1
|
Bongers-Karmaoui MN, Hirsch A, Budde RPJ, Roest AAW, Jaddoe VWV, Gaillard R. Physical exercise and cardiovascular response: design and implementation of a pediatric CMR cohort study. Int J Cardiovasc Imaging 2023; 39:2575-2587. [PMID: 37801171 PMCID: PMC10691979 DOI: 10.1007/s10554-023-02950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/02/2023] [Indexed: 10/07/2023]
Abstract
To examine feasibility and reproducibility and to evaluate the cardiovascular response to an isometric handgrip exercise in low-risk pediatric population using Cardiovascular Magnetic Resonance measurements. In a subgroup of 207 children with a mean age of 16 years participating in a population-based prospective cohort study, children performed an isometric handgrip exercise. During rest and exercise, continuous heart rate and blood pressure were measured. Cardiovascular magnetic resonance (CMR) measurements included left ventricular mass, aortic distensibility and pulse wave velocity at rest and left ventricular end-diastolic and end-systolic volumes, ejection fraction, stroke volume and cardiac output during rest and exercise. 207 children had successful CMR measurements in rest and 184 during exercise. We observed good reproducibility for all cardiac measurements. Heart rate increased with a mean ± standard deviation of 42.6% ± 20.0 and blood pressure with 6.4% ± 7.0, 5.4% ± 6.1 and 11.0% ± 8.3 for systolic, diastolic and mean arterial blood pressure respectively (p-values < 0.05). During exercise, left ventricular end-diastolic and end-systolic volumes and cardiac output increased, whereas left ventricular ejection fraction slightly decreased (p-values < 0.05). Stroke volume did not change significantly. A sustained handgrip exercise of 7 min at 30-40% maximal voluntary contraction is a feasible exercise-test during CMR in a healthy pediatric population, which leads to significant changes in heart rate, blood pressure and functional measurements of the left ventricle in response to exercise. This approach offers great novel opportunities to detect subtle differences in cardiovascular health.
Collapse
Affiliation(s)
- Meddy N Bongers-Karmaoui
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arno A W Roest
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Bongers-Karmaoui MN, Jaddoe VWV, Roest AAW, Gaillard R. The Cardiovascular Stress Response as Early Life Marker of Cardiovascular Health: Applications in Population-Based Pediatric Studies-A Narrative Review. Pediatr Cardiol 2020; 41:1739-1755. [PMID: 32879997 PMCID: PMC7695663 DOI: 10.1007/s00246-020-02436-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Stress inducement by physical exercise requires major cardiovascular adaptations in both adults and children to maintain an adequate perfusion of the body. As physical exercise causes a stress situation for the cardiovascular system, cardiovascular exercise stress tests are widely used in clinical practice to reveal subtle cardiovascular pathology in adult and childhood populations with cardiac and cardiovascular diseases. Recently, evidence from small studies suggests that the cardiovascular stress response can also be used within research settings to provide novel insights on subtle differences in cardiovascular health in non-diseased adults and children, as even among healthy populations an abnormal response to physical exercise is associated with an increased risk of cardiovascular diseases. This narrative review is specifically focused on the possibilities of using the cardiovascular stress response to exercise combined with advanced imaging techniques in pediatric population-based studies focused on the early origins of cardiovascular diseases. We discuss the physiology of the cardiovascular stress response to exercise, the type of physical exercise used to induce the cardiovascular stress response in combination with advanced imaging techniques, the obtained measurements with advanced imaging techniques during the cardiovascular exercise stress test and their associations with cardiovascular health outcomes. Finally, we discuss the potential for cardiovascular exercise stress tests to use in pediatric population-based studies focused on the early origins of cardiovascular diseases.
Collapse
Affiliation(s)
- Meddy N Bongers-Karmaoui
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arno A W Roest
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Kermer J, Traber J, Utz W, Hennig P, Menza M, Jung B, Greiser A, Barckow P, von Knobelsdorff-Brenkenhoff F, Töpper A, Blaszczyk E, Schulz-Menger J. Assessment of diastolic dysfunction: comparison of different cardiovascular magnetic resonance techniques. ESC Heart Fail 2020; 7:2637-2649. [PMID: 32686332 PMCID: PMC7524101 DOI: 10.1002/ehf2.12846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/09/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023] Open
Abstract
Aims Heart failure with preserved ejection fraction is still a diagnostic and therapeutic challenge, and accurate non‐invasive diagnosis of left ventricular (LV) diastolic dysfunction (DD) remains difficult. The current study aimed at identifying the most informative cardiovascular magnetic resonance (CMR) parameters for the assessment of LVDD. Methods and results We prospectively included 50 patients and classified them into three groups: with DD (DD+, n = 15), without (DD−, n = 26), and uncertain (DD±, n = 9). Diagnosis of DD was based on echocardiographic E/E′, invasive LV end‐diastolic pressure, and N‐terminal pro‐brain natriuretic peptide. CMR was performed at 1.5 T to assess LV and left atrial (LA) morphology, LV diastolic strain rate (SR) by tissue tracking and tagging, myocardial peak velocities by tissue phase mapping, and transmitral inflow profile using phase contrast techniques. Statistics were performed only on definitive DD+ and DD− (total number 41). DD+ showed enlarged LA with LA end‐diastolic volume/height performing best to identify DD+ with a cut‐off value of ≥0.52 mL/cm (sensitivity = 0.71, specificity = 0.84, and area under the receiver operating characteristic curve = 0.75). DD+ showed significantly reduced radial (inferolateral E peak: DD−: −14.5 ± 6.5%/s vs. DD+: −10.9 ± 5.9%/s, P = 0.04; anterolateral A peak: DD−: −4.2 ± 1.6%/s vs. DD+: −3.1 ± 1.4%/s, P = 0.04) and circumferential (inferolateral A peak: DD−: 3.8 ± 1.2%/s vs. DD+: 2.8 ± 0.8%/s, P = 0.007; anterolateral A peak: DD−: 3.5 ± 1.2%/s vs. DD+: 2.5 ± 0.8%/s, P = 0.048) SR in the basal lateral wall assessed by tissue tracking. In the same segments, DD+ showed lower peak myocardial velocity by tissue phase mapping (inferolateral radial peak: DD−: −3.6 ± 0.7 ms vs. DD+: −2.8 ± 1.0 ms, P = 0.017; anterolateral longitudinal peak: DD−: −5.0 ± 1.8 ms vs. DD+: −3.4 ± 1.4 ms, P = 0.006). Tagging revealed reduced global longitudinal SR in DD+ (DD−: 45.8 ± 12.0%/s vs. DD+: 34.8 ± 9.2%/s, P = 0.022). Global circumferential and radial SR by tissue tracking and tagging, LV morphology, and transmitral flow did not differ between DD+ and DD−. Conclusions Left atrial size and regional quantitative myocardial deformation applying CMR identified best patients with DD.
Collapse
Affiliation(s)
- Josephine Kermer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany
| | - Julius Traber
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany
| | - Wolfgang Utz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany
| | - Pierre Hennig
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany
| | - Marius Menza
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Jung
- Institute of Diagnostic, Interventional and Paediatric Radiology, University Hospital Bern, Bern, Switzerland
| | | | - Philipp Barckow
- Circle Cardiovascular Imaging Inc., Calgary, Alberta, Canada
| | - Florian von Knobelsdorff-Brenkenhoff
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,Department of Cardiology, Clinic Agatharied, Academic Teaching Hospital of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Agnieszka Töpper
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,Zentrum für Innere Medizin, Kardiologie, Angiologie und Notfallambulanz, Johanniter-Krankenhaus Genthin-Stendal, Akut- und Schwerpunktkrankenhaus, Akademisches Lehrkrankenhaus Otto-von-Guericke-Universität Magdeburg, Stendal, Germany
| | - Edyta Blaszczyk
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS-Kliniken Berlin-Buch, Schwanebecker Chaussee 50, Berlin, 13125, Germany
| |
Collapse
|
4
|
von Knobelsdorff-Brenkenhoff F, Schunke T, Reiter S, Scheck R, Höfling B, Pilz G. Influence of contrast agent and spatial resolution on myocardial strain results using feature tracking MRI. Eur Radiol 2020; 30:6099-6108. [PMID: 32472273 DOI: 10.1007/s00330-020-06971-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/10/2020] [Accepted: 05/20/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Feature tracking for assessing myocardial strain from cardiac magnetic resonance (CMR) cine images detects myocardial deformation abnormalities with prognostic implication, e.g., in myocardial infarction and cardiomyopathy. Standards for image acquisition and processing are not yet available. Study aim was analyzing the influence of spatial resolution and contrast agent on myocardial strain results. METHODS Seventy-five patients underwent CMR for analyzing peak systolic circumferential, longitudinal, and radial strain. Group A included n = 50 with normal left ventricular ejection fraction, no wall motion abnormality, and no fibrosis on late enhancement imaging. Group B included n = 25 with chronic myocardial infarct. For feature tracking, steady-state free precession cine images were acquired repeatedly. (1) Native standard cine (spatial resolution 1.4 × 1.4 × 8 mm3). (2) Native cine with lower spatial resolution (2.0 × 2.0 × 8 mm3). (3) Cine equal to variant 1 acquired after administration of gadoteracid. RESULTS Lower spatial resolution was associated with elevated longitudinal strain (- 21.7% vs. - 19.8%; p < 0.001) in viable myocardium in group A, and with elevated longitudinal (- 17.0% vs. - 14.3%; p = 0.001), circumferential (- 18.6% vs. - 14.6%; p = 0.002), and radial strain (36.8% vs. 31.0%; p = 0.013) in infarcted myocardium in group B. Gadolinium administration was associated with reduced circumferential (- 21.4% vs. - 22.3%; p = 0.001) and radial strain (44.4% vs. 46.9%; p = 0.016) in group A, whereas strain results of the infarcted tissue in group B did not change after contrast agent administration. CONCLUSIONS Variations in spatial resolution and the administration of contrast agent may influence myocardial strain results in viable and partly in infarcted myocardium. Standardized image acquisition seems important for CMR feature tracking. KEY POINTS • Feature tracking is used for calculating myocardial strain from cardiac magnetic resonance (CMR) cine images. • This prospective study demonstrated that CMR strain results may be influenced by spatial resolution and by the administration of gadolinium-based contrast agent. • The results underline the need for standardized image acquisition for CMR strain analysis, with constant imaging parameters and without contrast agent.
Collapse
Affiliation(s)
- Florian von Knobelsdorff-Brenkenhoff
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany.
| | - Tobias Schunke
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany
| | - Stephanie Reiter
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany
| | - Roland Scheck
- Radiology Oberland, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Agatharied, Munich, Germany
| | - Berthold Höfling
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany
| | - Günter Pilz
- Department of Cardiology, Clinic Agatharied, Ludwig-Maximilians-University of Munich, Norbert-Kerkel-Platz, Hausham, Agatharied, 83734, Munich, Germany
| |
Collapse
|
5
|
Ferrazzi G, Bassenge JP, Mayer J, Ruh A, Roujol S, Ittermann B, Schaeffter T, Cordero-Grande L, Schmitter S. Autocalibrated cardiac tissue phase mapping with multiband imaging and k-t acceleration. Magn Reson Med 2020; 84:2429-2441. [PMID: 32306471 DOI: 10.1002/mrm.28288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop an autocalibrated multiband (MB) CAIPIRINHA acquisition scheme with in-plane k-t acceleration enabling multislice three-directional tissue phase mapping in one breath-hold. METHODS A k-t undersampling scheme was integrated into a time-resolved electrocardiographic-triggered autocalibrated MB gradient-echo sequence. The sequence was used to acquire data on 4 healthy volunteers with MB factors of two (MB2) and three (MB3), which were reconstructed using a joint reconstruction algorithm that tackles both k-t and MB acceleration. Forward simulations of the imaging process were used to tune the reconstruction model hyperparameters. Direct comparisons between MB and single-band tissue phase-mapping measurements were performed. RESULTS Simulations showed that the velocities could be accurately reproduced with MB2 k-t (average ± twice the SD of the RMS error of 0.08 ± 0.22 cm/s and velocity peak reduction of 1.03% ± 6.47% compared with fully sampled velocities), whereas acceptable results were obtained with MB3 k-t (RMS error of 0.13 ± 0.58 cm/s and peak reduction of 2.21% ± 13.45%). When applied to tissue phase-mapping data, the proposed technique allowed three-directional velocity encoding to be simultaneously acquired at two/three slices in a single breath-hold of 18 heartbeats. No statistically significant differences were detected between MB2/MB3 k-t and single-band k-t motion traces averaged over the myocardium. Regional differences were found, however, when using the American Heart Association model for segmentation. CONCLUSION An autocalibrated MB k-t acquisition/reconstruction framework is presented that allows three-directional velocity encoding of the myocardial velocities at multiple slices in one breath-hold.
Collapse
Affiliation(s)
- Giulio Ferrazzi
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jean Pierre Bassenge
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Johannes Mayer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Alexander Ruh
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- FG Medizintechnik, Technische Universität Berlin, Berlin, Germany
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
6
|
Impact of age and cardiac disease on regional left and right ventricular myocardial motion in healthy controls and patients with repaired tetralogy of fallot. Int J Cardiovasc Imaging 2019; 35:1119-1132. [PMID: 30715669 DOI: 10.1007/s10554-019-01544-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022]
Abstract
The assessment of both left (LV) and right ventricular (RV) motion is important to understand the impact of heart disease on cardiac function. The MRI technique of tissue phase mapping (TPM) allows for the quantification of regional biventricular three-directional myocardial velocities. The goal of this study was to establish normal LV and RV velocity parameters across a wide range of pediatric to adult ages and to investigate the feasibility of TPM for detecting impaired regional biventricular function in patients with repaired tetralogy of Fallot (TOF). Thirty-six healthy controls (age = 1-75 years) and 12 TOF patients (age = 5-23 years) underwent cardiac MRI including TPM in short-axis locations (base, mid, apex). For ten adults, a second TPM scan was used to assess test-retest reproducibility. Data analysis included the calculation of biventricular radial, circumferential, and long-axis velocity components, quantification of systolic and diastolic peak velocities in an extended 16 + 10 LV + RV segment model, and assessment of inter-ventricular dyssynchrony. Biventricular velocities showed good test-retest reproducibility (mean bias ≤ 0.23 cm/s). Diastolic radial and long-axis peak velocities for LV and RV were significantly reduced in adults compared to children (19-61%, p < 0.001-0.02). In TOF patients, TPM identified significantly reduced systolic and diastolic LV and RV long-axis peak velocities (20-50%, p < 0.001-0.05) compared to age-matched controls. In conclusion, tissue phase mapping enables comprehensive analysis of global and regional biventricular myocardial motion. Changes in myocardial velocities associated with age underline the importance of age-matched controls. This pilot study in TOF patients shows the feasibility to detect regionally abnormal LV and RV motion.
Collapse
|
7
|
Menza M, Föll D, Hennig J, Jung B. Segmental biventricular analysis of myocardial function using high temporal and spatial resolution tissue phase mapping. MAGMA (NEW YORK, N.Y.) 2017; 31:61-73. [PMID: 29143137 DOI: 10.1007/s10334-017-0661-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/13/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Myocardial dysfunction of the right ventricle (RV) is an important indicator of RV diseases, e.g. RV infarction or pulmonary hypertension. Tissue phase mapping (TPM) has been widely used to determine function of the left ventricle (LV) by analyzing myocardial velocities. The analysis of RV motion is more complicated due to the different geometry and smaller wall thickness. The aim of this work was to adapt and optimize TPM to the demands of the RV. MATERIALS AND METHODS TPM measurements were acquired in 25 healthy volunteers using a velocity-encoded phase-contrast sequence and kt-accelerated parallel imaging in combination with optimized navigator strategy and blood saturation. Post processing was extended by a 10-segment RV model and a detailed biventricular analysis of myocardial velocities was performed. RESULTS High spatio-temporal resolution (1.0 × 1.0 × 6 mm3, 21.3 ms) and the optimized blood saturation enabled good delineation of the RV and its velocities. Global and segmental velocities, as well as time to peak velocities showed significant differences between the LV and RV. Furthermore, complex timing of the RV could be demonstrated by segmental time to peak analysis. CONCLUSION High spatio-temporal resolution TPM enables a detailed biventricular analysis of myocardial motion and might provide a reliable tool for description and detection of diseases affecting left and right ventricular function.
Collapse
Affiliation(s)
- Marius Menza
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 60a, 79106, Freiburg, Germany.
| | - Daniela Föll
- Department of Cardiology and Angiology I, Heart Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 60a, 79106, Freiburg, Germany
| | - Bernd Jung
- Institute of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|