of Orthopaedic Surgery, Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Trivedi J, Betensky D, Desai S, Jayasuriya CT. Post-Traumatic Osteoarthritis Assessment in Emerging and Advanced Pre-Clinical Meniscus Repair Strategies: A Review. Front Bioeng Biotechnol 2021; 9:787330. [PMID: 35004646 PMCID: PMC8733822 DOI: 10.3389/fbioe.2021.787330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Surgical repair of meniscus injury is intended to help alleviate pain, prevent further exacerbation of the injury, restore normal knee function, and inhibit the accelerated development of post-traumatic osteoarthritis (PTOA). Meniscus injuries that are treated poorly or left untreated are reported to significantly increase the risk of PTOA in patients. Current surgical approaches for the treatment of meniscus injuries do not eliminate the risk of accelerated PTOA development. Through recent efforts by scientists to develop innovative and more effective meniscus repair strategies, the use of biologics, allografts, and scaffolds have come into the forefront in pre-clinical investigations. However, gauging the extent to which these (and other) approaches inhibit the development of PTOA in the knee joint is often overlooked, yet an important consideration for determining the overall efficacy of potential treatments. In this review, we catalog recent advancements in pre-clinical therapies for meniscus injuries and discuss the assessment methodologies that are used for gauging the success of these treatments based on their effect on PTOA severity. Methodologies include histopathological evaluation of cartilage, radiographic evaluation of the knee, analysis of knee function, and quantification of OA predictive biomarkers. Lastly, we analyze the prevalence of these methodologies using a systemic PubMed® search for original scientific journal articles published in the last 3-years. We indexed 37 meniscus repair/replacement studies conducted in live animal models. Overall, our findings show that approximately 75% of these studies have performed at least one assessment for PTOA following meniscus injury repair. Out of this, 84% studies have reported an improvement in PTOA resulting from treatment.
Collapse
Affiliation(s)
| | | | | | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
4
|
Nakagawa Y, Muneta T, Watanabe T, Horie M, Nakamura T, Otabe K, Katakura M, Sumi Y, Sekiya I, Koga H. Arthroscopic centralization achieved good clinical improvements and radiographic outcomes in a rugby player with osteoarthritis after subtotal lateral meniscectomy: A case report. J Orthop Sci 2020; 25:537-543. [PMID: 28969953 DOI: 10.1016/j.jos.2017.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Yusuke Nakagawa
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takeshi Muneta
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Toshifumi Watanabe
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Masafumi Horie
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tomomasa Nakamura
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Koji Otabe
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Mai Katakura
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yusuke Sumi
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Ichiro Sekiya
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hideyuki Koga
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
5
|
Kondo S, Nakagawa Y, Mizuno M, Katagiri K, Tsuji K, Kiuchi S, Ono H, Muneta T, Koga H, Sekiya I. Transplantation of Aggregates of Autologous Synovial Mesenchymal Stem Cells for Treatment of Cartilage Defects in the Femoral Condyle and the Femoral Groove in Microminipigs. Am J Sports Med 2019; 47:2338-2347. [PMID: 31306591 DOI: 10.1177/0363546519859855] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous work has demonstrated that patients with cartilage defects of the knee benefit from arthroscopic transplantation of autologous synovial mesenchymal stem cells (MSCs) in terms of magnetic resonance imaging (MRI), qualitative histologic findings, and Lysholm score. However, the effectiveness was limited by the number of cells obtained, so large-sized defects (>500 mm2) were not investigated. The use of MSC aggregates may enable treatment of larger defects by increasing the number of MSCs adhering to the cartilage defect. PURPOSE To investigate whether transplantation of aggregates of autologous synovial MSCs with 2-step surgery could promote articular cartilage regeneration in microminipig osteochondral defects. STUDY DESIGN Controlled laboratory study. METHODS Synovial MSCs derived from a microminipig were examined for in vitro colony-forming and multidifferentiation abilities. An aggregate of 250,000 synovial MSCs was formed with hanging drop culture, and 16 aggregates (for each defect) were implanted on both osteochondral defects (6 × 6 × 1.5 mm) created in the medial femoral condyle and femoral groove (MSC group). The defects in the contralateral knee were left empty (control group). The knee joints were evaluated at 4 and 12 weeks by macroscopic findings and histology. MRI T1rho mapping images were acquired at 12 weeks. For cell tracking, synovial MSCs were labeled with ferucarbotran before aggregate formation and were observed with MRI at 1 week. RESULTS Synovial MSCs showed in vitro colony-forming and multidifferentiation abilities. Regenerative cartilage formation was significantly better in the MSC group than in the control group, as indicated by International Cartilage Repair Society score (macro), modified Wakitani score (histology), and T1rho mapping (biochemical MRI) in the medial condyle at 12 weeks. Implanted cells, labeled with ferucarbotran, were observed in the osteochondral defects at 1 week with MRI. No significant difference was noted in the modified Wakitani score at 4 weeks in the medial condyle and at 4 and 12 weeks in the femoral groove. CONCLUSION Transplantation of autologous synovial MSC aggregates promoted articular cartilage regeneration at the medial femoral condyle at 12 weeks in microminipigs. CLINICAL RELEVANCE Aggregates of autologous synovial MSCs could expand the indications for cartilage repair with synovial MSCs.
Collapse
Affiliation(s)
- Shimpei Kondo
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenta Katagiri
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Takeshi Muneta
- National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A Survey of Methods for 3D Histology Reconstruction. Med Image Anal 2018; 46:73-105. [DOI: 10.1016/j.media.2018.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
|
7
|
Affiliation(s)
- Matthew J Allen
- Department of Veterinary Medicine, Surgical Discovery Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Kondo S, Muneta T, Nakagawa Y, Koga H, Watanabe T, Tsuji K, Sotome S, Okawa A, Kiuchi S, Ono H, Mizuno M, Sekiya I. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. J Orthop Res 2017; 35:1274-1282. [PMID: 26916126 DOI: 10.1002/jor.23211] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Transplantation of aggregates of synovial mesenchymal stem cells (MSCs) enhanced meniscus regeneration in rats. Anatomy and biological properties of the meniscus depend on animal species. To apply this technique clinically, it is valuable to investigate the use of animals genetically close to humans. We investigated whether transplantation of aggregates of autologous synovial MSCs promoted meniscal regeneration in aged primates. Chynomolgus primates between 12 and 13 years old were used. After the anterior halves of the medial menisci in both knees were removed, an average of 14 aggregates consisting of 250,000 synovial MSCs were transplanted onto the meniscus defect. No aggregates were transplanted to the opposite knee for the control. Meniscus and articular cartilage were analyzed macroscopically, histologically, and by MRI T1rho mapping at 8 (n = 3) and 16 weeks (n = 4). The medial meniscus was larger and the modified Pauli's histological score for the regenerated meniscus was better in the MSC group than in the control group in each primate at 8 and 16 weeks. Mankin's score for the medial femoral condyle cartilage was better in the MSC group than in the control group in all primates at 16 weeks. T1rho value for both the regenerated meniscus and adjacent articular cartilage in the MSC group was closer to the normal meniscus than in the control group in all primates at 16 weeks. Transplantation of aggregates of autologous synovial MSCs promoted meniscus regeneration and delayed progression of degeneration of articular cartilage in aged primates. This is the first report dealing with meniscus regeneration in primates. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1274-1282, 2017.
Collapse
Affiliation(s)
- Shimpei Kondo
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshifumi Watanabe
- Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shinichi Sotome
- Department of Orthopaedic Research and Development, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Early Changes of Irradiated Parotid Glands Evaluated by T1rho-Weighted Imaging. J Comput Assist Tomogr 2017; 41:472-476. [DOI: 10.1097/rct.0000000000000547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Abstract
The knee is a fascinating yet complex joint. Researchers and clinicians agree that the joint is an organ comprised of highly specialized intrinsic and extrinsic tissues contributing to both health and disease. Key to the function and movement of the knee are the menisci, exquisite fibrocartilage structures that are critical structures for maintaining biological and biomechanical integrity of the joint. The biological/physiological functions of the menisci must be understood at the tissue, cellular and even molecular levels in order to determine clinically relevant methods for assessing it and influencing it. By investigating normal and pathological functions at the basic science level, we can begin to translate data to patients. The objective of this article is to provide an overview of this translational pathway so that progression toward improved diagnostic, preventative, and therapeutic strategies can be effectively pursued. We have thoroughly examined the pathobiological, biomarker, and imaging aspects of meniscus research. This translational approach can be effective toward optimal diagnosis, prevention, and treatment for the millions of patients who suffer from meniscal disorders each year.
Collapse
Affiliation(s)
- James L Cook
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Keiichi Kuroki
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Aaron M Stoker
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Farrah A Monibi
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Brandon L Roller
- b Department of Radiology , Wake Forest Baptist Medical Center , Winston-Salem , NC , USA
| |
Collapse
|
11
|
Nakagawa Y, Muneta T, Otabe K, Ozeki N, Mizuno M, Udo M, Saito R, Yanagisawa K, Ichinose S, Koga H, Tsuji K, Sekiya I. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo. PLoS One 2016; 11:e0148777. [PMID: 26867127 PMCID: PMC4750963 DOI: 10.1371/journal.pone.0148777] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. METHODS For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. RESULTS In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in the superficial cartilage. CONCLUSION Cartilage derived from MSCs expressed lubricin protein both in vitro and in vivo. Aggregation promoted lubricin expression of MSCs in vitro and transplantation of aggregates of MSCs regenerated cartilage including the superficial zone in a rat osteochondral defect model. Our results indicate that aggregated MSCs could be clinically relevant for therapeutic approaches to articular cartilage regeneration with an appropriate superficial zone in the future.
Collapse
Affiliation(s)
- Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Otabe
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mio Udo
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryusuke Saito
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuaki Yanagisawa
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shizuko Ichinose
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|