1
|
Zhou M, Huang H, Bao D, Chen M. Fractional order calculus model-derived histogram metrics for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer. Clin Imaging 2024; 116:110327. [PMID: 39454478 DOI: 10.1016/j.clinimag.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
AIM This study evaluates the value of diffusion fractional order calculus (FROC) model for the assessment of pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) for locally advanced rectal cancer (LARC) by using histogram analysis derived from whole-tumor volumes. MATERIALS AND METHODS Ninety-eight patients were prospectively included. Every patient received MRI scans before and after nCRT using a 3.0-Tesla MRI machine. Parameters of the FROC model, including the anomalous diffusion coefficient (D), intravoxel diffusion heterogeneity (β), spatial parameter (μ), and the standard apparent diffusion coefficient (ADC), were calculated. Changes in median values (ΔX-median) and ratio (rΔX-median) were calculated. Receiver operating characteristic (ROC) curves were used for evaluating the diagnostic performance. RESULTS Pre-treatmentβ-10th percentile values were significantly lower in the pCR group compared to the non-pCR group (p < 0.001). The Δβ-median showed higher diagnostic accuracy (AUC = 0.870) and sensitivity (76.67 %) for predicting tumor response compared to MRI tumor regression grading (mrTRG) scores (AUC = 0.722; sensitivity = 90.0 %). DISCUSSION The use of FROC alongside comprehensive tumor histogram analysis was found to be practical and effective in evaluating the tumor response to nCRT in LARC patients.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Radiology, Sichuan Provincial Orthpaedics Hospital, Chengdu 610041, PR China.
| | - Hongyun Huang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Deying Bao
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Meining Chen
- Department of MR Scientific Marketing, Siemens Healthineers, Shanghai 200135, PR China
| |
Collapse
|
2
|
Zhou M, Chen M, Chen M, Yan X, Yang G, Huang H. Predictive value of mono-exponential and multiple mathematical models in locally advanced rectal cancer response to neoadjuvant chemoradiotherapy. Abdom Radiol (NY) 2024:10.1007/s00261-024-04588-y. [PMID: 39276193 DOI: 10.1007/s00261-024-04588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE This prospective study aimed to assess the predictive value of mono-exponential and multiple mathematical diffusion-weighted imaging (DWI) models in determining the response to neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). METHODS The study included 103 LARC patients scheduled for preoperative chemoradiotherapy between December 2021 and June 2023 Magnetic resonance imaging (MRI) scans were performed using a 3.0-T MR scanner, encompassing sagittal, axial, and oblique coronal T2-weighted images without fat saturation, along with DWI perpendicular to the rectum's long axis. Various DWI parameters, including apparent diffusion coefficient (ADC), stretched exponential model (SEM), continuous-time random-walk model (CTRW), and fractional-order calculus model (FROC), were measured. The pathologic complete response (pCR) rate and tumor downstaging (T-downstage) rate were determined. RESULTS After nCRT, SEM-α, SEM-DDC, CTRW-α, CTRW-β, CTRW-D, FROC-β, and ADC values were significantly higher in the pCR group compared to the non-pCR group (all P < 0.05). SEM-DDC, CTRW-α, CTRW-D, FROC-β, FROC-µ, and ADC values were significantly higher in the T-downstage group (ypT0-1) than in the non-T-downstage group (ypT2-4) (P < 0.05). The combination of CTRW (α + β + D) exhibited the best diagnostic performance for assessing pCR after nCRT (AUC = 0.840, P < 0.001). Pre-nCRT CTRW (α + β) demonstrated a predictive AUC of 0.652 (95%CI: 0.552-0.743), 90.3% sensitivity, and 43.1% specificity for pCR. Regarding T-downstage assessment after nCRT, the combination of CTRW (α + D) yielded the best diagnostic performance (AUC = 0.877, P = 0.048). CONCLUSION In LARC patients, imaging markers derived from CTRW show promise in predicting tumor response before nCRT and assessing pCR after nCRT.
Collapse
Affiliation(s)
- Mi Zhou
- sichuan provincial orthopedics hospital, Chengdu, China
| | - Mengyuan Chen
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Xu Yan
- Siemens Healthineers (China), Pudong, China
| | - Guang Yang
- East China Normal University, Shanghai, China
| | - Hongyun Huang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Hao Y, Zheng J, Li W, Zhao W, Zheng J, Wang H, Ren J, Zhang G, Zhang J. Ultra-high b-value DWI in rectal cancer: image quality assessment and regional lymph node prediction based on radiomics. Eur Radiol 2024:10.1007/s00330-024-10958-3. [PMID: 38992110 DOI: 10.1007/s00330-024-10958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVES This study aims to evaluate image quality and regional lymph node metastasis (LNM) in patients with rectal cancer (RC) on multi-b-value diffusion-weighted imaging (DWI). METHODS This retrospective study included 199 patients with RC who had undergone multi-b-value DWI. Subjective (five-point Likert scale) and objective assessments of quality images were performed on DWIb1000, DWIb2000, and DWIb3000. Patients were randomly divided into a training (n = 140) or validation cohort (n = 59). Radiomics features were extracted within the whole volume tumor on ADC maps (b = 0, 1000 s/mm2), DWIb1000, DWIb2000, and DWIb3000, respectively. Five prediction models based on selected features were developed using logistic regression analysis. The performance of radiomics models was evaluated with a receiver operating characteristic curve, calibration, and decision curve analysis (DCA). RESULTS The mean signal intensity of the tumor (SItumor), signal-to-noise ratio (SNR), and artifact and anatomic differentiability score gradually were decreased as the b-value increased. However, the contrast-to-noise (CNR) on DWIb2000 was superior to those of DWIb1000 and DWIb3000 (4.58 ± 0.86, 3.82 ± 0.77, 4.18 ± 0.84, p < 0.001, respectively). The overall image quality score of DWIb2000 was higher than that of DWIb3000 (p < 0.001) and showed no significant difference between DWIb1000 and DWIb2000 (p = 0.059). The area under curve (AUC) value of the radiomics model based on DWIb2000 (0.728) was higher than conventional ADC maps (0.690), DWIb1000 (0.699), and DWIb3000 (0.707), but inferior to multi-b-value DWI (0.739) in predicting LNM. CONCLUSION DWIb2000 provides better lesion conspicuity and LNM prediction than DWIb1000 and DWIb3000 in RC. CLINICAL RELEVANCE STATEMENT DWIb2000 offers satisfactory visualization of lesions. Radiomics features based on DWIb2000 can be applied for preoperatively predicting regional lymph node metastasis in rectal cancer, thereby benefiting the stratified treatment strategy. KEY POINTS Lymph node staging is required to determine the best treatment plan for rectal cancer. DWIb2000 provides superior contrast-to-noise ratio and lesion conspicuity and its derived radiomics best predict lymph node metastasis. DWIb2000 may be recommended as the optimal b-value in rectal MRI protocol.
Collapse
Affiliation(s)
- Yongfei Hao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanqing Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanting Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianmin Zheng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing, China
| | - Guangwen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Jin B, Yang J, Zhen J, Xu Y, Wang C, Jing Q, Shang Y. Intravoxel Incoherent Motion and Dynamic Contrast-Enhanced Magnetic Resonance Imaging Can Differentiate Between Atypical Cartilaginous Tumors and High-Grade Chondrosarcoma: Correlation With Histological Vessel Characteristics. J Comput Assist Tomogr 2024; 48:123-128. [PMID: 37558644 DOI: 10.1097/rct.0000000000001515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To differentiate between atypical cartilaginous tumors and high-grade chondrosarcoma of the major long bones using intravoxel incoherent motion (IVIM) and Dynamic Contrast-Enhanced magnetic resonance imaging (DCE-MRI), and explore the correlation of quantitative parameters with hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and microvessel density (MVD). METHOD Between September 2016 and March 2022, 35 patients (17 atypical cartilaginous tumors, 18 high-grade chondrosarcoma) underwent MRI examination and pathological confirmation at our hospital. First, IVIM-derived parameters ( D , D* , and f ), and DCE-MRI parameters ( Ktrans , Kep , and V e ) were measured, and intraclass correlation efficient (ICC) and Mann-Whitney U test were performed. Second, receiver-operating characteristic curve analysis was performed to evaluate the diagnostic performance. Finally, Spearman's correlation analysis was performed between the quantitative parameters of IVIM-DWI and DCE-MRI and the immunohistochemical factors HIF-1α, VEGF, and MVD in chondrosarcoma tissue. RESULTS D in atypical cartilaginous tumors was significantly higher than that in high-grade chondrosarcoma ( P = 0.003), whereas D* , Ktrans , and K ep in atypical cartilaginous tumors were significantly lower than those in high-grade chondrosarcoma (all P < 0.001). Ktrans demonstrated the highest area under the curve (AUC) of 0.979. The D* , Ktrans , and K ep were positively correlated with HIF-1α, VEGF, and MVD (all P < 0.001), whereas D had no correlation with HIF-1α, VEGF, and MVD ( P = 0.113, 0.077, 0.058, respectively). CONCLUSION The IVIM-DWI quantitative parameters ( D , D* ) and DCE-MRI quantitative parameters ( Ktrans , Kep ) are helpful to differentiate between atypical cartilaginous tumors and high-grade chondrosarcoma and could be imaging biomarkers to reflect the expressions of HIF-1α, VEGF, and angiogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Bo Jin
- From the Department of Radiology, Children's Hospital of Shanxi
| | - Jie Yang
- Department of Radiology, Shanxi Traditional Chinese Medical Hospital
| | | | - Yang Xu
- Department of Imaging and Nuclear Medicine, College of Medical Imaging, Shanxi Medical University
| | - Chen Wang
- Department of Pathology, Shanxi Medical University Second Affiliated Hospital
| | - Qing Jing
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yangwei Shang
- Department of Pathology, Shanxi Medical University Second Affiliated Hospital
| |
Collapse
|
5
|
Lu Z, Xia K, Jiang H, Weng X, Wu M. Improved effects of the b-value for 2000 sec/mm 2 DWI on an accurate qualitative and quantitative assessment of rectal cancer. Arab J Gastroenterol 2023; 24:230-237. [PMID: 37989671 DOI: 10.1016/j.ajg.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/21/2023] [Accepted: 09/03/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND AND STUDY OBJECTIVES A higher b-value Diffusion-weighted imaging (DWI) would improve the contrast between cancerous and noncancerous tissue. Apparent diffusion coefficient (ADC)-histogram analysis is a method that can provide statistical data and quantitative information on tumor heterogeneity. This study aimed to compare two high b-values (1000 and 2000 sec/mm2) DWI in tumor detection and diagnostic performance in identifying early-stage tumor rectal cancer. PATIENTS AND METHODS This blinded and blinded retrospective study involved 56 patients with rectal cancer and 45 patients. Two radiologists evaluated the qualitative detection parameters and quantitative parameters of the ADC evaluated histogram and compared them between two DWI sequences (b-value for 1000 sec/mm2 and 2000 sec/mm2). The characteristic curves were used to assess diagnostic administration for the ADC histogram in discriminating early-stage tumors. RESULTS The b-value for 2000 sec/mm2 DWI significantly improved AUCs, sensitivity, specificity, and precision and decreased false-positive rate for detection compared to the b-value for 1000 sec/mm2 (p < 0.05). The mean and fifth percentile ADC value for stage I using the b-value for 1000 sec/mm2 DWI was significantly higher than stage ≥ II (p = 0.036II and 0.016 respectively), as the well as fifth, 10th, mean ADC of the fifth, 10th, and 25th ADC percentile at b-value for 2000 sec/mm2 (p = 0.031, 0.014, 0.035 and 0.025 respectively). The AUCs of the fifth percentile ADC at b-value for 2000 sec/mm2 DWI in both readers in differentiating the stage Ⅰ tumor were the highest (0.732 and 0.751). CONCLUSION The b-value for 2000 sec/mm2 DWI could improve the accurate detection of rectal cancer. The fifth percentile ADC at b-value for 2000 sec/mm2 sec/mm2 DWI was more useful for discriminating early stage than the b-value for 1000 sec/mm2 DWI.
Collapse
Affiliation(s)
- Zhihua Lu
- Department of Radiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China.
| | - Kaijian Xia
- Department of Information, Changshu No.1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Suzhou, China
| | - Heng Jiang
- Department of Radiology, Changshu No.1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Suzhou, China
| | - Xiaoyan Weng
- Department of Radiology, Changshu No.1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Suzhou, China
| | - Mei Wu
- Department of Pathology, Changshu No.1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Cheng Q, Ren A, Xu X, Meng Z, Feng X, Pylypenko D, Dou W, Yu D. Application of DKI and IVIM imaging in evaluating histologic grades and clinical stages of clear cell renal cell carcinoma. Front Oncol 2023; 13:1203922. [PMID: 37954085 PMCID: PMC10637387 DOI: 10.3389/fonc.2023.1203922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose To evaluate the value of quantitative parameters derived from diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) in differentiating histologic grades and clinical stages of clear cell renal cell carcinoma (ccRCC). Materials and methods A total of 65 patients who were surgically and pathologically diagnosed as ccRCC were recruited in this study. In addition to routine renal magnetic resonance imaging examination, all patients underwent preoperative IVIM and DKI. The corresponding diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), mean diffusivity (MD), kurtosis anisotropy (KA), and mean kurtosis (MK) values were obtained. Independent-samples t-test or Mann-Whitney U test was used for comparing the differences in IVIM and DKI parameters among different histologic grades and clinical stages. The diagnostic efficacy of IVIM and DKI parameters was evaluated using the receiver operating characteristic (ROC) curve. Spearman's correlation analysis was used to separately analyze the correlation of each parameter with histologic grades and stages of ccRCC. Results The D and MD values were significantly higher in low-grade ccRCC than high-grade ccRCC (all p < 0.001) and in low-stage than high-stage ccRCC (all p < 0.05), and the f value of high-stage ccRCC was lower than that of low-stage ccRCC (p = 0.007). The KA and MK values were significantly higher in low-grade than high-grade ccRCC (p = 0.000 and 0.000, respectively) and in low-stage than high-stage ccRCC (p = 0.000 and 0.000, respectively). The area under the curve (AUC) values of D, D*, f, MD, KA, MK, DKI, and IVIM+DKI values were 0.825, 0.598, 0.626, 0.792, 0.750, 0.754, 0.803, and 0.857, respectively, in grading ccRCC and 0.837, 0.719, 0.710, 0.787, 0.796, 0.784, 0.864, 0.823, and 0.916, respectively, in staging ccRCC. The AUC of IVIM was 0.913 in staging ccRCC. The D, D*, and MD values were negatively correlated with the histologic grades and clinical stages (all p < 0.05), and the KA and MK values showed a positive correlation with histologic grades and clinical stages (all p < 0.05). The f value was also negatively correlated with the ccRCC clinical stage (p = 0.008). Conclusion Both the IVIM and DKI values can be used preoperatively to predict the degree of histologic grades and stages in ccRCC, and the D and MD values have better diagnostic performance in the grading and staging. Also, further slightly enhanced diagnostic efficacy was observed in the model with combined IVIM and DKI parameters.
Collapse
Affiliation(s)
- QiChao Cheng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - AnLi Ren
- Department of Radiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - XingHua Xu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao Meng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue Feng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | - DeXin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Nougaret S, Rousset P, Lambregts DMJ, Maas M, Gormly K, Lucidarme O, Brunelle S, Milot L, Arrivé L, Salut C, Pilleul F, Hordonneau C, Baudin G, Soyer P, Brun V, Laurent V, Savoye-Collet C, Petkovska I, Gerard JP, Cotte E, Rouanet P, Catalano O, Denost Q, Tan RB, Frulio N, Hoeffel C. MRI restaging of rectal cancer: The RAC (Response-Anal canal-CRM) analysis joint consensus guidelines of the GRERCAR and GRECCAR groups. Diagn Interv Imaging 2023; 104:311-322. [PMID: 36949002 DOI: 10.1016/j.diii.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To develop guidelines by international experts to standardize data acquisition, image interpretation, and reporting in rectal cancer restaging with magnetic resonance imaging (MRI). MATERIALS AND METHODS Evidence-based data and experts' opinions were combined using the RAND-UCLA Appropriateness Method to attain consensus guidelines. Experts provided recommendations for reporting template and protocol for data acquisition were collected; responses were analysed and classified as "RECOMMENDED" versus "NOT RECOMMENDED" (if ≥ 80% consensus among experts) or uncertain (if < 80% consensus among experts). RESULTS Consensus regarding patient preparation, MRI sequences, staging and reporting was attained using the RAND-UCLA Appropriateness Method. A consensus was reached for each reporting template item among the experts. Tailored MRI protocol and standardized report were proposed. CONCLUSION These consensus recommendations should be used as a guide for rectal cancer restaging with MRI.
Collapse
Affiliation(s)
- Stephanie Nougaret
- Department of Radiology IRCM, Montpellier Cancer Research Institute, 34000 Montpellier, France; INSERM, U1194, University of Montpellier, 34295, Montpellier, France.
| | - Pascal Rousset
- Department of Radiology, CHU Lyon-Sud, EMR 3738 CICLY, Université Claude-Bernard Lyon 1, 69495 Pierre-Benite, France
| | - Doenja M J Lambregts
- Department of Radiology, The Netherlands Cancer Institute, 1006 BE, Amsterdam, the Netherlands
| | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, 1006 BE, Amsterdam, the Netherlands
| | - Kirsten Gormly
- Jones Radiology, Kurralta Park, 5037, Australia; University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Oliver Lucidarme
- Department of Radiology, Pitié-Salpêtrière Hospital, AP-HP, 75013 Paris, France; LIB, INSERM, CNRS, UMR7371-U1146, Sorbonne Université, 75013 Paris, France
| | - Serge Brunelle
- Department of Radiology, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Laurent Milot
- Department of Diagnostic and Interventional Radiology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France
| | - Lionel Arrivé
- Department of Radiology, Hôpital Saint-Antoine, AP-HP, 75012 Paris, France; Sorbonne Université, 75013 Paris, France
| | - Celine Salut
- CHU de Bordeaux, Department of Radiology, Université de Bordeaux, 33000 Bordeaux, France
| | - Franck Pilleul
- Department of Radiology, Centre Léon Bérard, Lyon, France Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621, Lyon, France
| | | | - Guillaume Baudin
- Department of Radiology, Centre Antoine Lacassagne, 06100 Nice, France
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, AP-HP, 75014 Paris, France; Université Paris Cité, 75006 Paris, France
| | - Vanessa Brun
- Department of Radiology, CHU Hôpital Pontchaillou, 35000 Rennes, France
| | - Valérie Laurent
- Department of Radiology, Nancy University Hospital, Université de Lorraine, 54500 Vandoeuvre-lès-Nancy, France
| | | | - Iva Petkovska
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jean-Pierre Gerard
- Department of Radiotherapy, Centre Antoine Lacassagne, 06000 Nice, France
| | - Eddy Cotte
- Department of Digestive Surgery, Hospices Civils de Lyon, Lyon Sud University Hospital, 69310 Pierre Bénite, France; Lyon 1 Claude Bernard University, 69100 Villeurbanne, France
| | - Philippe Rouanet
- Department of Surgery, Institut Régional du Cancer de Montpellier, Montpellier Cancer Research Institute, INSERM U1194, University of Montpellier, 34295, Montpellier, France
| | - Onofrio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Quentin Denost
- Department of Digestive Surgery, Hôpital Haut-Lévèque, Université de Bordeaux, 33000 Bordeaux, France
| | - Regina Beets Tan
- Department of Radiology, The Netherlands Cancer Institute, 1006 BE, Amsterdam, the Netherlands
| | - Nora Frulio
- CHU de Bordeaux, Department of Radiology, Université de Bordeaux, 33000 Bordeaux, France
| | - Christine Hoeffel
- Department of Radiology, Hôpital Robert Debré & CRESTIC, URCA, 51092 Reims, France
| |
Collapse
|
8
|
Gao PF, Lu N, Liu W. MRI VS. FDG-PET for diagnosis of response to neoadjuvant therapy in patients with locally advanced rectal cancer. Front Oncol 2023; 13:1031581. [PMID: 36741013 PMCID: PMC9890074 DOI: 10.3389/fonc.2023.1031581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Aim In this study, we aimed to compare the diagnostic values of MRI and FDG-PET for the prediction of the response to neoadjuvant chemoradiotherapy (NACT) of patients with locally advanced Rectal cancer (RC). Methods Electronic databases, including PubMed, Embase, and the Cochrane library, were systematically searched through December 2021 for studies that investigated the diagnostic value of MRI and FDG-PET in the prediction of the response of patients with locally advanced RC to NACT. The quality of the included studies was assessed using QUADAS. The pooled sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR), and the area under the ROC (AUC) of MRI and FDG-PET were calculated using a bivariate generalized linear mixed model, random-effects model, and hierarchical regression. Results A total number of 74 studies with recruited 4,105 locally advanced RC patients were included in this analysis. The pooled sensitivity, specificity, PLR, NLR, and AUC for MRI were 0.83 (95% CI: 0.77-0.88), 0.85 (95% CI: 0.79-0.89), 5.50 (95% CI: 4.11-7.35), 0.20 (95% CI: 0.14-0.27), and 0.91 (95% CI: 0.88-0.93), respectively. The summary sensitivity, specificity, PLR, NLR and AUC for FDG-PET were 0.81 (95% CI: 0.77-0.85), 0.75 (95% CI: 0.70-0.80), 3.29 (95% CI: 2.64-4.10), 0.25 (95% CI: 0.20-0.31), and 0.85 (95% CI: 0.82-0.88), respectively. Moreover, there were no significant differences between MRI and FDG-PET in sensitivity (P = 0.565), and NLR (P = 0.268), while the specificity (P = 0.006), PLR (P = 0.006), and AUC (P = 0.003) of MRI was higher than FDG-PET. Conclusions MRI might superior than FGD-PET for the prediction of the response of patients with locally advanced RC to NACT.
Collapse
Affiliation(s)
- Peng Fei Gao
- Department of Traditional Chinese medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Na Lu
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China,*Correspondence: Wen Liu,
| |
Collapse
|
9
|
Wang J, Zhang H, Dang X, Rui W, Cheng H, Wang J, Zhang Y, Qiu T, Yao Z, Liu H, Pang H, Ren Y. Multi-b-value diffusion stretched-exponential model parameters correlate with MIB-1 and CD34 expression in Glioma patients, an intraoperative MR-navigated, biopsy-based histopathologic study. Front Oncol 2023; 13:1104610. [PMID: 37182187 PMCID: PMC10171458 DOI: 10.3389/fonc.2023.1104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Background To understand the pathological correlations of multi-b-value diffusion-weighted imaging (MDWI) stretched-exponential model (SEM) parameters of α and diffusion distribution index (DDC) in patients with glioma. SEM parameters, as promising biomarkers, played an important role in histologically grading gliomas. Methods Biopsy specimens were grouped as high-grade glioma (HGG) or low-grade glioma (LGG). MDWI-SEM parametric mapping of DDC1500, α1500 fitted by 15 b-values (0-1,500 sec/mm2)and DDC5000 and α5000 fitted by 22 b-values (0-5,000 sec/mm2) were matched with pathological samples (stained by MIB-1 and CD34) by coregistered localized biopsies, and all SEM parameters were correlated with these pathological indices pMIB-1(percentage of MIB-1 expression positive rate) and CD34-MVD (CD34 expression positive microvascular density for each specimen). The two-tailed Spearman's correlation was calculated for pathological indexes and SEM parameters, as well as WHO grades and SEM parameters. Results MDWI-derived α1500 negatively correlated with CD34-MVD in both LGG (6 specimens) and HGG (26 specimens) (r=-0.437, P =0.012). MDWI-derived DDC1500 and DDC5000 negatively correlated with MIB-1 expression in all glioma patients (P<0.05). WHO grades negatively correlated with α1500(r=-0.485; P=0.005) and α5000(r=-0.395; P=0.025). Conclusions SEM-derived DDC and α are significant in histologically grading gliomas, DDC may indicate the proliferative ability, and CD34 stained microvascular perfusion may be an important determinant of water diffusion inhomogeneity α in glioma.
Collapse
Affiliation(s)
- Junlong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua Zhang
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuefei Dang
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of Magnetic Resonance Research, General Electric Healthcare, Shanghai, China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hanqiu Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hanqiu Liu, ; Haopeng Pang, ; Yan Ren,
| | - Haopeng Pang
- Minimally Invasive Therapy Center, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hanqiu Liu, ; Haopeng Pang, ; Yan Ren,
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hanqiu Liu, ; Haopeng Pang, ; Yan Ren,
| |
Collapse
|
10
|
Hong Y, Song G, Jia Y, Wu R, He R, Li A. Predicting tumor deposits in patients with rectal cancer: Using the models of multiple mathematical parameters derived from diffusion-weighted imaging. Eur J Radiol 2022; 157:110573. [DOI: 10.1016/j.ejrad.2022.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
|
11
|
Pham TT, Lim S, Lin M. Predicting neoadjuvant chemoradiotherapy response with functional imaging and liquid biomarkers in locally advanced rectal cancer. Expert Rev Anticancer Ther 2022; 22:1081-1098. [PMID: 35993178 DOI: 10.1080/14737140.2022.2114457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Non-invasive predictive quantitative biomarkers are required to guide treatment individualization in patients with locally advanced rectal cancer (LARC) in order to maximise therapeutic outcomes and minimise treatment toxicity. Magnetic resonance imaging (MRI), positron emission tomography (PET) and blood biomarkers have the potential to predict chemoradiotherapy (CRT) response in LARC. AREAS COVERED This review examines the value of functional imaging (MRI and PET) and liquid biomarkers (circulating tumor cells (CTCs) and circulating tumor nucleic acid (ctNA)) in the prediction of CRT response in LARC. Selected imaging and liquid biomarker studies are presented and the current status of the most promising imaging (apparent diffusion co-efficient (ADC), Ktrans, SUVmax, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) and liquid biomarkers (circulating tumor cells (CTCs), circulating tumor nucleic acid (ctNA)) is discussed. The potential applications of imaging and liquid biomarkers for treatment stratification and a pathway to clinical translation are presented. EXPERT OPINION Functional imaging and liquid biomarkers provide novel ways of predicting CRT response. The clinical and technical validation of the most promising imaging and liquid biopsy biomarkers in multi-centre studies with harmonised acquisition techniques is required. This will enable clinical trials to investigate treatment escalation or de-escalation pathways in rectal cancer.
Collapse
Affiliation(s)
- Trang Thanh Pham
- South West Sydney Clinical School, Faculty of Medicine and Health, University of New South Wales, Liverpool NSW Australia 2170.,Department of Radiation Oncology, Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool NSW Australia 2170.,Ingham Institute for Applied Medical Research, Liverpool NSW Australia 2170
| | - Stephanie Lim
- Ingham Institute for Applied Medical Research, Liverpool NSW Australia 2170.,Department of Medical Oncology, Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown Australia 2560.,School of Medicine, Western Sydney University, Campbelltown, Sydney 2560
| | - Michael Lin
- South West Sydney Clinical School, Faculty of Medicine and Health, University of New South Wales, Liverpool NSW Australia 2170.,School of Medicine, Western Sydney University, Campbelltown, Sydney 2560.,Department of Nuclear Medicine, Liverpool Hospital, Liverpool NSW Australia 2170
| |
Collapse
|
12
|
Wu X, Jiang Z, Zheng J, Jiao Z, Liu T, Dou W, Shi H. Intravoxel incoherent motion to assess brain microstructure and perfusion in patients with end-stage renal disease. J Neuroimaging 2022; 32:930-940. [PMID: 35817591 DOI: 10.1111/jon.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to investigate the clinical value of intravoxel incoherent motion (IVIM) diffusion-weighted imaging in evaluating the brain microstructure and perfusion changes in end-stage renal disease (ESRD) patients. METHODS The routine head MRI sequences and IVIM were performed on 40 ESRD patients and 30 healthy subjects. The IVIM was executed with 10 b-values varying from 0 to 1000 seconds/mm2 . All subjects were evaluated on neuropsychological test. Laboratory tests were conducted for ESRD patients. RESULTS Compared with the control group, increased slow apparent diffusion coefficient values (ADCslow ) were found in the left frontal lobe, hippocampus, bilateral temporal lobe, and the right occipital lobe (p < .05), and increased fast ADC values (ADCfast ) were found in all regions of interest (all p < .001) in ESRD patients. In ESRD patients, ADCfast in right frontal lobe (p = .041) and insular lobe (p = .045) was negatively correlated with the Montreal Cognitive Assessment score (MoCA), and ADCfast in the right parietal lobe (p = .009) and hippocampus (p = .041) had positive correlation with hemoglobin levels. Using receiver operating characteristics (ROC) analysis, ADCfast in the right frontal lobe, insular lobe, hippocampus, and parietal lobe separately showed fair to good efficacy in differentiating ESRD patients from healthy subjects, with the area under the ROC ranging from .853 to .903. CONCLUSIONS The microstructure and perfusion of the brain were impaired in ESRD patients. ADCfast of the right frontal lobe, insular lobe, hippocampus, and parietal lobe could be effective biomarker for evaluating cognitive impairment in ESRD patients.
Collapse
Affiliation(s)
- Xiangxiang Wu
- Graduate College, Dalian Medical University, Dalian, China.,Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Zijian Jiang
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jiahui Zheng
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China.,Graduate College, Nanjing Medical University, Nanjing, China
| | - Zhuqing Jiao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Tongqiang Liu
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Weiqiang Dou
- Department of MR Research, GE Healthcare China, Beijing, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, China
| |
Collapse
|
13
|
Ingle M, Blackledge M, White I, Wetscherek A, Lalondrelle S, Hafeez S, Bhide S. Quantitative analysis of diffusion weighted imaging in rectal cancer during radiotherapy using a magnetic resonance imaging integrated linear accelerator. Phys Imaging Radiat Oncol 2022; 23:32-37. [PMID: 35756883 PMCID: PMC9214864 DOI: 10.1016/j.phro.2022.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background and purpose Magnetic resonance imaging integrated linear accelerator (MR-Linac) platforms enable acquisition of diffusion weighted imaging (DWI) during treatment providing potential information about treatment response. Obtaining DWI on these platforms is technically different from diagnostic magnetic resonance imaging (MRI) scanners. The aim of this project was to determine feasibility of obtaining DWI and calculating apparent diffusion coefficient (ADC) parameters longitudinally in rectal cancer patients on the MR-Linac. Materials and methods Nine patients undergoing treatment on MR-Linac had DWI acquired using b-values 0, 30, 150, 500 s/mm2. Gross tumour volume (GTV) and normal tissue was delineated on DWI throughout treatment and median ADC was calculated using an in-house tool (pyOsirix ®). Results Seven out of nine patients were included in the analysis; all demonstrated downstaging at follow-up. A total of 63 out of 70 DWI were analysed (7 excluded due to poor image quality). An increasing trend of ADC median for GTV (1.15 × 10-3 mm2/s interquartile range (IQ): 1.05-1.17 vs 1.59 × 10-3 mm2/s IQ: 1.37 - 1.64; p = 0.0156), correlating to treatment response. In comparison ADC median for normal tissue remained the same between first and last fraction (1.61 × 10-3 mm2/s IQ: 1.56-1.71 vs 1.67 × 10-3 mm2/s IQ: 1.37-2.00; p = 0.9375). Conclusions DWI assessment in rectal cancer patients on MR-Linac is feasible. Initial results provide foundations for further studies to determine DWI use for treatment adaptation in rectal cancer.
Collapse
Affiliation(s)
- Manasi Ingle
- The Royal Marsden Hospital NHS Trust, 203 Fulham Road, London SW3 6JJ, UK
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Matthew Blackledge
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Ingrid White
- Guys and St Thomas NHS Trust, Great Maze Pond, London SE1 9RT, UK
| | - Andreas Wetscherek
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Susan Lalondrelle
- The Royal Marsden Hospital NHS Trust, 203 Fulham Road, London SW3 6JJ, UK
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Shaista Hafeez
- The Royal Marsden Hospital NHS Trust, 203 Fulham Road, London SW3 6JJ, UK
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Shreerang Bhide
- The Royal Marsden Hospital NHS Trust, 203 Fulham Road, London SW3 6JJ, UK
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| |
Collapse
|
14
|
Dynamic Contrast-enhanced Magnetic Resonance Imaging Evaluation of Whole Tumour Perfusion Heterogeneity Predicts Distant Disease-free Survival in Locally Advanced Rectal Cancer. Clin Oncol (R Coll Radiol) 2022; 34:561-570. [PMID: 35738953 DOI: 10.1016/j.clon.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
Abstract
AIMS To evaluate diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for the prediction of disease-free survival (DFS) in patients with locally advanced rectal cancer. MATERIALS AND METHODS Patients with stage II or III rectal adenocarcinoma undergoing neoadjuvant chemoradiotherapy (CRT) and surgery were eligible. Patients underwent multi-parametric magnetic resonance imaging (diffusion-weighted imaging and dynamic contrast-enhanced) before CRT, during CRT (week 3) and after CRT (1 week prior to surgery). Whole tumour apparent diffusion coefficient (ADC) and Ktrans histogram quantiles (10th, 25th, 50th, 75th, 90th) were extracted for analysis. The associations between ADC and Ktrans at three timepoints with time to relapse were analysed as a continuous variable using a Cox proportional hazard model. RESULTS Thirty-three patients were included in this analysis. The median follow-up was 4.4 years. No patient had locoregional relapse. Nine patients developed distant metastases. The hazard ratios for after CRT Ktrans 10th (P = 0.035), 25th (P = 0.048), 50th (P = 0.046) and 75th (P = 0.045) quantiles were statistically significant for DFS. The best Ktrans cut-off point after CRT for predicting relapse was 28 × 10-3 mL/g/min (10th quantile), with a higher Ktrans value predicting distant relapse. The 4-year DFS probability was 0.93 for patients with after CRT Ktrans value ≤28 × 10-3 mL/g/min versus 0.45 for patients with after CRT Ktrans value >28 × 10-3 mL/g/min. ADC was not able to predict DFS. CONCLUSIONS Patients with higher Ktrans values after CRT (before surgery) in a histogram analysis of whole tumour heterogeneity had a significantly lower 4-year distant DFS and could be considered for more intense systemic therapy.
Collapse
|
15
|
Surov A, Pech M, Powerski M, Woidacki K, Wienke A. Pretreatment Apparent Diffusion Coefficient Cannot Predict Histopathological Features and Response to Neoadjuvant Radiochemotherapy in Rectal Cancer: A Meta-Analysis. Dig Dis 2022; 40:33-49. [PMID: 33662962 PMCID: PMC8820443 DOI: 10.1159/000515631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/24/2021] [Indexed: 02/02/2023]
Abstract
AIM Our purpose was to perform a systemic literature review and meta-analysis regarding use of apparent diffusion coefficient (ADC) for prediction of histopathological features in rectal cancer (RC) and to prove if ADC can predict treatment response to neoadjuvant radiochemotherapy (NARC) in RC. METHODS MEDLINE library, EMBASE, Cochrane, and SCOPUS database were screened for associations between ADC and histopathology and/or treatment response in RC up to June 2020. Authors, year of publication, study design, number of patients, mean value, and standard deviation of ADC were acquired. The methodological quality of the collected studies was checked according to the Quality Assessment of Diagnostic Studies instrument. The meta-analysis was undertaken by using the RevMan 5.3 software. DerSimonian and Laird random-effects models with inverse-variance weights were used to account the heterogeneity between the studies. Mean ADC values including 95% confidence intervals were calculated. RESULTS Overall, 37 items (2,015 patients) were included. ADC values of tumors with different T and N stages and grades overlapped strongly. ADC cannot distinguish RC with a high- and low-carcinoembryonic antigen level. Regarding KRAS status, ADC cannot discriminate mutated and wild-type RC. ADC did not correlate significantly with expression of vascular endothelial growth factor and hypoxia-inducible factor 1a. ADC correlates with Ki 67, with the calculated correlation coefficient: -0.52. The ADC values in responders and nonresponders overlapped significantly. CONCLUSION ADC correlates moderately with expression of Ki 67 in RC. ADC cannot discriminate tumor stages, grades, and KRAS status in RC. ADC cannot predict therapy response to NARC in RC.
Collapse
Affiliation(s)
- Alexey Surov
- Clinic for Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany,*Alexey Surov,
| | - Maciej Pech
- Clinic for Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Maciej Powerski
- Clinic for Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Katja Woidacki
- Experimental Radiology, Clinic for Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
16
|
Lallemand F, Leroi N, Blacher S, Bahri MA, Balteau E, Coucke P, Noël A, Plenevaux A, Martinive P. Tumor Microenvironment Modifications Recorded With IVIM Perfusion Analysis and DCE-MRI After Neoadjuvant Radiotherapy: A Preclinical Study. Front Oncol 2021; 11:784437. [PMID: 34993143 PMCID: PMC8724034 DOI: 10.3389/fonc.2021.784437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Neoadjuvant radiotherapy (NeoRT) improves tumor local control and facilitates tumor resection in many cancers. Some clinical studies demonstrated that both timing of surgery and RT schedule influence tumor dissemination, and subsequently patient overall survival. Previously, we developed a pre-clinical model demonstrating the impact of NeoRT schedule and timing of surgery on metastatic spreading. We report on the impact of NeoRT on tumor microenvironment by MRI. METHODS According to our NeoRT model, MDA-MB 231 cells were implanted in the flank of SCID mice. Tumors were locally irradiated (PXI X-Rad SmART) with 2x5Gy and then surgically removed at different time points after RT. Diffusion-weighted (DW) and Dynamic contrast enhancement (DCE) MRI images were acquired before RT and every 2 days between RT and surgery. IntraVoxel Incoherent Motion (IVIM) analysis was used to obtain information on intravascular diffusion, related to perfusion (F: perfusion factor) and subsequently tumor vessels perfusion. For DCE-MRI, we performed semi-quantitative analyses. RESULTS With this experimental model, a significant and transient increase of the perfusion factor F [50% of the basal value (n=16, p<0.005)] was observed on day 6 after irradiation as well as a significant increase of the WashinSlope with DCE-MRI at day 6 (n=13, p<0.05). Using immunohistochemistry, a significant increase of perfused vessels was highlighted, corresponding to the increase of perfusion in MRI at this same time point. Moreover, Tumor surgical resection during this peak of vascularization results in an increase of metastasis burden (n=10, p<0.05). CONCLUSION Significant differences in perfusion-related parameters (F and WashinSlope) were observed on day 6 in a neoadjuvant radiotherapy model using SCID mice. These modifications are correlated with an increase of perfused vessels in histological analysis and also with an increase of metastasis spreading after the surgical procedure. This experimental observation could potentially result in a way to personalize treatment, by modulating the time of surgery guided on MRI functional data, especially tumor perfusion.
Collapse
Affiliation(s)
- François Lallemand
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Natacha Leroi
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Coucke
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Alain Plenevaux
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Martinive
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- Department of Radiotherapy-Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
17
|
Munk NE, Bondeven P, Pedersen BG. Diagnostic performance of MRI and endoscopy for assessing complete response in rectal cancer after neoadjuvant chemoradiotherapy: a systematic review of the literature. Acta Radiol 2021; 64:20-31. [PMID: 34928715 DOI: 10.1177/02841851211065925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The diagnostic performance of magnetic resonance imaging (MRI) modalities and/or endoscopy for assessing complete response in rectal cancer after neoadjuvant chemoradiotherapy (nCRT) is unclear. PURPOSE To summarize existing evidence on the diagnostic performance of diffusion-weighted MRI, perfusion-weighted MRI, T2-weighted MR tumor regression grade, and/or endoscopy for assessing complete tumor response after nCRT. MATERIAL AND METHODS MEDLINE and Embase databases were searched. The PRISMA guidelines were followed. Sensitivity, specificity, negative predictive, and positive predictive values were retrieved from included studies. RESULTS In total, 81 studies were eligible for inclusion. Evidence suggests that combined use of MRI and endoscopy tends to improve the diagnostic performance compared to single imaging modality. The positive predictive value of a complete response varies substantially between studies. There is considerable heterogeneity between studies. CONCLUSION Combined re-staging tends to improve diagnostic performance compared to single imaging modality, but the vast majority of studies fail to offer true clinical value due to the study heterogeneity.
Collapse
Affiliation(s)
| | - Peter Bondeven
- Department of Surgery, Regional Hospital Randers, Randers, Denmark
| | - Bodil Ginnerup Pedersen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
18
|
Recent Advances in Functional MRI to Predict Treatment Response for Locally Advanced Rectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Kimura K, Yoshida S, Tsuchiya J, Yamada I, Tanaka H, Yokoyama M, Matsuoka Y, Yoshimura R, Tateishi U, Fujii Y. Usefulness of texture features of apparent diffusion coefficient maps in predicting chemoradiotherapy response in muscle-invasive bladder cancer. Eur Radiol 2021; 32:671-679. [PMID: 34120230 DOI: 10.1007/s00330-021-08110-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To examine the usefulness of the texture analysis (TA) of apparent diffusion coefficient (ADC) maps in predicting the chemoradiotherapy (CRT) response of muscle-invasive bladder cancer (MIBC). METHODS We reviewed 45 MIBC patients who underwent cystectomy after CRT. CRT response was assessed through histologic evaluation of cystectomy specimens. Two radiologists determined the volume of interest for the index lesions on ADC maps of pretherapeutic 1.5-T MRI and performed TA using the LIFEx software. Forty-six texture features (TFs) were selected based on their contribution to the prediction of CRT sensitivity. To evaluate diagnostic performance, diagnostic models from the selected TFs were created using random forest (RF) and support vector machine (SVM), respectively. RESULTS Twenty-three patients achieved pathologic complete response (pCR) to CRT. The feature selection identified first quartile ADC (Q1 ADC), gray-level co-occurrence matrix (GLCM) correlation, and GLCM homogeneity as important in predicting CRT response. Patients who achieved pCR showed significantly lower Q1 ADC and GLCM correlation values (0.66 × 10-3 mm2/s and 0.53, respectively) than those who did not (0.81 × 10-3 mm2/s and 0.70, respectively; p < 0.05 for both). The AUCs of the RF and SVM models incorporating the selected TFs were 0.82 (95% confidence interval [CI]: 0.67-0.97) and 0.96 (95% CI: 0.91-1.00), respectively, and the AUC of the SVM model was better than that of the mean ADC value (0.76, 95% CI: 0.61-0.90; p = 0.0037). CONCLUSION TFs can serve as imaging biomarkers in MIBC patients for predicting CRT sensitivity. TAs of ADC maps can potentially optimize patient selection for CRT. KEY POINTS • Texture analysis of ADC maps and feature selection identified important texture features for classifying pathologic tumor response in patients with muscle-invasive bladder cancer. • The machine learning model incorporating the texture features set, which included first quartile ADC, GLCM correlation, and GLCM homogeneity, showed high performance in predicting chemoradiotherapy response. • Texture features could serve as imaging biomarkers that optimize eligible patient selection for chemoradiotherapy in muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Koichiro Kimura
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ichiro Yamada
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hajime Tanaka
- Department of Urology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Minato Yokoyama
- Department of Urology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Yoh Matsuoka
- Department of Urology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ryoichi Yoshimura
- Department of Radiation Therapeutics and Oncology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
20
|
Xu Q, Xu Y, Sun H, Jiang T, Xie S, Ooi BY, Ding Y. MRI Evaluation of Complete Response of Locally Advanced Rectal Cancer After Neoadjuvant Therapy: Current Status and Future Trends. Cancer Manag Res 2021; 13:4317-4328. [PMID: 34103987 PMCID: PMC8179813 DOI: 10.2147/cmar.s309252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Complete tumor response can be achieved in a certain proportion of patients with locally advanced rectal cancer, who achieve maximal response to neoadjuvant therapy (NAT). For these patients, a watch-and-wait (WW) or nonsurgical strategy has been proposed and is becoming widely practiced in order to avoid unnecessary surgical complications. Therefore, a non-invasive, reliable diagnostic tool for accurately evaluating complete tumor response is needed. Magnetic resonance imaging (MRI) plays a crucial role in both primary staging and restaging tumor response to NAT in rectal cancer without relying on resected specimen. In recent years, numerous efforts have been made to research the value of MRI in predicting and evaluating complete response in rectal cancer. Current MRI evaluation is mainly based on morphological and functional images. Morphologic MRI yields high soft tissue resolution, multiplanar images, and provides detailed depictions of rectal cancer and its surrounding structures. Functional MRI may help to distinguish residual tumor from fibrosis, therefore improving the diagnostic performance of morphologic MRI in identifying complete tumor response. Both morphologic and functional MRI have several promising parameters that may help accurately evaluate and/or predict complete response of rectal cancer. However, these parameters still have limitations and the results remain inconsistent. Recent development of new techniques, such as textural analysis, radiomics analysis and deep learning, demonstrate great potential based on MRI-derived parameters. This article aimed to review and help better understand the strengths, limitations, and future trends of these MRI-derived methods in evaluating complete response in rectal cancer.
Collapse
Affiliation(s)
- Qiaoyu Xu
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yanyan Xu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Hongliang Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Bee Yen Ooi
- Department of Radiology, Hospital Seberang Jaya, Penang, Malaysia
| | - Yi Ding
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Zhao L, Liang M, Yang Y, Zhang H, Zhao X. Prediction of false-negative extramural venous invasion in patients with rectal cancer using multiple mathematical models of diffusion-weighted imaging. Eur J Radiol 2021; 139:109731. [PMID: 33905979 DOI: 10.1016/j.ejrad.2021.109731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the parameters from mono-exponential, stretched-exponential, and intravoxel incoherent motion diffusion-weighted imaging (DWI) models for evaluating false-negative extramural venous invasion (EMVI) on conventional magnetic resonance imaging (MRI) in rectal cancer patients. MATERIAL AND METHODS Seventy-two rectal cancer patients with negative EMVI on conventional MRI who underwent direct surgical resection were enrolled in this prospective study. The apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), distributed diffusion coefficient (DDC), and water molecular diffusion heterogeneity index (α) values within the whole tumor were obtained to identify the patients with false-negative EMVI. Receiver operating characteristic (ROC) curves were applied to evaluate the diagnostic performance. Multivariate binary logistic regression analysis was conducted to determine the independent risk factors. RESULTS The DDC, D*, f, and α values were significantly different in the EMVI-positive and EMVI-negative groups (P = 0.018, and P < 0.001, respectively). The D*, f, and α values demonstrated good diagnostic performance with area under the ROC curve (AUC) of 0.861, 0.824, and 0.854, respectively. The combined model, including D*, α, and tumor location, proved superior diagnostic performance with the AUC, sensitivity, specificity, and accuracy of 0.971, 0.917, 0.967, and 0.931, respectively. The AUC of the combined model was significantly higher than that of the D*, f, and DDC (P = 0.004, 0.045, and 0.002, respectively). CONCLUSION Multi-b-value DWI may be a potential tool for identifying micro-EMVI in rectal cancer. The combination of DWI parameters and tumor location leads to superior diagnostic performance.
Collapse
Affiliation(s)
- Li Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Meng Liang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Yang Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
22
|
Fischer J, Eglinton TW, Richards SJ, Frizelle FA. Predicting pathological response to chemoradiotherapy for rectal cancer: a systematic review. Expert Rev Anticancer Ther 2021; 21:489-500. [PMID: 33356679 DOI: 10.1080/14737140.2021.1868992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Pathological complete response (pCR) rates of approximately 20% following neoadjuvant long-course chemoradiotherapy for rectal cancer have given rise to non-operative or watch-and-wait (W&W) management. To improve outcomes there has been significant research into predictors of response. The goal is to optimize selection for W&W, avoid chemoradiotherapy in those who won't benefit and improve treatment to maximize the clinical complete response (cCR) rate and the number of patients who can be considered for W&W.Areas covered: A systematic review of articles published 2008-2018 and indexed in PubMed, Embase or Medline was performed to identify predictors of pathological response (including pCR and recognized tumor regression grades) to fluoropyrimidine-based chemoradiotherapy in patients who underwent total mesorectal excision for rectal cancer. Evidence for clinical, biomarker and radiological predictors is discussed as well as potential future directions.Expert opinion: Our current ability to predict the response to chemoradiotherapy for rectal cancer is very limited. cCR of 40% has been achieved with total neoadjuvant therapy. If neoadjuvant treatment for rectal cancer continues to improve it is possible that the treatment for rectal cancer may eventually parallel that of anal squamous cell carcinoma, with surgery reserved for the minority of patients who don't respond to chemoradiotherapy.
Collapse
Affiliation(s)
- Jesse Fischer
- Department of Surgery, University of Otago, Christchurch, New Zealand.,Department of General Surgery, North Shore Hospital, Auckland, New Zealand
| | - Tim W Eglinton
- Department of Surgery, University of Otago, Christchurch, New Zealand.,Department of General Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Simon Jg Richards
- Department of Surgery, University of Otago, Christchurch, New Zealand.,Department of General Surgery, The Royal Melbourne Hospital, Melbourne, Australia
| | - Frank A Frizelle
- Department of Surgery, University of Otago, Christchurch, New Zealand.,Department of General Surgery, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
23
|
Di Re AM, Sun Y, Sundaresan P, Hau E, Toh JWT, Gee H, Or M, Haworth A. MRI radiomics in the prediction of therapeutic response to neoadjuvant therapy for locoregionally advanced rectal cancer: a systematic review. Expert Rev Anticancer Ther 2021; 21:425-449. [PMID: 33289435 DOI: 10.1080/14737140.2021.1860762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The standard of care for locoregionally advanced rectal cancer is neoadjuvant therapy (NA CRT) prior to surgery, of which 10-30% experience a complete pathologic response (pCR). There has been interest in using imaging features, also known as radiomics features, to predict pCR and potentially avoid surgery. This systematic review aims to describe the spectrum of MRI studies examining high-performing radiomic features that predict NA CRT response.Areas covered: This article reviews the use of pre-therapy MRI in predicting NA CRT response for patients with locoregionally advanced rectal cancer (T3/T4 and/or N1+). The primary outcome was to identify MRI radiomic studies; secondary outcomes included the power and the frequency of use of radiomic features.Expert opinion: Advanced models incorporating multiple radiomics categories appear to be the most promising. However, there is a need for standardization across studies with regards to; the definition of NA CRT response, imaging protocols, and radiomics features incorporated. Further studies are needed to validate current radiomics models and to fully ascertain the value of MRI radiomics in the response prediction for locoregionally advanced rectal cancer.
Collapse
Affiliation(s)
- Angelina Marina Di Re
- Colorectal Department, Westmead Hospital, Cnr Hawkesbury, Westmead, NSW.,School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Yu Sun
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Purnima Sundaresan
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Eric Hau
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - James Wei Tatt Toh
- Colorectal Department, Westmead Hospital, Cnr Hawkesbury, Westmead, NSW.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Harriet Gee
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Michelle Or
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia
| | - Annette Haworth
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
24
|
Yang L, Xia C, Zhao J, Zhou X, Wu B. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Eur J Radiol 2020; 136:109504. [PMID: 33421885 DOI: 10.1016/j.ejrad.2020.109504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the role of IVIM and diffusion kurtosis imaging (DKI) in identifying pathologic complete response (pCR) and T stages after neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). METHOD Forty-two patients with biopsy-proven rectal adenocarcinoma, who underwent both pre-and post-CRT MRI with IVIM and DKI sequences on a 3 T scanner, were enrolled prospectively. According to the pathologic ypTNM stages and tumor regression grade (TRG), patients were grouped into pCR (TRG0) and non-pCR (TRG1-3) groups and low T stage (ypT0-2) and high T stage (ypT3-4) groups. IVIM parameters (the slow diffusion coefficient [D], fast diffusion coefficient [D*], perfusion fraction [f]), DKI parameters (mean diffusivity [MD] and mean kurtosis [MK]), and mono-exponential ADC were calculated and analyzed between groups. RESULTS The pCR group had significantly higher post-CRT ADC, D*, f, and MD values than non-pCR group, and higher percent changes in the ADC, f, and MD values (all P < 0.05). The post-CRT MD values yielded the highest AUC (0.788) with higher sensitivity than post-ADC values (82.9 % vs. 77.1 %, respectively). Post-CRT ADC and MD values and the percent changes in the ADC and MD values were also negatively correlated with TRG (all P < 0.05). Besides, negative correlations were found among the pre-CRT MD, post-CRT ADC, D, f, and MD values and the ypT stages (all P < 0.05). CONCLUSIONS Both IVIM and DKI parameters could provide more information when evaluating pCR and T stages after nCRT. In particular, the diagnostic performance of the MD values was more valuable than ADC values in being able to determine pCR.
Collapse
Affiliation(s)
- Lanqing Yang
- From the Departments of Radiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan, 610041, PR China
| | - Chunchao Xia
- From the Departments of Radiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan, 610041, PR China
| | - Jin Zhao
- From the Departments of Radiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan, 610041, PR China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, PR China
| | - Bing Wu
- From the Departments of Radiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
25
|
Abstract
The management of rectal cancer is complex and continually evolving. With advancements in technology and the use of multidisciplinary teams to guide the treatment decision making, staging, oncologic, and functional outcomes are improving, and the management is moving toward personalized treatment strategies to optimize each individual patient's outcomes. Key in this evolution is imaging. Magnetic resonance imaging (MRI) has emerged as the dominant method of pelvic imaging in rectal cancer, and use of MRI for staging is best practice in multiple international guidelines. MRI allows a noninvasive assessment of the tumor site, relationship to surrounding structures, and provides highly accurate rectal cancer staging, which is necessary for determining the appropriate treatment strategy. However, the applications of MRI extend far beyond pretreatment staging. MRI can be used to predict outcomes in locally advanced rectal cancer and guide the surgical or nonsurgical plan, serving as a predictive and prognostic biomarker. With continued MRI hardware improvement and new sequence development, MRI may offer new perspectives in the assessment of treatment response and new innovations that could provide better insight into the staging, restaging, and outcomes with rectal cancer.
Collapse
Affiliation(s)
- Deborah S Keller
- Division of Colorectal Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
26
|
Liu B, Ma WL, Zhang GW, Sun Z, Wei MQ, Hou WH, Hou BX, Wei LC, Huan Y. Potentialities of multi-b-values diffusion-weighted imaging for predicting efficacy of concurrent chemoradiotherapy in cervical cancer patients. BMC Med Imaging 2020; 20:97. [PMID: 32799809 PMCID: PMC7429470 DOI: 10.1186/s12880-020-00496-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To testify whether multi-b-values diffusion-weighted imaging (DWI) can be used to ultra-early predict treatment response of concurrent chemoradiotherapy (CCRT) in cervical cancer patients and to assess the predictive ability of concerning parameters. METHODS Fifty-three patients with biopsy proved cervical cancer were retrospectively recruited in this study. All patients underwent pelvic multi-b-values DWI before and at the 3rd day during treatment. The apparent diffusion coefficient (ADC), true diffusion coefficient (Dslow), perfusion-related pseudo-diffusion coefficient (Dfast), perfusion fraction (f), distributed diffusion coefficient (DDC) and intravoxel diffusion heterogeneity index(α) were generated by mono-exponential, bi-exponential and stretched exponential models. Treatment response was assessed based on Response Evaluation Criteria in Solid Tumors (RECIST v1.1) at 1 month after the completion of whole CCRT. Parameters were compared using independent t test or Mann-Whitney U test as appropriate. Receiver operating characteristic (ROC) curves was used for statistical evaluations. RESULTS ADC-T0 (p = 0.02), Dslow-T0 (p < 0.01), DDC-T0 (p = 0.03), ADC-T1 (p < 0.01), Dslow-T1 (p < 0.01), ΔADC (p = 0.04) and Δα (p < 0.01) were significant lower in non-CR group patients. ROC analyses showed that ADC-T1 and Δα exhibited high prediction value, with area under the curves of 0.880 and 0.869, respectively. CONCLUSIONS Multi-b-values DWI can be used as a noninvasive technique to assess and predict treatment response in cervical cancer patients at the 3rd day of CCRT. ADC-T1 and Δα can be used to differentiate good responders from poor responders.
Collapse
Affiliation(s)
- Bing Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Wan-Ling Ma
- Department of radiology, Longgang District People's Hospital, Shenzhen, Guangdong, P. R. China, 518172
| | - Guang-Wen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Zhen Sun
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Meng-Qi Wei
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Wei-Huan Hou
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Bing-Xin Hou
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Li-Chun Wei
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Yi Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032.
| |
Collapse
|
27
|
Long L, Zhang H, He X, Zhou J, Guo D, Liu X. Value of intravoxel incoherent motion magnetic resonance imaging for differentiating metastatic from nonmetastatic mesorectal lymph nodes with different short-axis diameters in rectal cancer. J Cancer Res Ther 2020; 15:1508-1515. [PMID: 31939430 DOI: 10.4103/jcrt.jcrt_76_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Conventional magnetic resonance imaging (MRI) does not accurately evaluate lymph node (LN) status, which is essential for the treatment and prognosis assessment in patients with rectal cancer. Objective The aim of this study is to evaluate the diagnostic value of intravoxel incoherent motion (IVIM) MRI in differentiating metastatic and nonmetastatic mesorectal LNs with different short-axis diameters in rectal cancer patients. Materials and Methods Forty patients (154 LNs) were divided into three groups based on short-axis diameter: 3 mm ≤ × ≤5 mm, 5 mm < × ≤7 mm, and × >7 mm. MRI characteristics and IVIM parameters were compared between the metastatic and nonmetastatic LNs to determine the diagnostic value for discriminating them. Results In the 3 mm ≤ × ≤ 5 mm group, mean D values were significantly lower in metastatic than in the nonmetastatic LNs (P < 0.001). In the 5 mm < × ≤7 mm group, mean f values were significantly lower in metastatic than nonmetastatic LNs (P < 0.05). In the × >7 mm group, only the short-axis diameter of metastatic LNs was significantly greater than that of nonmetastatic LNs (P < 0.05). The area under the curve, sensitivity, specificity, and cutoff values were used for differentiating the metastatic from the nonmetastatic LNs. Conclusion IVIM parameters can differentiate metastatic from nonmetastatic LNs with smaller short-axis diameters (× ≤7 mm) in rectal cancer, and the short-axis diameter is a significant factor in identifying metastatic and nonmetastatic LNs in larger short-axis diameter groups (× >7 mm).
Collapse
Affiliation(s)
- Ling Long
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Haiping Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xiaojing He
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xinjie Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|
28
|
Zhang Q, Ouyang H, Ye F, Chen S, Xie L, Zhao X, Yu X. Multiple mathematical models of diffusion-weighted imaging for endometrial cancer characterization: Correlation with prognosis-related risk factors. Eur J Radiol 2020; 130:109102. [PMID: 32673928 DOI: 10.1016/j.ejrad.2020.109102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate mono-exponential, bi-exponential, and stretched-exponential models of diffusion-weighted imaging (DWI) for evaluation of prognosis-related risk factors of endometrial cancer (EC). METHOD Sixty-one consecutive patients with EC who preoperatively underwent pelvic MRI with multiple b value DWI between September 2016 and May 2018 were enrolled. The apparent-diffusion-coefficient (ADC), bi-exponential model parameters (D, D* and f) and stretched-exponential model parameters (DDC and α) were measured and compared to analyze the following prognosis-related risk factors confirmed by pathology: histological grade, depth of myometrial invasion, cervical stromal infiltration (CSI) and lymphovascular invasion (LVSI). A stepwise multilvariate logistic regression and the receiver operating characteristic (ROC) curves were performed for further statistical analysis. RESULTS Lower ADC, D, f, and DDC were observed in tumor with high grade compared with a low-grade group, and the largest area under curve (AUC) was obtained when combining f and DDC values. ADC, D, f, DDC, and α were significantly different in patients with deep myometrial invasion (DMI) compared to those without DMI; the combination of f, DDC and α showed the highest AUC. Significantly different ADC and f were found between patients' presence and absence CSI; the f values showed the highest diagnostic performance with an AUC of 0.825. Regarding the LVSI, ADC, D*, f, and DDC were significantly lower in tumors with LVSI compared to those without LVSI; the combination of f and DDC showed the largest AUC. CONCLUSION Multiple mathematical DWI models are a useful approach for the prediction of prognosis-related risk factors in EC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Han Ouyang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Feng Ye
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuang Chen
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lizhi Xie
- GE Healthcare, MR Research China, Beijing, China
| | - Xinming Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiaoduo Yu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Zheng T, Wang J, Liu Q, Wang J, Wu Y, Norris J. Effectiveness Evaluation of Multi-b Value Diffusion Weighted Imaging Intelligence Monitoring the Diagnosis of Benign and Malignant Prostatic Tumors Based on Single-index Model, Double-index Model and Stretch-index Model (Preprint). JMIR Med Inform 2020. [DOI: 10.2196/19050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Zhang H, Zhou Y, Li J, Zhang P, Li Z, Guo J. The value of DWI in predicting the response to synchronous radiochemotherapy for advanced cervical carcinoma: comparison among three mathematical models. Cancer Imaging 2020; 20:8. [PMID: 31937371 PMCID: PMC6961298 DOI: 10.1186/s40644-019-0285-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Diffusion weighted imaging(DWI) mode mainly includes intravoxel incoherent motion (IVIM), stretched exponential model (SEM) and Gaussian diffusion model, but it is still unclear which mode is the most valuable in predicting the response to radiochemotherapy for cervical cancer. This study aims to compare the values of three mathematical models in predicting the response to synchronous radiochemotherapy for cervical cancer. Methods Eighty-four patients with cervical cancer were enrolled into this study. They underwent DWI examination by using 12 b-values prior to treatment. The imaging parameters were calculated on the basis of IVIM, SEM and Gaussian diffusion models respectively. The imaging parameters derived from three mathematical modes were compared between responders and non-responders groups. The repeatability of each imaging parameter was assessed. Results The ADC, D or DDC value was lower in responders than in non-responders groups (P = 0.03, 0.02, 0.01). The α value was higher in responders group than in non-responders group (P = 0.03). DDC had the largest area under curves (AUC) (=0.948) in predicting the response to treatment. The imaging parameters derived from SEM had better repeatability (CCC for DDC and α were 0.969 and 0.924 respectively) than that derived from other exponential models. Conclusion Three exponential modes of DWI are useful for predicting the response to radiochemotherapy for cervical cancer, and SEM may be used as a potential optimal model for predicting treatment effect.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China
| | - Yuyang Zhou
- Department of Cardiac Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan Province, China
| | - Jie Li
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China
| | - Pengjuan Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China
| | - Zhenzhen Li
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China
| | - Junwu Guo
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China.
| |
Collapse
|
31
|
Optimized Parameters of Diffusion-Weighted MRI for Prediction of the Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9392747. [PMID: 31737679 PMCID: PMC6815634 DOI: 10.1155/2019/9392747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
Aim To identify the optimal diffusion-weighted MRI-derived parameters for predicting the response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Methods This prospective study enrolled 92 patients who underwent neoadjuvant chemoradiotherapy. Diffusion-weighted MRI sequences with two b-value combinations of b (0, 800) and b (0, 1000) were acquired before the start of neoadjuvant chemoradiotherapy and surgery. The pathological tumor regression grade was obtained according to the Mandard criteria, recommended by the seventh edition of the American Joint Committee on Cancer, to act as the reference standard. Pathological good responders (pathological tumor regression grade 1-2) were compared with poor responders (pathological tumor regression grade 3–5). Results The good responder group contained 37 (40.2%) patients and the poor responder group 55 (59.8%) patients. Both before and after neoadjuvant chemoradiotherapy, the mean ADC value for b = 1000 was significantly higher than that for b = 800. In the two patient groups, the post-ADC value and ΔADC for b = 800 were significantly lower than those for b = 1000, but percentages of ADC increase for b = 800 and b = 1000 showed no significant difference. Conclusions The percentage of ADC increase, as an optimized predictor unaffected by different b-values, may have a significant role in differentiating those patients with a good response to N-CRT from those with a poor response.
Collapse
|
32
|
Guo R, Yang SH, Lu F, Han ZH, Yan X, Fu CX, Zhao ML, Lin J. Evaluation of intratumoral heterogeneity by using diffusion kurtosis imaging and stretched exponential diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model. Quant Imaging Med Surg 2019; 9:1566-1578. [PMID: 31667142 DOI: 10.21037/qims.2019.08.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background To investigate the value of diffusion kurtosis imaging (DKI) and diffusion-weighted imaging (DWI) with a stretched exponential model (SEM) in the evaluation of tumor heterogeneity in an orthotopic hepatocellular carcinoma (HCC) xenograft model. Methods Thirty orthotopic HCC xenograft nude mice models were established and randomly divided into two groups, the sorafenib induction group (n=15) and control group (n=15). Every mouse in each group underwent MRI with DKI and SEM on a 1.5T MR scanner at 7, 14, and 21 days after sorafenib intervention. DKI and SEM parameters including mean kurtosis (MK), mean diffusivity (MD), α, and distributed diffusion coefficient (DDC) were measured, calculated, and compared between the two groups and among different time points. Sequential correlations between histopathological results including necrotic fraction (NF), micro-vessel density (MVD), Ki-67 index, standard deviation (SD), and kurtosis from hematoxylin-eosin staining, and DKI and SEM parameters were analyzed. Results MK, MD, and DDC of HCC in the sorafenib induction group were significantly higher than those in the control group at each time point (P<0.05), while α was significantly lower (P<0.05). Significantly positive correlations were found between MK and NF (r=0.693, P=0.010), SD (r =0.785, P=0.003), kurtosis (r=0.779, P=0.003), between MD and NF (r=0.794, P=0.003), SD (r=0.629, P=0.020), kurtosis (r=0.645, P=0.018), and between DDC and NF (r=0.800, P=0.003), SD (r=0.636, P=0.020), kurtosis (r=0.664, P=0.016), and significantly negative correlations were observed between α and NF (r=-0.704, P=0.009), SD (r=-0.754, P=0.003), and kurtosis (r=-0.792, P=0.003) in the sorafenib induction group. Conclusions DKI and SEM parameters may be potentially useful for evaluating intratumoral heterogeneity in HCC.
Collapse
Affiliation(s)
- Ran Guo
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Shuo-Hui Yang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Zhi-Hong Han
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthcare, Shanghai 201318, China
| | - Cai-Xia Fu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen 518057, China
| | - Meng-Long Zhao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jiang Lin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
33
|
Liu S, Wen L, Hou J, Nie S, Zhou J, Cao F, Lu Q, Qin Y, Fu Y, Yu X. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging. Abdom Radiol (NY) 2019; 44:2689-2698. [PMID: 31030244 DOI: 10.1007/s00261-019-02032-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the performance of the mean parametric values and texture features based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) on identifying pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). METHODS Pretreatment IVIM-DWI was performed on 41 LARC patients receiving nCRT in this prospective study. The values of IVIM-DWI parameters (apparent diffusion coefficient, ADC; pure diffusion coefficient, D; pseudo-diffusion coefficient, D* and perfusion fraction, f), the first-order, and gray-level co-occurrence matrix (GLCM) texture features were compared between the pCR (n = 9) and non-pathological responder (non-pCR, n = 32) groups. Receiver operating characteristic (ROC) curves in univariate and multivariate logistic regression analysis were generated to determine the efficiency for identifying pCR. RESULTS The values of IVIM-DWI parameters and first-order texture features did not show significant differences between the pCR and non-pCR groups. The pCR group had lower Contrast and DifVarnc values extracted from the ADC, D, and D* maps, respectively, as well as lower CorrelatD value. Higher CorrelatD*, Correlatf, SumAvergADC, and SumAvergD values were observed in the pCR group. The area under the ROC curve (AUC) values for the individual predictors in univariate analysis ranged from 0.698 to 0.837, with sensitivities from 43.75% to 87.50% and specificities from 66.67 to 100.00%. In multivariate analysis, CorrelatD* (P < 0.001), DifVarncADC (P = 0.024), and DifVarncD (P < 0.001) were the independent predictors to pCR, with an AUC of 0.986, a sensitivity of 93.75%, and a specificity of 100.00%. CONCLUSION Pretreatment GLCM analysis based on IVIM-DWI may be a potential approach to identify the pathological response of LARC.
Collapse
Affiliation(s)
- Siye Liu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Lu Wen
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Jing Hou
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Shaolin Nie
- Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, People's Republic of China
| | - Jumei Zhou
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, People's Republic of China
| | - Fang Cao
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, People's Republic of China
| | - Qiang Lu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Yuhui Qin
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Yi Fu
- Department of Medical Service, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, People's Republic of China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, the Affiliated Cancer Hospital of Xiangya School of Medicine & Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China.
| |
Collapse
|
34
|
Zhou Y, Zhang HX, Zhang XS, Sun YF, He KB, Sang XQ, Zhu YM, Kuai ZX. Non-mono-exponential diffusion models for assessing early response of liver metastases to chemotherapy in colorectal Cancer. Cancer Imaging 2019; 19:39. [PMID: 31217036 PMCID: PMC6585014 DOI: 10.1186/s40644-019-0228-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background Preoperative chemotherapy is becoming standard therapy for liver metastasis from colorectal cancer, so early assessment of treatment response is crucial to make a reasonable therapeutic regimen and avoid overtreatment, especially for patients with severe side effects. The role of three non-mono-exponential diffusion models, such as the kurtosis model, the stretched exponential model and the statistical model, were explored in this study to early assess the response to chemotherapy in patients with liver metastasis from colorectal cancer. Methods Thirty-three patients diagnosed as colorectal liver metastasis were evaluated in this study. Diffusion-weighted images with b values (0, 200, 500, 1000, 1500, 2000 s/mm2) were acquired at 3.0 T. The parameters (ADCk, K, DDC,α, Dsand σ) were derived from three non-mono-exponential models (the kurtosis, stretched exponential and statistical models) as well as their corresponding percentage changes before and after chemotherapy. The difference in above parameters between the response and non-response groups were analyzed with independent-samples T-test (normality) and Mann–Whitney U-test (non-normality). Meanwhile, receiver operating characteristic curve (ROC) analyses were performed to assess the response to chemotherapy. Results Significantly lower values of K (the kurtosis coefficient derived from the kurtosis model) and σ (the width of diffusion coefficient distribution in the statistical model) (P < 0.05) were observed in the respond group before treatment, as well as higher ΔK and Δσ values (P < 0.05) after the first cycle of chemotherapy were also found compared with the non-respond group. ROC analyses showed the K value acquired before treatment had the highest diagnostic performance (0.746) in distinguishing responders from non-responders. Furthermore, the high sensitivity (100%) and accuracy (76.3%) from the K value before treatment was found in assessing the response of colorectal liver metastasis to chemotherapy. Conclusions The non-mono-exponential diffusion models may be able to predict early response to chemotherapy in patients with colorectal liver metastasis.
Collapse
Affiliation(s)
- Yang Zhou
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, China
| | - Hong-Xia Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, China
| | - Xiu-Shi Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, China
| | - Yun-Feng Sun
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, China
| | - Kuang-Bang He
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, China
| | - Xi-Qiao Sang
- Division of Respiratory Disease, The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yue-Min Zhu
- CREATIS, CNRS UMR 5220-INSERM U1206, University Lyon 1-INSA Lyon-University Jean Monnet Saint-Etienne, 69621, Lyon, France
| | - Zi-Xiang Kuai
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin, 150081, China.
| |
Collapse
|
35
|
Kim HC, Seo N, Chung YE, Park MS, Choi JY, Kim MJ. Characterization of focal liver lesions using the stretched exponential model: comparison with monoexponential and biexponential diffusion-weighted magnetic resonance imaging. Eur Radiol 2019; 29:5111-5120. [PMID: 30796578 DOI: 10.1007/s00330-019-06048-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To compare the stretched exponential model of diffusion-weighted imaging (DWI) with monoexponential and biexponential models in terms of the ability to characterize focal liver lesions (FLLs). METHODS This retrospective study included 180 patients with FLLs who underwent magnetic resonance imaging including DWI with nine b values at 3.0 T. The distributed diffusion coefficient (DDC) and intravoxel diffusion heterogeneity index (α) from a stretched exponential model; true diffusion coefficient (Dt), pseudo-diffusion coefficient (Dp), and perfusion fraction (f) from a biexponential model; and apparent diffusion coefficient (ADC) were calculated for each lesion. Diagnostic performances of the parameters were assessed through receiver operating characteristic (ROC) analysis. For 20 patients with treated hepatic metastases, the correlation between the DWI parameters and the percentage of tumor necrosis on pathology was evaluated using the Spearman correlation coefficient. RESULTS DDC had the highest area under the ROC curve (AUC, 0.905) for differentiating malignant from benign lesions, followed by Dt (0.903) and ADC (0.866), without significant differences among them (DDC vs. Dt, p = 0.946; DDC vs. ADC, p = 0.157). For distinguishing hypovascular from hypervascular lesions, and hepatocellular carcinoma from metastasis, f had a significantly higher AUC than the other DWI parameters (p < 0.05). The α had the strongest correlation with the degree of tumor necrosis (ρ = 0.655, p = 0.002). CONCLUSION The DDC from stretched exponential model of DWI demonstrated excellent diagnostic performance for differentiating malignant from benign FLLs. The α is promising for evaluating the degree of necrosis in treated metastases. KEY POINTS • The stretched exponential DWI model is valuable for characterizing focal liver lesions. • The DDC from stretched exponential model shows excellent performance for differentiating malignant from benign focal liver lesions. • The α from stretched exponential model is promising for evaluating the degree of necrosis in hepatic metastases after chemotherapy.
Collapse
Affiliation(s)
- Hyung Cheol Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Nieun Seo
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Yong Eun Chung
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Mi-Suk Park
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jin-Young Choi
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Myeong-Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
36
|
Wen Z, Chen Y, Yang X, Lu B, Liu Y, Shen B, Yu S. Application of magnetic resonance diffusion kurtosis imaging for distinguishing histopathologic subtypes and grades of rectal carcinoma. Cancer Imaging 2019; 19:8. [PMID: 30744694 PMCID: PMC6371623 DOI: 10.1186/s40644-019-0192-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/28/2019] [Indexed: 01/19/2023] Open
Abstract
Background To evaluate the diagnostic performance of diffusion kurtosis imaging (DKI) for distinguishing different histopathological subtypes and grades of rectal carcinoma and to compare DKI with conventional diffusion-weighted imaging (DWI). Methods This prospective study involved 132 patients with rectal carcinoma, comprising 116 with adenocarcinoma not otherwise specified (AC) and 16 with mucinous carcinoma (MC). High spatial resolution magnetic resonance (MR) and DKI sequences (b values of 0, 600, 1000, 1500 and 2000 s/mm2) were performed for pretreatment evaluation. The mean kurtosis (MK) and mean diffusivity (MD) from DKI and the apparent diffusion coefficient (ADC) from DWI were measured by two experienced radiologists. The Mann-Whitney U test was used to evaluate different histopathological subtypes and grades. Receiver operating characteristic (ROC) curve analyses were performed to compare the diagnostic ability of different quantitative parameters. Results The MD and ADC values were significantly higher for MC than for AC (1.94 ± 0.51 vs. 1.33 ± 0.02 and 1.26 ± 0.64 vs. 0.92 ± 0.01, respectively; P < 0.001). The MK values were significantly lower for MC than for AC (0.66 ± 0.02 vs. 0.93 ± 0.09, P < 0.001). The MK and MD values demonstrated higher sensitivity (94%, both) and specificity (96, 93%, respectively) than the ADC values. However, all the parameters derived from both DKI and DWI showed no significant differences between different histological grades. Conclusions DKI is a more valuable imaging biomarker than conventional DWI for differentiating MC from AC. However, it is still debatable whether DKI is useful for distinguishing different histological grades.
Collapse
Affiliation(s)
- Ziqiang Wen
- Department of Radiology, Sun Yat-sen University First Affiliated Hospital, No. 58, Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, China
| | - Yan Chen
- Department of Radiology, Sun Yat-sen University First Affiliated Hospital, No. 58, Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, China
| | - Xinyue Yang
- Department of Radiology, Southern Medical University Zhujiang Hospital, Guangzhou, 510282, China
| | - Baolan Lu
- Department of Radiology, Sun Yat-sen University First Affiliated Hospital, No. 58, Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, China
| | - Yiyan Liu
- Department of Radiology, Sun Yat-sen University First Affiliated Hospital, No. 58, Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, China
| | - Bingqi Shen
- Department of Radiology, Sun Yat-sen University First Affiliated Hospital, No. 58, Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, China
| | - Shenping Yu
- Department of Radiology, Sun Yat-sen University First Affiliated Hospital, No. 58, Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
37
|
Li J, Yang Y. Clinical Study of Diffusion-Weighted Imaging in the Diagnosis of Liver Focal Lesion. J Med Syst 2019; 43:43. [PMID: 30649629 DOI: 10.1007/s10916-019-1164-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Apparent diffusion coefficient (ADC), derived from diffusion-weighted magnetic resonance images (DW-MRI), measures the motion of water molecules in vivo and can be used to quantify tumor response so as to determine the best therapy approach. In this paper, our goal was to determine whether the DW-MRI can be used for qualitative and quantitative liver cancer analysis, where an automated method will be proposed for improving the accuracy of liver segmentation in DW-MRI to increase the ability of diagnosis of disease. We firstly analyzed the research status of liver cancer diagnosis, especially on the issues of liver image segmentation technology in MRI. Then, the imaging mechanism and image features of the DW-MRI were analyzed, and the initial DW-MRI slice was segmented by graph-cut algorithm. Finally, our obtained result from the liver DW-MRI image is quantitatively and qualitatively analyzed. Experimental results show that DW-MRI has a great advantage in the diagnosis, the DWI images of benign lesion group was lower than that of malignant lesion, thus DW-MRI is segmented by graph-cut algorithm can provide important additional information regarding differential diagnosis of specific liver cancer to some extend.
Collapse
Affiliation(s)
| | - Yue Yang
- Tongde hospital of Zhejiang province, Zhejiang, 310012, Hangzhou, China.
| |
Collapse
|
38
|
Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer. Eur J Radiol 2018; 110:249-255. [PMID: 30599868 DOI: 10.1016/j.ejrad.2018.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/25/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate whether the apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM), and stretched exponential model (SEM) based on histogram analyses derived from the whole-tumor volume combined with prognostic factors can be used to assess the response to chemotherapy and radiation therapy (CRT) in locally advanced rectal cancer (LARC). MATERIALS AND METHODS This study included 60 patients with LARC who underwent diffusion-weighted imaging with 9b values (0-1000s/mm2) before CRT. Histograms derived from the whole-tumor volume were used to obtain the ADC, IVIM (Dslow, Dfast, and f), and SEM parameters (distributed diffusion coefficient (DDC) and α). The histogram metrics and prognostic factors before CRT were compared between pathological complete response (pCR) and non-pCR patients. The receiver operating characteristic (ROC) and the area under the ROC curve (AUC) were generated to analyze the histogram metrics and prognostic factors. RESULTS A significant difference was only found in the tumor volume between the pCR and non-pCR groups (p = 0.033, AUC = 0.740). The ADC mean, DDC median, and most of the histogram metrics were significantly lower in the pCR group than the non-pCR group (p = 0.000-0.025), and AUC was highest for the ADC mean (0.890). Only the Dslow median differed significantly between the two groups (p = 0.023, AUC = 0.721). However, the Dfast, f, and α histogram metrics did not differ significantly between the pCR and non-pCR groups. The AUC for the ADC mean combined with the tumor volume was 0.908, with a sensitivity of 100% and specificity of 81%. The inter-observer agreements were good or excellent for the ADC and SEM histogram parameters but generally fair for IVIM. CONCLUSION The whole-tumor ADC mean combined with the tumor volume was highly accurate for predicting pCR. The IVIM models were inferior to ADC and SEM at predicting pCR.
Collapse
|
39
|
Zuo HD, Zhang XM. Could intravoxel incoherent motion diffusion-weighted magnetic resonance imaging be feasible and beneficial to the evaluation of gastrointestinal tumors histopathology and the therapeutic response? World J Radiol 2018; 10:116-123. [PMID: 30386496 PMCID: PMC6205843 DOI: 10.4329/wjr.v10.i10.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/02/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal tumors (GTs) are among the most common tumors of the digestive system and are among the leading causes of cancer death worldwide. Functional magnetic resonance imaging (MRI) is crucial for assessment of histopathological changes and therapeutic responses of GTs before and after chemotherapy and radiotherapy. A new functional MRI technique, intravoxel incoherent motion (IVIM), could reveal more detailed useful information regarding many diseases. Currently, IVIM is widely used for various tumors because the derived parameters (diffusion coefficient, D; pseudo-perfusion diffusion coefficient, D*; and perfusion fraction, f) are thought to be important surrogate imaging biomarkers for gaining insights into tissue physiology. They can simultaneously reflect the microenvironment, microcirculation in the capillary network (perfusion) and diffusion in tumor tissues without contrast agent intravenous administration. The sensitivity and specificity of these parameters used in the evaluation of GTs vary, the results of IVIM in GTs are discrepant and the variability of IVIM measurements in response to chemotherapy and/or radiotherapy in these studies remains a source of controversy. Therefore, there are questions as to whether IVIM diffusion-weighted MRI is feasible and helpful in the evaluation of GTs, and whether it is worthy of expanded use.
Collapse
Affiliation(s)
- Hou-Dong Zuo
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
40
|
Tang L, Zhou XJ. Diffusion MRI of cancer: From low to high b-values. J Magn Reson Imaging 2018; 49:23-40. [PMID: 30311988 DOI: 10.1002/jmri.26293] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
Following its success in early detection of cerebral ischemia, diffusion-weighted imaging (DWI) has been increasingly used in cancer diagnosis and treatment evaluation. These applications are propelled by the rapid development of novel diffusion models to extract biologically valuable information from diffusion-weighted MR signals, and significant advances in MR hardware that has enabled image acquisition with high b-values. This article reviews recent technical developments and clinical applications in cancer imaging using DWI, with a special emphasis on high b-value diffusion models. The article is organized in four sections. First, we provide an overview of diffusion models that are relevant to cancer imaging. The model parameters are discussed in relation to three tissue properties-cellularity, vascularity, and microstructures. An emphasis is placed on characterization of microstructural heterogeneity, given its novelty and close relevance to cancer. Second, we illustrate diffusion MR clinical applications in each of the following three categories: 1) cancer detection and diagnosis; 2) cancer grading, staging, and classification; and 3) cancer treatment response prediction and evaluation. Third, we discuss several practical issues, including selection of image acquisition parameters, reproducibility and reliability, motion management, image distortion, etc., that are commonly encountered when applying DWI to cancer in clinical settings. Lastly, we highlight a few ongoing challenges and provide some possible future directions, particularly in the area of establishing standards via well-organized multicenter clinical trials to accelerate clinical translation of advanced DWI techniques to improving cancer care on a large scale. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:23-40.
Collapse
Affiliation(s)
- Lei Tang
- Department of Radiology, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research, Beijing, China
| | - Xiaohong Joe Zhou
- Center for MR Research and Departments of Radiology, Neurosurgery, and Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Luterstein E, Raldow A, Yang Y, Lee P. Functional Imaging Predictors of Response to Chemoradiation. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Zhang M, Chen Y, Cong X, Zhao X. Utility of intravoxel incoherent motion MRI derived parameters for prediction of aggressiveness in urothelial bladder carcinoma. J Magn Reson Imaging 2018; 48:1648-1656. [PMID: 29740903 DOI: 10.1002/jmri.26165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/10/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Miaomiao Zhang
- Department of Imaging Diagnosis, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yan Chen
- Department of Imaging Diagnosis, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Xinying Cong
- Department of Imaging; China Rehabilitation Research Center; Beijing China
| | - Xinming Zhao
- Department of Imaging Diagnosis, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| |
Collapse
|
43
|
Lu B, Yang X, Xiao X, Chen Y, Yan X, Yu S. Intravoxel Incoherent Motion Diffusion-Weighted Imaging of Primary Rectal Carcinoma: Correlation with Histopathology. Med Sci Monit 2018; 24:2429-2436. [PMID: 29679528 PMCID: PMC5930975 DOI: 10.12659/msm.908574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Comprehensive and precise assessment of rectal carcinoma is crucial before surgery to plan an individual treatment strategy. New functional techniques, such as intravoxel incoherent motion (IVIM), have emerged and could lead to more detailed information. The aim of this study was to evaluate the difference between the rectal tumor parenchyma and normal wall by IVIM and to explore the correlations of IVIM parameters and histopathology. Material/Methods We prospectively enrolled 128 patients with pathologically proven rectal non-mucinous carcinoma with differentiation degree and 16 patients with mucinous carcinoma. All patients underwent routine MR examination and IVIM sequence. The IVIM maps were automatically generated and 3 ROIs were drawn on the maximal rectal tumor parenchyma and normal rectal wall. The Wilcoxon signed rank test, t test, Mann-Whitney U test, and Spearman’s rank correlation test were performed. Results All IVIM parameters demonstrated the difference between rectal tumor parenchyma and normal wall (PD<0.001; PD*=0.014; Pf<0.001). Poorly differentiated carcinoma had a significantly lower f value (Pf=0.049) than well/moderately-differentiated carcinoma. In addition, mucinous carcinoma had a higher D (PD=0.001) and a lower D* value (PD*=0.001) than non-mucinous carcinoma. Correlation analysis between IVIM parameters and histopathology showed that D (|r|=0.538, PD=0.000) and D* (|r|=0.267, PD*=0.001) had statistically significant correlations with histological type and f (|r|=0.175, Pf=0.048) was significantly correlated with differentiation degree. Conclusions The IVIM parameters of rectal tumor parenchyma and normal wall were significantly different. D appears to be a valid and promising parameter to indicate histological features of rectal carcinoma.
Collapse
Affiliation(s)
- Baolan Lu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Xinyue Yang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Xiaojuan Xiao
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yan Chen
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Xu Yan
- MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China (mainland)
| | - Shenping Yu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
44
|
García-Figueiras R, Baleato-González S, Padhani AR, Luna-Alcalá A, Marhuenda A, Vilanova JC, Osorio-Vázquez I, Martínez-de-Alegría A, Gómez-Caamaño A. Advanced Imaging Techniques in Evaluation of Colorectal Cancer. Radiographics 2018; 38:740-765. [PMID: 29676964 DOI: 10.1148/rg.2018170044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imaging techniques are clinical decision-making tools in the evaluation of patients with colorectal cancer (CRC). The aim of this article is to discuss the potential of recent advances in imaging for diagnosis, prognosis, therapy planning, and assessment of response to treatment of CRC. Recent developments and new clinical applications of conventional imaging techniques such as virtual colonoscopy, dual-energy spectral computed tomography, elastography, advanced computing techniques (including volumetric rendering techniques and machine learning), magnetic resonance (MR) imaging-based magnetization transfer, and new liver imaging techniques, which may offer additional clinical information in patients with CRC, are summarized. In addition, the clinical value of functional and molecular imaging techniques such as diffusion-weighted MR imaging, dynamic contrast material-enhanced imaging, blood oxygen level-dependent imaging, lymphography with contrast agents, positron emission tomography with different radiotracers, and MR spectroscopy is reviewed, and the advantages and disadvantages of these modalities are evaluated. Finally, the future role of imaging-based analysis of tumor heterogeneity and multiparametric imaging, the development of radiomics and radiogenomics, and future challenges for imaging of patients with CRC are discussed. Online supplemental material is available for this article. ©RSNA, 2018.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- From the Departments of Radiology (R.G.F., S.B.G., I.O.V., A.M.d.A.) and Radiation Oncology (A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Health Time, Jaén, Spain (A.L.A.); Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio (A.L.A.); Department of Radiology, IVO (Instituto Valenciano de Oncología), Valencia, Spain (A.M.); and Department of Radiology, Clínica Girona and IDI, Girona, Spain (J.C.V.)
| | - Sandra Baleato-González
- From the Departments of Radiology (R.G.F., S.B.G., I.O.V., A.M.d.A.) and Radiation Oncology (A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Health Time, Jaén, Spain (A.L.A.); Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio (A.L.A.); Department of Radiology, IVO (Instituto Valenciano de Oncología), Valencia, Spain (A.M.); and Department of Radiology, Clínica Girona and IDI, Girona, Spain (J.C.V.)
| | - Anwar R Padhani
- From the Departments of Radiology (R.G.F., S.B.G., I.O.V., A.M.d.A.) and Radiation Oncology (A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Health Time, Jaén, Spain (A.L.A.); Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio (A.L.A.); Department of Radiology, IVO (Instituto Valenciano de Oncología), Valencia, Spain (A.M.); and Department of Radiology, Clínica Girona and IDI, Girona, Spain (J.C.V.)
| | - Antonio Luna-Alcalá
- From the Departments of Radiology (R.G.F., S.B.G., I.O.V., A.M.d.A.) and Radiation Oncology (A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Health Time, Jaén, Spain (A.L.A.); Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio (A.L.A.); Department of Radiology, IVO (Instituto Valenciano de Oncología), Valencia, Spain (A.M.); and Department of Radiology, Clínica Girona and IDI, Girona, Spain (J.C.V.)
| | - Ana Marhuenda
- From the Departments of Radiology (R.G.F., S.B.G., I.O.V., A.M.d.A.) and Radiation Oncology (A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Health Time, Jaén, Spain (A.L.A.); Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio (A.L.A.); Department of Radiology, IVO (Instituto Valenciano de Oncología), Valencia, Spain (A.M.); and Department of Radiology, Clínica Girona and IDI, Girona, Spain (J.C.V.)
| | - Joan C Vilanova
- From the Departments of Radiology (R.G.F., S.B.G., I.O.V., A.M.d.A.) and Radiation Oncology (A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Health Time, Jaén, Spain (A.L.A.); Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio (A.L.A.); Department of Radiology, IVO (Instituto Valenciano de Oncología), Valencia, Spain (A.M.); and Department of Radiology, Clínica Girona and IDI, Girona, Spain (J.C.V.)
| | - Iria Osorio-Vázquez
- From the Departments of Radiology (R.G.F., S.B.G., I.O.V., A.M.d.A.) and Radiation Oncology (A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Health Time, Jaén, Spain (A.L.A.); Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio (A.L.A.); Department of Radiology, IVO (Instituto Valenciano de Oncología), Valencia, Spain (A.M.); and Department of Radiology, Clínica Girona and IDI, Girona, Spain (J.C.V.)
| | - Anxo Martínez-de-Alegría
- From the Departments of Radiology (R.G.F., S.B.G., I.O.V., A.M.d.A.) and Radiation Oncology (A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Health Time, Jaén, Spain (A.L.A.); Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio (A.L.A.); Department of Radiology, IVO (Instituto Valenciano de Oncología), Valencia, Spain (A.M.); and Department of Radiology, Clínica Girona and IDI, Girona, Spain (J.C.V.)
| | - Antonio Gómez-Caamaño
- From the Departments of Radiology (R.G.F., S.B.G., I.O.V., A.M.d.A.) and Radiation Oncology (A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Health Time, Jaén, Spain (A.L.A.); Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio (A.L.A.); Department of Radiology, IVO (Instituto Valenciano de Oncología), Valencia, Spain (A.M.); and Department of Radiology, Clínica Girona and IDI, Girona, Spain (J.C.V.)
| |
Collapse
|
45
|
Taveras LR, Cunningham HB, Imran JB. Can We Reliably Predict a Clinical Complete Response in Rectal Cancer? Current Trends and Future Strategies. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Zheng H, Ren W, Pan X, Zhang Q, Liu B, Liu S, He J, Zhou Z. Role of intravoxel incoherent motion MRI in early assessment of the response of esophageal squamous cell carcinoma to chemoradiotherapy: A pilot study. J Magn Reson Imaging 2018; 48:349-358. [PMID: 29297204 DOI: 10.1002/jmri.25934] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Since definitive concurrent chemoradiotherapy (CRT) is standard therapy for inoperable esophageal squamous cell carcinoma (ESCC), early evaluation of treatment response is crucial for patients and would be useful in assessing response, especially in patients with severe side effects. PURPOSE To explore the feasibility of intravoxel incoherent motion (IVIM) MRI in the early assessment of treatment response to CRT. STUDY TYPE Prospective. POPULATION Twenty-three inoperable ESCC patients. SEQUENCE IVIM 3T MRI of nine b values (0, 25, 50, 75, 100, 150, 200, 500 and 800 s/mm2 ) was performed at four timepoints: pre-CRT (within 5 days before CRT), mid-CRT (2-3 weeks after the start of CRT), end-CRT (within 5 days after the end of CRT), and post-CRT (1 month after the end of CRT). ASSESSMENT IVIM-based parameters and ADC were analyzed independently by two radiologists and treatment response was assessed by the Response Evaluation Criteria in Solid Tumors (RECIST). STATISTICAL TESTS Analyses of variance for repeated measurements were conducted to observe dynamic changes of IVIM-based parameters (D, f, and D*) and ADC during CRT. The parameters and their change percentages (Δ%) were compared between complete response (CR) and partial response (PR) by Mann-Whitney U-test. Diagnostic performance of parameters in predicting response was tested with receiver-operating characteristic curve analysis. RESULTS ADC, D, and f increased significantly during CRT (P < 0.001, < 0.001, and 0.001, respectively). ADC, f, Δ%ADC, and Δ%D at mid-CRT in CR group were significantly higher than those in the PR group (P = 0.002, 0.013, 0.005, and 0.011, respectively). D combined with f and ADC had highest area under curve (0.917) in identifying CR from PR. DATA CONCLUSION IVIM parameters proved useful in assessing response to definitive concurrent CRT for inoperable ESCC and combined with ADC at an early stage of treatment was a good predictor of response. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. MAGN. RESON. IMAGING 2018;48:349-358.
Collapse
Affiliation(s)
- Huanhuan Zheng
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Ren
- Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xia Pan
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qinglei Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
47
|
Xu Q, Xu Y, Sun H, Chan Q, Shi K, Song A, Wang W. Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer. J Magn Reson Imaging 2017; 48:248-258. [PMID: 29281151 DOI: 10.1002/jmri.25931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Many locally advanced rectal cancer (LARC) patients can benefit from neoadjuvant chemotherapy (NACT), with some achieving a pathological complete response (pCR). However, there is limited research reporting on the value of intravoxel incoherent motion (IVIM) in monitoring pCR in patients with LARC. PURPOSE To identify whether IVIM parameters derived from whole-tumor volume (WTV) before and after NACT could accurately assess pCR in patients with LARC. STUDY TYPE Prospective patient control study. POPULATION Fifty-one patients with LARC before and after NACT, prior to surgery. FIELD STRENGTH/SEQUENCE IVIM-diffusion imaging at 3T. ASSESSMENT Apparent diffusion coefficient (ADC), slow diffusion coefficient (D), fast diffusion coefficient (D*), and perfusion-related diffusion fraction (f) values were obtained on diffusion-weighted magnetic resonance images (DW-MRI) using WTV methods and calculated using a biexponential model before and after NACT. STATISTICAL TESTS DWI-derived ADC and IVIM-derived parameters and their percentage changes (ΔADC%, ΔD%, ΔD*%, and Δf%) were compared using independent-samples t-test and Mann-Whitney U-test between the pCR and non-pCR groups. The diagnostic performance of IVIM parameters and their percentage changes were evaluated using receiver operating characteristic curves. RESULTS Compared with the non-pCR group, the pCR group exhibited significantly lower pre-ADCmean (P = 0.003) and pre-D values (P = 0.024), and significantly higher post-f (P = 0.002), ΔADCmean % (P = 0.002), ΔD% (P = 0.001), and Δf% values (P = 0.017). Receiver operating characteristic curves showed that the pre-D value had the best specificity (95.12%) and accuracy (86.27%) in predicting the pCR status, and ΔD% had the highest area under the curve (0.832) in assessing the pCR response to NACT. DATA CONCLUSIONS The IVIM-derived D value is a promising tool in predicting the pCR status before therapy. The percentage changes in D values after therapy may help assess the pCR status prior to surgery. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017.
Collapse
Affiliation(s)
- Qiaoyu Xu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yanyan Xu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Hongliang Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Queenie Chan
- Philips Healthcare, Shatin, New Territories, Hong Kong, China
| | | | - Aiping Song
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Wu Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
48
|
Erratum. J Magn Reson Imaging 2017; 46:1234. [DOI: 10.1002/jmri.25840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Bakke KM, Hole KH, Dueland S, Grøholt KK, Flatmark K, Ree AH, Seierstad T, Redalen KR. Diffusion-weighted magnetic resonance imaging of rectal cancer: tumour volume and perfusion fraction predict chemoradiotherapy response and survival. Acta Oncol 2017; 56:813-818. [PMID: 28464745 DOI: 10.1080/0284186x.2017.1287951] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In locally advanced rectal cancer (LARC), responses to preoperative treatment are highly heterogeneous and more accurate diagnostics are likely to enable more individualised treatment approaches with improved responses. We investigated the potential of diffusion-weighted magnetic resonance imaging (DW MRI), with quantification of the apparent diffusion coefficient (ADC) and perfusion fraction (F), as well as volumetry from T2-weighted (T2W) MRI, for prediction of therapeutic outcome. MATERIAL AND METHODS In 27 LARC patients receiving neoadjuvant chemotherapy (NACT) before chemoradiotherapy (CRT), T2W- and DW MRI were obtained before and after NACT. Tumour volumes were delineated in T2W MRI and ADCs and Fs were estimated from DW MRI using a simplified approach to the intravoxel incoherent motion (IVIM) model. Mean tumour values and histogram analysis of whole-tumour heterogeneity were correlated with histopathologic tumour regression grade (TRG) and 5-year progression-free survival (PFS). RESULTS At baseline, high tumour F predicted good tumour response (TRG1-2) (AUC = 0.79, p = 0.01), with a sensitivity of 69% and a specificity of 100%. The combination of F and tumour volume (Fpre/Vpre) gave the highest prediction of poor tumour response (AUC = 0.93, p < 0.001) with a sensitivity of 88% and a specificity of 91%, and also predicted PFS (p < 0.01). Baseline tumour ADC was not significantly related to therapeutic outcome, whereas a positive change in ADC from baseline to after NACT, ΔADC, significantly predicted good tumour response (AUC = 0.83, p < 0.01, 83% sensitivity, 73% specificity), but not PFS. CONCLUSIONS The MRI parameter F/V at baseline was a remarkably strong predictor of both histopathologic tumour response and 5-year PFS in patients with LARC.
Collapse
Affiliation(s)
- Kine Mari Bakke
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Knut Håkon Hole
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Therese Seierstad
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Kathrine Røe Redalen
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|