1
|
Ahn H, Kim JK, Hwang SI, Hong SK, Byun SS, Song SH, Choe G, Jee HM, Park SW. Exploring the potential of ex-vivo 7-T magnetic resonance imaging on patients with clinically significant prostate cancer: visibility and size perspective. Prostate Int 2024; 12:79-85. [PMID: 39036759 PMCID: PMC11255944 DOI: 10.1016/j.prnil.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 07/23/2024] Open
Abstract
Background Despite progress in multiparametric magnetic resonance imaging (MRI), issues of prostate cancer invisibility and underestimated tumor burden persist. This study investigates the potential of an ultra-high field MRI at 7-T in an ex-vivo setting to address these limitations. Methods This prospective study included 54 tumors from 20 treatment-naïve clinically significant prostate cancer patients, confirmed by biopsy, despite negative findings on preoperative 3-T MRI. Ex-vivo 7-T MRI of resected prostates was performed, with assessment on tumor visibility and size. Factors influencing visibility were analyzed using logistic regression analyses. Results Tumor visibility was confirmed in 80% of patients, and 48% of all tumors on ex-vivo imaging. Gleason pattern 4 percentage (odds ratio 1.09) and tumor size on pathology (odds ratio 1.36) were significantly associated with visibility (P < 0.05). Mean MRI-visible and invisible tumor sizes were 10.5 mm and 5.3 mm, respectively. The size discrepancy between MRI and pathology was 2.7 mm. Conclusion Tumor visibility on ex-vivo 7-T MRI was influenced by tumor grade and size. The notable tumor visibility initially overlooked on 3-T MRI, along with small size discrepancy with pathology, suggests potential improvements in resolution.
Collapse
Affiliation(s)
- Hyungwoo Ahn
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Il Hwang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang Hun Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Mi Jee
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Woo Park
- Department of Biomedical Engineering, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
2
|
Mo Z, Zhang X, Liang H, Chen Q, Tie C, Xiao W, Cao Q, Liu C, Zou C, Wan L, Zhang X, Li Y. A Novel Three-Channel Endorectal Coil for Prostate Magnetic Resonance Imaging at 3T. IEEE Trans Biomed Eng 2023; 70:3381-3388. [PMID: 37318962 DOI: 10.1109/tbme.2023.3286488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The purpose of this work is to develop a 3-channel endorectal coil (ERC-3C) structure to obtain higher signal-to-noise (SNR) and better parallel imaging performance for prostate magnetic resonance imaging (MRI) at 3T. METHODS The coil performance was validated by in vivo studies and the SNR, g-factor, and diffusion-weighted imaging (DWI) were compared. A 2-channel endorectal coil (ERC-2C) with two orthogonal loops and a 12-channel external surface coil were employed for comparison. RESULTS Compared with the ERC-2C with a quadrature configuration and the external 12-channel coil array, the proposed ERC-3C improved SNR performance by 23.9% and 428.9%, respectively. The improved SNR enables the ERC-3C to produce spatial high-resolution images of 0.24 mm × 0.24 mm × 2 mm (0.1152 μL) in the prostate area within 9 minutes. CONCLUSION We developed an ERC-3C and validated its performance through in vivo MR imaging experiments. SIGNIFICANCE The results demonstrated the feasibility of an ERC with more than two channels and that a higher SNR can be achieved using the ERC-3C compared with an orthogonal ERC-2C of the same coverage.
Collapse
|
3
|
Wishart DS, Cheng LL, Copié V, Edison AS, Eghbalnia HR, Hoch JC, Gouveia GJ, Pathmasiri W, Powers R, Schock TB, Sumner LW, Uchimiya M. NMR and Metabolomics-A Roadmap for the Future. Metabolites 2022; 12:678. [PMID: 35893244 PMCID: PMC9394421 DOI: 10.3390/metabo12080678] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021-the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements.
Collapse
Affiliation(s)
- David S. Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Leo L. Cheng
- Department of Pathology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA;
| | - Arthur S. Edison
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (A.S.E.); (G.J.G.); (M.U.)
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602-0001, USA
| | - Hamid R. Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA; (H.R.E.); (J.C.H.)
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA; (H.R.E.); (J.C.H.)
| | - Goncalo J. Gouveia
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (A.S.E.); (G.J.G.); (M.U.)
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602-0001, USA
| | - Wimal Pathmasiri
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Tracey B. Schock
- National Institute of Standards and Technology (NIST), Chemical Sciences Division, Charleston, SC 29412, USA;
| | - Lloyd W. Sumner
- Interdisciplinary Plant Group, MU Metabolomics Center, Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mario Uchimiya
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (A.S.E.); (G.J.G.); (M.U.)
| |
Collapse
|
4
|
Tenbergen CJA, Metzger GJ, Scheenen TWJ. Ultra-high-field MR in Prostate cancer: Feasibility and Potential. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:631-644. [PMID: 35579785 PMCID: PMC9113077 DOI: 10.1007/s10334-022-01013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Multiparametric MRI of the prostate at clinical magnetic field strengths (1.5/3 Tesla) has emerged as a reliable noninvasive imaging modality for identifying clinically significant cancer, enabling selective sampling of high-risk regions with MRI-targeted biopsies, and enabling minimally invasive focal treatment options. With increased sensitivity and spectral resolution, ultra-high-field (UHF) MRI (≥ 7 Tesla) holds the promise of imaging and spectroscopy of the prostate with unprecedented detail. However, exploiting the advantages of ultra-high magnetic field is challenging due to inhomogeneity of the radiofrequency field and high local specific absorption rates, raising local heating in the body as a safety concern. In this work, we review various coil designs and acquisition strategies to overcome these challenges and demonstrate the potential of UHF MRI in anatomical, functional and metabolic imaging of the prostate and pelvic lymph nodes. When difficulties with power deposition of many refocusing pulses are overcome and the full potential of metabolic spectroscopic imaging is used, UHF MR(S)I may aid in a better understanding of the development and progression of local prostate cancer. Together with large field-of-view and low-flip-angle anatomical 3D imaging, 7 T MRI can be used in its full strength to characterize different tumor stages and help explain the onset and spatial distribution of metastatic spread.
Collapse
Affiliation(s)
- Carlijn J A Tenbergen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
5
|
Prostate MRI using a rigid two-channel phased-array endorectal coil: comparison with phased array coil acquisition at 3 T. Cancer Imaging 2022; 22:15. [PMID: 35296357 PMCID: PMC8925156 DOI: 10.1186/s40644-022-00453-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/27/2022] [Indexed: 11/27/2022] Open
Abstract
Background To compare image quality, lesion detection and patient comfort of 3T prostate MRI using a combined rigid two-channel phased-array endorectal coil and an external phased-array coil (ERC-PAC) compared to external PAC acquisition in the same patients. Methods Thirty three men (mean age 65.3y) with suspected (n = 15) or biopsy-proven prostate cancer (PCa, n = 18) were prospectively enrolled in this exploratory study. 3T prostate MRI including T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) was performed using an ERC-PAC versus PAC alone, in random order. Image quality, lesion detection and characterization (biparametric PI-RADSv2.1) were evaluated by 2 independent observers. Estimated signal-to-noise ratio (eSNR) was measured in identified lesions and the peripheral zone (PZ). Patient comfort was assessed using a questionnaire. Data were compared between sequences and acquisitions. Inter/intra-observer agreement for PI-RADS scores was evaluated. Results Twenty four prostate lesions (22 PCa) were identified in 20/33 men. Superior image quality was found for ERC-PAC compared to PAC for T2WI for one observer (Obs.1, p < 0.03) and high b-value DWI for both observers (p < 0.05). The sensitivity of PI-RADS for lesion detection for ERC-PAC and PAC acquisitions was 79.2 and 75% for Obs.1, and 79.1 and 66.7%, for Obs.2, without significant difference for each observer (McNemar p-values ≥0.08). Inter−/intra-observer agreement for PI-RADS scores was moderate-to-substantial (kappa = 0.52–0.84). Higher eSNR was observed for lesions and PZ for T2WI and PZ for DWI using ERC-PAC (p < 0.013). Most patients (21/33) reported discomfort at ERC insertion. Conclusion Despite improved image quality and eSNR using the rigid ERC-PAC combination, no significant improvement in lesion detection was observed, therefore not supporting the routine use of ERC for prostate MRI. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-022-00453-7.
Collapse
|
6
|
Sadeghi-Tarakameh A, Jungst S, Lanagan M, DelaBarre L, Wu X, Adriany G, Metzger GJ, Van de Moortele PF, Ugurbil K, Atalar E, Eryaman Y. A nine-channel transmit/receive array for spine imaging at 10.5 T: Introduction to a nonuniform dielectric substrate antenna. Magn Reson Med 2021; 87:2074-2088. [PMID: 34825735 DOI: 10.1002/mrm.29096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS We optimized a dipole antenna at 10.5 Tesla by maximizing the B 1 + -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS Single NODES element showed up to 18% and 30% higher B 1 + -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B 1 + homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.
Collapse
Affiliation(s)
- Alireza Sadeghi-Tarakameh
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Mike Lanagan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Sadeghi-Tarakameh A, Adriany G, Metzger GJ, Lagore RL, Jungst S, DelaBarre L, Van de Moortele PF, Ugurbil K, Atalar E, Eryaman Y. Improving radiofrequency power and specific absorption rate management with bumped transmit elements in ultra-high field MRI. Magn Reson Med 2020; 84:3485-3493. [PMID: 32767392 PMCID: PMC7722062 DOI: 10.1002/mrm.28382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE In this study, we investigate a strategy to reduce the local specific absorption rate (SAR) while keeping B 1 + constant inside the region of interest (ROI) at the ultra-high field (B0 ≥ 7T) MRI. METHODS Locally raising the resonance structure under the discontinuity (i.e., creating a bump) increases the distance between the accumulated charges and the tissue. As a result, it reduces the electric field and local SAR generated by these charges inside the tissue. The B 1 + at a point that is sufficiently far from the coil, however, is not affected by this modification. In this study, three different resonant elements (i.e., loop coil, snake antenna, and fractionated dipole [FD]) are investigated. For experimental validation, a bumped FD is further investigated at 10.5T. After the validation, the transmit performances of eight-channel arrays of each element are compared through electromagnetic (EM) simulations. RESULTS Introducing a bump reduced the peak 10g-averaged SAR by 21, 26, 23% for the loop and snake antenna at 7T, and FD at 10.5T, respectively. In addition, eight-channel bumped FD array at 10.5T had a 27% lower peak 10g-averaged SAR in a realistic human body simulation (i.e., prostate imaging) compared to an eight-channel FD array. CONCLUSION In this study, we investigated a simple design strategy based on adding bumps to a resonant element to reduce the local SAR while maintaining B 1 + inside an ROI. As an example, we modified an FD and performed EM simulations and phantom experiments with a 10.5T scanner. Results show that the peak 10g-averaged SAR can be reduced more than 25%.
Collapse
Affiliation(s)
- Alireza Sadeghi-Tarakameh
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell L. Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Steensma B, van de Moortele PF, Ertürk A, Grant A, Adriany G, Luijten P, Klomp D, van den Berg N, Metzger G, Raaijmakers A. Introduction of the snake antenna array: Geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR. Magn Reson Med 2020; 84:2885-2896. [PMID: 32367560 PMCID: PMC7496175 DOI: 10.1002/mrm.28297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Purpose To improve imaging performance for body MRI with a local transmit array at 10.5T, the geometry of a dipole antenna was optimized to achieve lower peak specific absorption rate (SAR) levels and a more uniform transmit profile. Methods Electromagnetic simulations on a phantom were used to evaluate the SAR and
B1+‐performance of different dipole antenna geometries. The best performing antenna (the snake antenna) was simulated on human models in a 12‐channel array configuration for safety assessment and for comparison to a previous antenna design. This 12‐channel array was constructed after which electromagnetic simulations were validated by
B1+‐maps and temperature measurements. After obtaining approval by the Food and Drug Administration to scan with the snake antenna array, in vivo imaging was performed on 2 volunteers. Results Simulation results on a phantom indicate a lower SAR and a higher transmit efficiency for the snake antenna compared to the fractionated dipole array. Similar results are found on a human body model: when comparing the trade‐off between uniformity and peak SAR, the snake antenna performs better for all imaging targets. Simulations and measurements are in good agreement. Preliminary imaging result were acquired in 2 volunteers with the 12‐channel snake antenna array. Conclusion By optimizing the geometry of a dipole antenna, peak SAR levels were lowered while achieving a more uniform transmit field as demonstrated in simulations on a phantom and a human body model. The array was constructed, validated, and successfully used to image 2 individuals at 10.5T.
Collapse
Affiliation(s)
- Bart Steensma
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Restorative Therapies Group, Medtronic, Minneapolis, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Peter Luijten
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nico van den Berg
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gregory Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Alexander Raaijmakers
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
10
|
He X, Ertürk MA, Grant A, Wu X, Lagore RL, DelaBarre L, Eryaman Y, Adriany G, Auerbach EJ, Van de Moortele PF, Uğurbil K, Metzger GJ. First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz. Magn Reson Med 2019; 84:289-303. [PMID: 31846121 DOI: 10.1002/mrm.28131] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B 1 + inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.
Collapse
Affiliation(s)
- Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Eddie J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | | | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
11
|
Erturk MA, Li X, Van de Moortele PF, Ugurbil K, Metzger GJ. Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions. Top Magn Reson Imaging 2019; 28:101-124. [PMID: 31188271 PMCID: PMC6587233 DOI: 10.1097/rmr.0000000000000202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The potential value of ultrahigh field (UHF) magnetic resonance imaging (MRI) and spectroscopy to biomedical research and in clinical applications drives the development of technologies to overcome its many challenges. The increased difficulties of imaging the human torso compared with the head include its overall size, the dimensions and location of its anatomic targets, the increased prevalence and magnitude of physiologic effects, the limited availability of tailored RF coils, and the necessary transmit chain hardware. Tackling these issues involves addressing notoriously inhomogeneous transmit B1 (B1) fields, limitations in peak B1, larger spatial variations of the static magnetic field B0, and patient safety issues related to implants and local RF power deposition. However, as research institutions and vendors continue to innovate, the potential gains are beginning to be realized. Solutions overcoming the unique challenges associated with imaging the human torso are reviewed as are current studies capitalizing on the benefits of UHF in several anatomies and applications. As the field progresses, strategies associated with the RF system architecture, calibration methods, RF pulse optimization, and power monitoring need to be further integrated into the MRI systems making what are currently complex processes more streamlined. Meanwhile, the UHF MRI community must seize the opportunity to build upon what have been so far proof of principle and feasibility studies and begin to further explore the true impact in both research and the clinic.
Collapse
Affiliation(s)
- M Arcan Erturk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|
12
|
Steensma BR, Voogt I, van der Werf AJ, van den Berg CA, Luijten PR, Klomp DW, Raaijmakers AJ. Design of a forward view antenna for prostate imaging at 7 T. NMR IN BIOMEDICINE 2018; 31:e3993. [PMID: 30022543 PMCID: PMC6175442 DOI: 10.1002/nbm.3993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 05/19/2023]
Abstract
PURPOSE To design a forward view antenna for prostate imaging at 7 T, which is placed between the legs of the subject in addition to a dipole array. MATERIALS AND METHODS The forward view antenna is realized by placing a cross-dipole antenna at the end of a small rectangular waveguide. Quadrature drive of the cross-dipole can excite a circularly polarized wave propagating along the axial direction to and from the prostate region. Functioning of the forward view antenna is validated by comparing measurements and simulations. Antenna performance is evaluated by numerical simulations and measurements at 7 T. RESULTS Simulations of B1+ on a phantom are in good correspondence with measurements. Simulations on a human model indicate that the signal-to-noise ratio (SNR), specific absorption rate (SAR) efficiency and SAR increase when adding the forward view antenna to a previously published dipole array. The SNR increases by up to 18% when adding the forward view antenna as a receive antenna to an eight-channel dipole array in vivo. CONCLUSIONS A design for a forward view antenna is presented and evaluated. SNR improvements up to 18% are demonstrated when adding the forward view antenna to a dipole array.
Collapse
Affiliation(s)
| | - Ingmar Voogt
- University Medical Center UtrechtUtrechtthe Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Chacon-Caldera J, Fischer A, Malzacher M, Vetter Y, Davids M, Flöser M, Stumpf C, Schad LR. Evaluation of stacked resonators to enhance the performance of a surface receive-only array for prostate MRI at 3 Tesla. Magn Reson Imaging 2018; 53:164-172. [PMID: 30053430 DOI: 10.1016/j.mri.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Prostate MRI is an important tool to diagnose and characterize cancer. High local sensitivity and good parallel imaging performance are of paramount importance for diagnostic quality and efficiency. The purpose of this work was to evaluate stacked resonators as part of a surface receiver array for prostate MRI at 3 Tesla. A base array of 6-channels consisting of a flexible anterior and a rigid posterior part were built each with three loop coils. A pair of stacked resonators was added concentrically to the center loops (anterior and posterior) of the base array. The evaluated stacked resonators were butterflies, composites and dipoles which yielded a total of three 8-channel arrays. The arrays were compared using noise correlations and single-channel signal-to-noise ratio maps in a phantom. Combined signal-to-noise ratio maps and parallel imaging performances were measured and compared in vivo in 6 healthy volunteers. The results were compared to the base and a commercial array. The SNR values in the prostate yielded by all the arrays were not statistically different using fully sampled k-space. However, significant differences were found in the parallel imaging performance of the arrays. More specifically, up to 88% geometric factor reduction was found compared to the commercial array and up to 83% reduction compared to the base array using butterfly coils. Thus, signal-to-noise ratio improvements were observed with stacked resonators when using parallel imaging. The use of stacked elements, in particular butterfly coils, can improve the performance of a base array consisting solely of single loops when using parallel imaging. We expect prostate MRI at 3 Tesla to benefit from using combinations of single loops and stacked resonators.
Collapse
Affiliation(s)
- Jorge Chacon-Caldera
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Alexander Fischer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Malzacher
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yannik Vetter
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mathias Davids
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Abstract
OBJECTIVES The aim of this study was to evaluate the technical feasibility of prostate multiparametric magnetic resonance imaging (mpMRI) at a magnetic field strength of 7 T. MATERIALS AND METHODS In this prospective institutional review board-approved study, 14 patients with biopsy-proven prostate cancer (mean age, 65.2 years; median prostate-specific antigen [PSA], 6.2 ng/mL), all providing signed informed consent, underwent 7 T mpMRI with an external 8-channel body-array transmit coil and an endorectal receive coil between September 2013 and October 2014. Image and spectral quality of high-resolution T2-weighted (T2W) imaging (0.3 × 0.3 × 2 mm), diffusion-weighted imaging (DWI; 1.4 × 1.4 × 2 mm or 1.75 × 1.75 × 2 mm), and (H) MR spectroscopic imaging (MRSI; real voxel size, 0.6 mm in 7:16 minutes) were rated on a 5-point scale by 2 radiologists and a spectroscopist. RESULTS Prostate mpMRI including at least 2 of 3 MR techniques was obtained at 7 T in 13 patients in 65 ± 12 minutes. Overall T2W and DWI image quality at 7 T was scored as fair (38% and 17%, respectively) to good or very good (55% and 83%, respectively). The main artifacts for T2W imaging were motion and areas of low signal-to-noise ratio, the latter possibly caused by radiofrequency field inhomogeneities. For DWI, the primary artifact was ghosting of the rectal wall in the readout direction. Magnetic resonance spectroscopic imaging quality was rated fair or good in 56% of the acquisitions and was mainly limited by lipid contamination. CONCLUSIONS Multiparametric MRI of the prostate at 7 T is feasible at unprecedented spatial resolutions for T2W imaging and DWI and within clinically acceptable acquisition times for high-resolution MRSI, using the combination of an external 8-channel body-array transmit coil and an endorectal receive coil. The higher spatial resolutions can yield improved delineation of prostate anatomy, but the robustness of the techniques needs to be improved before clinical adoption of 7 T mpMRI.
Collapse
|
15
|
van Kalleveen IML, Hoogendam JP, Raaijmakers AJE, Visser F, Arteaga de Castro CS, Verheijen RHM, Luijten PR, Zweemer RP, Veldhuis WB, Klomp DWJ. Boosting the SNR by adding a receive-only endorectal monopole to an external antenna array for high-resolution, T 2 -weighted imaging of early-stage cervical cancer with 7-T MRI. NMR IN BIOMEDICINE 2017; 30:e3750. [PMID: 28574604 DOI: 10.1002/nbm.3750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the signal-to-noise ratio (SNR) gain in early-stage cervical cancer at ultrahigh-field MRI (e.g. 7 T) using a combination of multiple external antennas and a single endorectal antenna. In particular, we used an endorectal monopole antenna to increase the SNR in cervical magnetic resonance imaging (MRI). This should allow high-resolution, T2 -weighted imaging and magnetic resonance spectroscopy (MRS) for metabolic staging, which could facilitate the local tumor status assessment. In a prospective feasibility study, five healthy female volunteers and six patients with histologically proven stage IB1-IIB cervical cancer were scanned at 7 T. We used seven external fractionated dipole antennas for transmit-receive (transceive) and an endorectally placed monopole antenna for reception only. A region of interest, containing both normal cervix and tumor tissue, was selected for the SNR measurement. Separated signal and noise measurements were obtained in the region of the cervix for each element and in the near field of the monopole antenna (radius < 30 mm) to calculate the SNR gain of the endorectal antenna in each patient. We obtained high-resolution, T2 -weighted images with a voxel size of 0.7 × 0.8 × 3.0 mm3 . In four cases with optimal placement of the endorectal antenna (verified on the T2 -weighted images), a mean gain of 2.2 in SNR was obtained at the overall cervix and tumor tissue area. Within a radius of 30 mm from the monopole antenna, a mean SNR gain of 3.7 was achieved in the four optimal cases. Overlap between the two different regions of the SNR calculations was around 24%. We have demonstrated that the use of an endorectal monopole antenna substantially increases the SNR of 7-T MRI at the cervical anatomy. Combined with the intrinsically high SNR of ultrahigh-field MRI, this gain may be employed to obtain metabolic information using MRS and to enhance spatial resolutions to assess tumor invasion.
Collapse
Affiliation(s)
| | - J P Hoogendam
- Department of Gynaecological Oncology, UMC Utrecht Cancer Centre, the Netherlands
| | | | - F Visser
- Department of Radiology, UMC Utrecht, the Netherlands
| | | | - R H M Verheijen
- Department of Gynaecological Oncology, UMC Utrecht Cancer Centre, the Netherlands
| | - P R Luijten
- Department of Radiology, UMC Utrecht, the Netherlands
| | - R P Zweemer
- Department of Gynaecological Oncology, UMC Utrecht Cancer Centre, the Netherlands
| | - W B Veldhuis
- Department of Radiology, UMC Utrecht, the Netherlands
| | - D W J Klomp
- Department of Radiology, UMC Utrecht, the Netherlands
| |
Collapse
|
16
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|
17
|
Ertürk MA, Wu X, Eryaman Y, Van de Moortele PF, Auerbach EJ, Lagore RL, DelaBarre L, Vaughan JT, Uğurbil K, Adriany G, Metzger GJ. Toward imaging the body at 10.5 tesla. Magn Reson Med 2016; 77:434-443. [PMID: 27770469 DOI: 10.1002/mrm.26487] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 01/29/2023]
Abstract
PURPOSE To explore the potential of performing body imaging at 10.5 Tesla (T) compared with 7.0T through evaluating the transmit/receive performance of similarly configured dipole antenna arrays. METHODS Fractionated dipole antenna elements for 10.5T body imaging were designed and evaluated using numerical simulations. Transmit performance of antenna arrays inside the prostate, kidneys and heart were investigated and compared with those at 7.0T using both phase-only radiofrequency (RF) shimming and multi-spoke pulses. Signal-to-noise ratio (SNR) comparisons were also performed. A 10-channel antenna array was constructed to image the abdomen of a swine at 10.5T. Numerical methods were validated with phantom studies at both field strengths. RESULTS Similar power efficiencies were observed inside target organs with phase-only shimming, but RF nonuniformity was significantly higher at 10.5T. Spokes RF pulses allowed similar transmit performance with accompanying local specific absorption rate increases of 25-90% compared with 7.0T. Relative SNR gains inside the target anatomies were calculated to be >two-fold higher at 10.5T, and 2.2-fold SNR gain was measured in a phantom. Gradient echo and fast spin echo imaging demonstrated the feasibility of body imaging at 10.5T with the designed array. CONCLUSION While comparable power efficiencies can be achieved using dipole antenna arrays with static shimming at 10.5T; increasing RF nonuniformities underscore the need for efficient, robust, and safe parallel transmission methods. Magn Reson Med 77:434-443, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Thomas Vaughan
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering in The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Ertürk MA, Raaijmakers AJE, Adriany G, Uğurbil K, Metzger GJ. A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI. Magn Reson Med 2016; 77:884-894. [PMID: 26887533 DOI: 10.1002/mrm.26153] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/21/2015] [Accepted: 01/17/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop a 16-channel transceive body imaging array at 7.0 T with improved transmit, receive, and specific absorption rate (SAR) performance by combining both loop and dipole elements and using their respective and complementary near and far field characteristics. METHODS A 16-channel radiofrequency (RF) coil array consisting of eight loop-dipole blocks (16LD) was designed and constructed. Transmit and receive performance was quantitatively investigated in phantom and human model simulations, and experiments on five healthy volunteers inside the prostate. Comparisons were made with 16-channel microstrip line (16ML) and 10-channel fractionated dipole antenna (10DA) arrays. The 16LD was used to acquire anatomic and functional images of the prostate, kidneys, and heart. RESULTS The 16LD provided > 14% improvements in the signal-to-noise ratio (SNR), peak B1+, B1+ transmit, and SAR efficiencies over the 16ML and 10DA in simulations inside the prostate. Experimentally, the 16LD had > 20% higher SNR and B1+ transmit efficiency compared with other arrays, and achieved up to 51.8% higher peak B1+ compared with 10DA. CONCLUSION Combining loop and dipole elements provided a body imaging array with high channel count and density while limiting inter-element coupling. The 16LD improved both near and far-field performance compared with existing 7.0T body arrays and provided high-quality MRI of the prostate kidneys and heart. Magn Reson Med 77:884-894, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|