1
|
Liu M, Saadat N, Jeong Y, Roth S, Niekrasz M, Giurcanu M, Carroll T, Christoforidis G. Quantitative perfusion and water transport time model from multi b-value diffusion magnetic resonance imaging validated against neutron capture microspheres. J Med Imaging (Bellingham) 2023; 10:063501. [PMID: 38090645 PMCID: PMC10711680 DOI: 10.1117/1.jmi.10.6.063501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose Quantification of perfusion in ml/100 g/min, rather than comparing relative values side-to-side, is critical at the clinical and research levels for large longitudinal and multi-center trials. Intravoxel incoherent motion (IVIM) is a non-contrast magnetic resonance imaging diffusion-based scan that uses a multitude of b -values to measure various speeds of molecular perfusion and diffusion, sidestepping inaccuracy of arterial input functions or bolus kinetics. Questions remain as to the original of the signal and whether IVIM returns quantitative and accurate perfusion in a pathology setting. This study tests a novel method of IVIM perfusion quantification compared with neutron capture microspheres. Approach We derive an expression for the quantification of capillary blood flow in ml/100 g/min by solving the three-dimensional Gaussian probability distribution and defining water transport time (WTT) as when 50% of the original water remains in the tissue of interest. Calculations were verified in a six-subject pre-clinical canine model of normocapnia, CO 2 induced hypercapnia, and middle cerebral artery occlusion (ischemic stroke) and compared with quantitative microsphere perfusion. Results Linear regression analysis of IVIM and microsphere perfusion showed agreement (slope = 0.55, intercept = 52.5, R 2 = 0.64 ) with a Bland-Altman mean difference of - 11.8 [ - 78,54 ] ml / 100 g / min . Linear regression between dynamic susceptibility contrast mean transit time and IVIM WTT asymmetry in infarcted tissue was excellent (slope = 0.59 , intercept = 0.3, R 2 = 0.93 ). Strong linear agreement was found between IVIM and reference standard infarct volume (slope = 1.01, R 2 = 0.79 ). The simulation of cerebrospinal fluid (CSF) suppression via inversion recovery returned a blood signal reduced by 82% from combined T1 and T2 effects. Conclusions The accuracy and sensitivity of IVIM provides evidence that observed signal changes reflect cytotoxic edema and tissue perfusion and can be quantified with WTT. Partial volume contamination of CSF may be better removed during post-processing rather than with inversion recovery.
Collapse
Affiliation(s)
- Mira Liu
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Niloufar Saadat
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Yong Jeong
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Steven Roth
- University of Illinois, Department of Anesthesiology, Chicago, Illinois, United States
| | - Marek Niekrasz
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Mihai Giurcanu
- University of Chicago, Department of Statistics, Chicago, Illinois, United States
| | - Timothy Carroll
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Gregory Christoforidis
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
2
|
Fujiwara S, Mori Y, de la Mora DM, Akamatsu Y, Yoshida K, Shibata Y, Masuda T, Ogasawara K, Yoshioka Y. Feasibility of IVIM parameters from diffusion-weighted imaging at 11.7T MRI for detecting ischemic changes in common carotid artery occlusion rats. Sci Rep 2020; 10:8404. [PMID: 32439877 PMCID: PMC7242437 DOI: 10.1038/s41598-020-65310-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate whether intravoxel incoherent motion (IVIM) parameters can identify ischemic changes in the rat cerebral cortex using a preclinical ultra-high-field 11.7 Tesla magnetic resonance imaging (11.7TMRI) scanner. In nine female Wistar rats (eight weeks old), diffusion-weighted imaging (DWI) for IVIM analysis was successfully performed before (Pre) and after unilateral (UCCAO) and bilateral (BCCAO) common carotid artery occlusion. From the acquired DWI signals averaged in six regions of interest (ROI) placed on the cortex, volume fraction of perfusion compartment (F), pseudo diffusion coefficient (D*), F × D* and apparent diffusion coefficient (ADC) were determined as IVIM parameters in the following three DWI signal models: the bi-exponential, kurtosis, and tri-exponential model. For a subgroup analysis, four rats that survived two weeks after BCCAO were assigned to the long survival (LS) group, whereas the non-LS group consisted of the remaining five animals. Each IVIM parameter change among three phases (Pre, UCCAO and BCCAO) was statistically examined in each ROI. Then, the change in each rat group was also examined for subgroup analysis. All three models were able to identify cerebral ischemic change and damage as IVIM parameter change among three phases. Furthermore, the kurtosis model could identify the parameter changes in more regions than the other two models. In the subgroup analysis with the kurtosis model, ADC in non-LS group significantly decreased between UCCAO and BCCAO but not in LS group. IVIM parameters at 11.7TMRI may help us to detect the subtle ischemic change; in particular, with the kurtosis model.
Collapse
Affiliation(s)
- Shunrou Fujiwara
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan. .,Graduate School of Frontier Science, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | | | - Yosuke Akamatsu
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kenji Yoshida
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yuji Shibata
- Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Tomoyuki Masuda
- Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Science, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), NICT and Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Zhu G, Federau C, Wintermark M, Chen H, Marcellus DG, Martin BW, Heit JJ. Comparison of MRI IVIM and MR perfusion imaging in acute ischemic stroke due to large vessel occlusion. Int J Stroke 2019; 15:332-342. [PMID: 31480940 DOI: 10.1177/1747493019873515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Intravoxel incoherent motion is a diffusion-weighted imaging magnetic resonance imaging technique that measures microvascular perfusion from a multi-b value sequence. Intravoxel incoherent motion microvascular perfusion has not been directly compared to conventional dynamic susceptibility contrast perfusion-weighted imaging in the context of acute ischemic stroke. We determined the degree of correlation between perfusion-weighted imaging and intravoxel incoherent motion parameter maps in patients with acute ischemic stroke. METHODS We performed a retrospective cohort study of acute ischemic stroke patients undergoing thrombectomy treatment triage by magnetic resonance imaging. Intravoxel incoherent motion perfusion fraction maps were derived using two-step voxel-by-voxel post-processing. Ischemic core, penumbra, non-ischemia, and contralateral hemisphere were delineated based upon diffusion-weighted imaging and perfusion-weighted imaging using a Tmax >6 s threshold. Signal intensity within different brain compartments were measured on intravoxel incoherent motion (IVIM f, IVIM D*, IVIM fD*) parametric maps and compared the differences using one-way ANOVA. Ischemic volumes were measured on perfusion-weighted imaging and intravoxel incoherent motion parametric maps. Bland-Altman analysis and voxel-based volumetric comparison were used to determine the agreements among ischemic volumes of perfusion-weighted imaging and intravoxel incoherent motion perfusion parameters. Inter-rater reliability on intravoxel incoherent motion maps was also assessed. Significance level was set at α < 0.05. RESULTS Twenty patients (11 males, 55%; mean age 67.1 ± 13.8 years) were included. Vessel occlusions involved the internal carotid artery (6 patients, 30%) and M1 segment of the middle cerebral artery (14, 70%). Mean pre-treatment core infarct volume was 19.07 ± 23.56 ml. Mean pre-treatment ischemic volumes on perfusion-weighted imaging were 10.90 ± 13.33 ml (CBV), 24.83 ± 23.08 ml (CBF), 58.87 ± 37.85 ml (MTT), and 47.53 ± 26.78 ml (Tmax). Mean pre-treatment ischemic volumes on corresponding IVIM parameters were 23.20 ± 25.63 ml (IVIM f), 14.01 ± 16.81 ml (IVIM D*), and 27.41 ± 40.01 ml (IVIM fD*). IVIM f, D, and fD* demonstrated significant differences (P < 0.001). The best agreement in term of ischemic volumes and voxel-based overlap was between IVIM fD* and CBF with mean volume difference of 0.5 ml and mean dice similarity coefficient (DSC) of 0.630 ± 0.136. CONCLUSION There are moderate differences in brain perfusion assessment between intravoxel incoherent motion and perfusion-weighted imaging parametric maps, and IVIM fD* and perfusion-weighted imaging CBF show excellent agreement. Intravoxel incoherent motion is promising for cerebral perfusion assessment in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Guangming Zhu
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| | - Christian Federau
- ETH Zürich Institute for Biomedical Engineering, Zürich, Switzerland.,Department of Radiology, University of Basel, Diagnostic and Interventional Neuroradiology, Basel Switzerland
| | - Max Wintermark
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| | - Hui Chen
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA.,Encephalopathy Center, Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, China
| | | | - Blake W Martin
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| | - Jeremy J Heit
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| |
Collapse
|
4
|
Falk Delgado A, Van Westen D, Nilsson M, Knutsson L, Sundgren PC, Larsson EM, Falk Delgado A. Diagnostic value of alternative techniques to gadolinium-based contrast agents in MR neuroimaging-a comprehensive overview. Insights Imaging 2019; 10:84. [PMID: 31444580 PMCID: PMC6708018 DOI: 10.1186/s13244-019-0771-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
Gadolinium-based contrast agents (GBCAs) increase lesion detection and improve disease characterization for many cerebral pathologies investigated with MRI. These agents, introduced in the late 1980s, are in wide use today. However, some non-ionic linear GBCAs have been associated with the development of nephrogenic systemic fibrosis in patients with kidney failure. Gadolinium deposition has also been found in deep brain structures, although it is of unclear clinical relevance. Hence, new guidelines from the International Society for Magnetic Resonance in Medicine advocate cautious use of GBCA in clinical and research practice. Some linear GBCAs were restricted from use by the European Medicines Agency (EMA) in 2017. This review focuses on non-contrast-enhanced MRI techniques that can serve as alternatives for the use of GBCAs. Clinical studies on the diagnostic performance of non-contrast-enhanced as well as contrast-enhanced MRI methods, both well established and newly proposed, were included. Advantages and disadvantages together with the diagnostic performance of each method are detailed. Non-contrast-enhanced MRIs discussed in this review are arterial spin labeling (ASL), time of flight (TOF), phase contrast (PC), diffusion-weighted imaging (DWI), magnetic resonance spectroscopy (MRS), susceptibility weighted imaging (SWI), and amide proton transfer (APT) imaging. Ten common diseases were identified for which studies reported comparisons of non-contrast-enhanced and contrast-enhanced MRI. These specific diseases include primary brain tumors, metastases, abscess, multiple sclerosis, and vascular conditions such as aneurysm, arteriovenous malformation, arteriovenous fistula, intracranial carotid artery occlusive disease, hemorrhagic, and ischemic stroke. In general, non-contrast-enhanced techniques showed comparable diagnostic performance to contrast-enhanced MRI for specific diagnostic questions. However, some diagnoses still require contrast-enhanced imaging for a complete examination.
Collapse
Affiliation(s)
- Anna Falk Delgado
- Clinical neurosciences, Karolinska Institutet, Stockholm, Sweden. .,Department of Neuroradiology, Karolinska University Hospital, Eugeniavägen 3, Solna, Stockholm, Sweden.
| | - Danielle Van Westen
- Department of Clinical Sciences/Radiology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences/Radiology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pia C Sundgren
- Department of Clinical Sciences/Radiology, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
5
|
Zhu G, Heit JJ, Martin BW, Marcellus DG, Federau C, Wintermark M. Optimized Combination of b‑values for IVIM Perfusion Imaging in Acute Ischemic Stroke Patients. Clin Neuroradiol 2019; 30:535-544. [DOI: 10.1007/s00062-019-00817-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
|
6
|
Wang J, Suo S, Zu J, Zhu W, Pan L, Song S, Li Y, Li L, Chen Z, Xu J. Detection of Crossed Cerebellar Diaschisis by Intravoxel Incoherent Motion MR Imaging in Subacute Ischemic Stroke. Cell Transplant 2019; 28:1062-1070. [PMID: 31198047 PMCID: PMC6728715 DOI: 10.1177/0963689719856290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intravoxel incoherent motion has received extensive attention in brain studies for its
potential as a non-invasive magnetic resonance perfusion method. However, studies on
intravoxel incoherent motion imaging and crossed cerebellar diaschisis detection are
relatively scarce. The aim of our study was to evaluate the feasibility of using
intravoxel incoherent motion imaging in crossed cerebellar diaschisis diagnosis in
subacute ischemic stroke patients by comparing results from intravoxel incoherent motion
imaging, single-photon emission computed tomography, and arterial spin-labeling perfusion
methods. In total, 39 patients with subacute ischemic stroke who underwent intravoxel
incoherent motion, arterial spin-labeling, and single-photon emission computed tomography
scanning were enrolled. Intravoxel incoherent motion-derived perfusion-related parameters
including fast diffusion coefficient, vascular volume fraction, arterial
spin-labeling-derived cerebral blood flow as well as single-photon emission computed
tomography-derived cerebral blood flow of bilateral cerebellum were measured. A crossed
cerebellar diaschisis-positive result was considered present with an asymmetry index ≥10%
of single-photon emission computed tomography. In the crossed cerebellar
diaschisis-positive group, fast diffusion coefficient, arterial spin-labeling-derived
cerebral blood flow, and computed tomography-derived cerebral blood flow of the
contralateral cerebellum decreased compared with those of the ipsilesional cerebellum;
whereas vascular volume fraction significantly increased. The National Institutes of
Health Stroke Scale score and infarct volume in the crossed cerebellar diaschisis-positive
group were significantly higher than those in the crossed cerebellar diaschisis-negative
group. A positive correlation was detected between the fast diffusion coefficient-based
asymmetry index and the single-photon emission computed tomography-based asymmetry index,
fast diffusion coefficient-based asymmetry, and arterial spin-labeling based asymmetry
index; whereas the vascular volume fraction-based asymmetry index value
had a negative correlation with the single-photon emission computed tomography-based
asymmetry index and arterial spin-labeling based asymmetry index. Furthermore, the area
under the receiver operating characteristic curve value of the arterial
spin-labeling-based asymmetry index was 0.923. The fast diffusion coefficient derived from
the intravoxel incoherent motion could be valuable for the assessment of crossed
cerebellar diaschisis in supratentorial stroke patients.
Collapse
Affiliation(s)
- Juan Wang
- 1 Department of Radiology, Renji Hospital, China.,2 Department of Radiology, Renji Hospital South Campus, China
| | - Shiteng Suo
- 1 Department of Radiology, Renji Hospital, China
| | - Jinyan Zu
- 1 Department of Radiology, Renji Hospital, China.,2 Department of Radiology, Renji Hospital South Campus, China
| | - Wanqiu Zhu
- 1 Department of Radiology, Renji Hospital, China
| | - Lijun Pan
- 1 Department of Radiology, Renji Hospital, China
| | - Shaoli Song
- 3 Department of Nuclear Medicine, Renji Hospital South Campus, China
| | - Yang Li
- 2 Department of Radiology, Renji Hospital South Campus, China
| | - Lei Li
- 2 Department of Radiology, Renji Hospital South Campus, China
| | - Zengai Chen
- 1 Department of Radiology, Renji Hospital, China.,2 Department of Radiology, Renji Hospital South Campus, China
| | - Jianrong Xu
- 1 Department of Radiology, Renji Hospital, China
| |
Collapse
|
7
|
Wu G, Liu X, Xiong Y, Ran J, Li X. Intravoxel incoherent motion and diffusion kurtosis imaging for discriminating soft tissue sarcoma from vascular anomalies. Medicine (Baltimore) 2018; 97:e13641. [PMID: 30558056 PMCID: PMC6320121 DOI: 10.1097/md.0000000000013641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the feasibility of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in discriminating soft tissue sarcoma from vascular anomalies.Twenty-two patients with lower extremity soft tissue sarcoma and 15 patients with lower extremity vascular anomalies underwent IVIM-DWI and DKI. IVIM model generated true diffusion (D), perfusion fraction (f), and pseudo-diffusion coefficient (D). DKI model generated mean kurtosis (MK) and mean diffusion (MD). These parameters were measured by 2 radiologists separately through drawing region of interest. Intraclass correlation coefficient (ICC) was calculated to evaluate the inter-reader viability in measurement. The Mann-Whitney test was used to compare the parameters between vascular anomalies and soft tissue sarcoma. Receiver operating characteristic curves were constructed for assessing diagnostic accuracies.ICC was more than 0.8 for apparent diffusion coefficient (ADC), D, D, f, MK, and MD. Mean ADC, D, and MD were significantly lower in soft tissue sarcoma versus vascular anomalies (P < .05). Mean D and f were not significantly different (P > .05). Soft tissue sarcoma had significantly higher MK than vascular anomalies (P < .05). Areas under curve for ADC, D, MK, and MD were 0.876, 0.885, 0.894, and 0.812, respectively.IVIM and DKI are feasible in discriminating soft tissue sarcoma from vascular anomalies.
Collapse
|
8
|
Peckham ME, Anderson JS, Rassner UA, Shah LM, Hinckley PJ, de Havenon A, Kim SE, McNally JS. Low b-value diffusion weighted imaging is promising in the diagnosis of brain death and hypoxic-ischemic injury secondary to cardiopulmonary arrest. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:165. [PMID: 29925413 PMCID: PMC6011248 DOI: 10.1186/s13054-018-2087-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Background Cardiorespiratory arrest can result in a spectrum of hypoxic ischemic brain injury leading to global hypoperfusion and brain death (BD). Because up to 40% of patients with BD are viable organ donors, avoiding delayed diagnosis of this condition is critical. High b-value diffusion weighted imaging (DWI) measures primarily molecular self-diffusion; however, low b-values are sensitive to perfusion. We investigated the feasibility of low b-value DWI in discriminating the global hypoperfusion of BD and hypoxic ischemic encephalopathy (HIE). Methods We retrospectively reviewed cardiorespiratory arrest subjects with a diagnosis of HIE or BD. Inclusion criteria included brain DWI acquired at both low (50 s/mm2) and high (1000–2000 s/mm2) b-values. Automated segmentation was used to determine mean b50 apparent diffusion coefficient (ADC) values in gray and white matter regions. Normal subjects with DWI at both values were used as age- and sex-matched controls. Results We evaluated 64 patients (45 with cardiorespiratory arrest and 19 normal). Cardiorespiratory arrest patients with BD had markedly lower mean b50 ADC in gray matter regions compared with HIE (0.70 ± 0.18 vs. 1.95 ± 0.25 × 10−3 mm2/s, p < 0.001) and normal subjects (vs. 1.79 ± 0.12 × 10−3 mm2/s, p < 0.001). HIE had higher mean b50 ADC compared with normal (1.95 ± 0.25 vs. 1.79 ± 0.12 × 10−3 mm2/s, p = 0.016). There was wide separation of gray matter ADC values in BD subjects compared with age matched normal and HIE subjects. White matter values were also markedly decreased in the BD population, although they were less predictive than gray matter. Conclusion Low b-value DWI is promising for the discrimination of HIE with maintained perfusion and brain death in cardiorespiratory arrest.
Collapse
Affiliation(s)
- Miriam E Peckham
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA. .,Department of Radiology and Imaging Sciences, University of Utah Health Sciences Center, 30 North, 1900 East #1A071, Salt Lake City, UT, 84132-2140, USA.
| | - Jeffrey S Anderson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ulrich A Rassner
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Peter J Hinckley
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Adam de Havenon
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Seong-Eun Kim
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - J Scott McNally
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|