1
|
Retzky JS, Koff MF, Nwawka OK, Rodeo SA. Novel Noninvasive Imaging Techniques to Assess Structural, Functional, and Material Properties of Tendon, Ligament, and Cartilage: A Narrative Review of Current Concepts. Orthop J Sports Med 2025; 13:23259671251317223. [PMID: 39968411 PMCID: PMC11833890 DOI: 10.1177/23259671251317223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/12/2024] [Indexed: 02/20/2025] Open
Abstract
Background Novel noninvasive imaging modalities such as quantitative magnetic resonance imaging (qMRI) and shear wave elastography (SWE) allow for assessment of soft tissue microstructure and composition, which ultimately may be associated with functional and material properties. Purpose To provide a narrative review of the scientific techniques and clinical applications of qMRI and SWE for the evaluation of soft tissue about the knee and shoulder, including the meniscus, the anterior cruciate ligament (ACL), and the rotator cuff. Study Design Review. Methods A literature search was performed in October 2022 via PubMed using the following keywords: "quantitative MRI tendon," quantitative MRI ligament,""quantitative MRI cartilage," or "shear wave elastography tendon." Only articles related to clinical applications were included in this review. Results Conventional imaging techniques, including standard morphologic magnetic resonance imaging (MRI) and ultrasound imaging, have limited ability to evaluate the material and functional properties of soft tissue; qMRI builds on the limitations of conventional morphologic MRI by allowing for detection of early articular cartilage changes, differentiation of healed versus unhealed meniscal tissue, and quantification of ACL graft maturity. SWE can evaluate the material properties of rotator cuff and Achilles tendons after injury, which may provide insight into both the chronicity and the healing status of the aforementioned injuries. Conclusion Our review of the literature showed that quantitative imaging techniques, including qMRI and SWE, may both improve early detection of pathology and aid in comprehensive evaluation after treatment.
Collapse
|
2
|
Pang Y. Deciphering adiabatic rotating frame relaxometry in biological tissues. Magn Reson Med 2024; 92:2670-2682. [PMID: 39099141 DOI: 10.1002/mrm.30240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE This work aims to unravel the intricacies of adiabatic rotating frame relaxometry in biological tissues. THEORY AND METHODS The classical formalisms of dipolar relaxationR 1 ρ $$ {R}_{1\rho } $$ andR 2 ρ $$ {R}_{2\rho } $$ were systematically analyzed for water molecules reorienting on "fast" and "slow" timescales. These two timescales are, respectively, responsible for the absence and presence ofR 1 ρ $$ {R}_{1\rho } $$ dispersion. A time-averagedR 1 ρ $$ {R}_{1\rho } $$ orR 2 ρ $$ {R}_{2\rho } $$ over an adiabatic pulse duration was recast into a sum ofR 1 $$ {R}_1 $$ andR 2 $$ {R}_2 $$ , but with different weightings. These weightings depend on the specific modulations of adiabatic pulse waveforms. In this context, stretched hyperbolic secant (HSn $$ HSn $$ ) pulses were characterized. Previously publishedH S 1 $$ HS1 $$ R 1 ρ $$ {R}_{1\rho } $$ , continuous-wave (CW)R 1 ρ $$ {R}_{1\rho } $$ , andR 1 $$ {R}_1 $$ measures from 12 agarose phantoms were used to validate the theoretical predictions. A similar validation was also performed on previously publishedHSn $$ HSn $$ R 1 ρ $$ {R}_{1\rho } $$ (n $$ n $$ =1, 4, 8) andHS 1 $$ HS1 $$ R 2 ρ $$ {R}_{2\rho } $$ from bovine cartilage specimens. RESULTS Longitudinal relaxation weighting decreases forHSn $$ HSn $$ pulses asn $$ n $$ increases. Predicted CWR 1 ρ cal $$ {R}_{1\rho}^{cal} $$ values from agarose phantoms align well with the measured CWR 1 ρ exp $$ {R}_{1\rho}^{exp} $$ values, as indicated by a linear regression function:R 1 ρ cal = 1.04 * R 1 ρ exp - 1.96 $$ {R}_{1\rho}^{cal}={1.04}^{\ast }{R}_{1\rho}^{exp}-1.96 $$ . The predicted adiabaticR 1 ρ $$ {R}_{1\rho } $$ andR 2 ρ $$ {R}_{2\rho } $$ from cartilage specimens are consistent with those previously measured, as quantified by:R 1 ρ , 2 ρ cal = 1.10 * R 1 ρ , 2 ρ exp - 0.41 $$ {R}_{1\rho, 2\rho}^{cal}={1.10}^{\ast }{R}_{1\rho, 2\rho}^{exp}-0.41 $$ . CONCLUSION This work has theoretically and experimentally demonstrated that adiabaticR 1 ρ $$ {R}_{1\rho } $$ andR 2 ρ $$ {R}_{2\rho } $$ can be recast into a sum ofR 1 $$ {R}_1 $$ andR 2 $$ {R}_2 $$ , with varying weightings. Therefore, any suggestions that adiabatic rotating frame relaxometry in biological tissues could provide more information than the standardR 1 $$ {R}_1 $$ andR 2 $$ {R}_2 $$ warrant closer scrutiny.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Kantola V, Karjalainen J, Jaakola T, Leskinen HPP, Nissi MJ, Casula V, Nieminen MT. Anisotropy of T 2 and T 1ρ relaxation time in articular cartilage at 3 T. Magn Reson Med 2024; 92:1177-1188. [PMID: 38558167 DOI: 10.1002/mrm.30096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE The anisotropy of R2 and R1ρ relaxation rates in articular cartilage contains information about the collagenous structure of the tissue. Here we determine and study the anisotropic and isotropic components of T2 and T1ρ relaxation parameters in articular cartilage with a clinical 3T MRI device. Furthermore, a visual representation of the topographical variation in anisotropy is given via anisotropy mapping. METHODS Eight bovine stifle joints were imaged at 22 orientations with respect to the main magnetic field using T2, continuous-wave (CW) T1ρ, and adiabatic T1ρ mapping sequences. Relaxation rates were separated into isotropic and anisotropic relaxation components using a previously established relaxation anisotropy model. Pixel-wise anisotropy values were determined from the relaxation-time maps using Michelson contrast. RESULTS The relaxation rates obtained from the samples displayed notable variation depending on the sample orientation, magnetization preparation, and cartilage layer. R2 demonstrated significant anisotropy, whereas CW-R1ρ (300 Hz) and CW-R1ρ (500 Hz) displayed a low degree of anisotropy. Adiabatic R1ρ was largely isotropic. In the deep cartilage regions, relaxation rates were generally faster and more anisotropic than in the cartilage closer to the tissue surface. The isotropic relaxation rate components were found to have similar values regardless of measurement sequence. CONCLUSIONS The fitted relaxation model for T2 and T1ρ demonstrated varying amounts anisotropy, depending on magnetization preparation, and studied the articular cartilage layer. Anisotropy mapping of full joints showed varying amounts of anisotropy depending on the quantitative MRI parameter and topographical location, and in the case of T2, showed systematic changes in anisotropy across cartilage depth.
Collapse
Affiliation(s)
- Ville Kantola
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Jouni Karjalainen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Tomi Jaakola
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Henri P P Leskinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko J Nissi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Victor Casula
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
4
|
Jandacka D, Casula V, Hamill J, Vilimek D, Jandackova VK, Elavsky S, Uchytil J, Plesek J, Skýpala J, Golian M, Burda M, Nieminen MT. Regular Running Is Related to the Knee Joint Cartilage Structure in Healthy Adults. Med Sci Sports Exerc 2024; 56:1026-1035. [PMID: 38233979 DOI: 10.1249/mss.0000000000003386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE The purpose of this study was to determine whether regular running distance and biomechanics are related to medial central femur cartilage (MCFC) structure. METHODS The cross-sectional study sample consisted of 1164 runners and nonrunners aged 18-65 yr. Participants completed questionnaires on physical activity and their running history. We performed quantitative magnetic resonance imaging of knee cartilage-T2 relaxation time (T2) mapping (high T2 indicates cartilage degeneration)-and a running biomechanical analysis using a three-dimensional motion capture system. A 14-d monitoring of the physical activity was conducted. RESULTS Those aged 35-49 yr were at 84% higher odds of having MCFC T2 in the highest level (85th percentile, P < 0.05) compared with youngest adults indicating that MCFC structures may be altered with aging. Being male was associated with 34% lower odds of having T2 at the highest level ( P < 0.05) compared with females. Nonrunners and runners with the highest weekly running distance were more likely to have a high T2 compared with runners with running distance of 6-20 km·wk -1 ( P < 0.05). In addition, the maximal knee internal adduction moment was associated with a 19% lower odds of having T2 at the highest level ( P < 0.05). CONCLUSIONS Females compared with males and a middle-aged cohort compared with the younger cohort seemed to be associated with the degeneration of MCFC structures. Runners who ran 6-20 km·wk -1 were associated with a higher quality of their MCFC compared with highly active individuals and nonrunners. Knee frontal plane biomechanics was related to MCFC structure indicating a possibility of modifying the medial knee collagen fibril network through regular running.
Collapse
Affiliation(s)
- Daniel Jandacka
- Department of Human Movement Studies, University of Ostrava, Ostrava, CZECH REPUBLIC
| | - Victor Casula
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, FINLAND
| | | | - Dominik Vilimek
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, CZECH REPUBLIC
| | - Vera K Jandackova
- Department of Human Movement Studies, University of Ostrava, Ostrava, CZECH REPUBLIC
| | - Steriani Elavsky
- Department of Human Movement Studies, University of Ostrava, Ostrava, CZECH REPUBLIC
| | - Jaroslav Uchytil
- Department of Human Movement Studies, University of Ostrava, Ostrava, CZECH REPUBLIC
| | - Jan Plesek
- Department of Human Movement Studies, University of Ostrava, Ostrava, CZECH REPUBLIC
| | - Jiri Skýpala
- Department of Human Movement Studies, University of Ostrava, Ostrava, CZECH REPUBLIC
| | - Milos Golian
- Department of Human Movement Studies, University of Ostrava, Ostrava, CZECH REPUBLIC
| | - Michal Burda
- Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, CE IT4Innovations, Ostrava, CZECH REPUBLIC
| | | |
Collapse
|
5
|
Monte A, Franchi MV, Zamparo P. Characterization of the in vivo transient responses of the femoral cartilage by means of quantitative ultrasound imaging techniques. Scand J Med Sci Sports 2024; 34:e14613. [PMID: 38534068 DOI: 10.1111/sms.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Quantitative ultrasound (QUS) techniques are new diagnostic tools able to identify changes in structural and material properties of the investigated tissue. For the first time, we evaluated the capability of QUS techniques in determining the in vivo transient changes in knee joint cartilage after a stressful task. METHODS An ultrasound scanner collecting B-mode and radiofrequency data simultaneously was used to collect data from the femoral cartilage of the right knee in 15 participants. Cartilage thickness (CTK), ultrasound roughness index (URI), average magnitude ratio (AMR), and Nakagami parameters (NA) were evaluated before, immediately after and every 5 min up to 45 min a stressful task (30 min of running on a treadmill with a negative slope of 5%). RESULTS CTK was affected by time (main effect: p < 0.001). Post hoc test showed significant differences with CTK at rest, which were observed up to 30 min after the run. AMR and NA were affected by time (p < 0.01 for both variables), while URI was unaffected by it. For AMR, post hoc test showed significant differences with rest values in the first 35 min of recovery, while NA was increased compared to rest values in all time points. CONCLUSION Data suggest that a single running trial is not able to modify the integrity of the femoral cartilage, as reported by URI data. In vivo evaluation of QUS parameters of the femoral cartilage (NA, AMR, and URI) are able to characterize changes in cartilage properties over time.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Liu Z, Hui Mingalone CK, Gnanatheepam E, Hollander JM, Zhang Y, Meng J, Zeng L, Georgakoudi I. Label-free, multi-parametric assessments of cell metabolism and matrix remodeling within human and early-stage murine osteoarthritic articular cartilage. Commun Biol 2023; 6:405. [PMID: 37055483 PMCID: PMC10102009 DOI: 10.1038/s42003-023-04738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Osteoarthritis (OA) is characterized by the progressive deterioration of articular cartilage, involving complicated cell-matrix interactions. Systematic investigations of dynamic cellular and matrix changes during OA progression are lacking. In this study, we use label-free two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to assess cellular and extracellular matrix features of murine articular cartilage during several time points at early stages of OA development following destabilization of medial meniscus surgery. We detect significant changes in the organization of collagen fibers and crosslink-associated fluorescence of the superficial zone as early as one week following surgery. Such changes become significant within the deeper transitional and radial zones at later time-points, highlighting the importance of high spatial resolution. Cellular metabolic changes exhibit a highly dynamic behavior, and indicate metabolic reprogramming from enhanced oxidative phosphorylation to enhanced glycolysis or fatty acid oxidation over the ten-week observation period. The optical metabolic and matrix changes detected within this mouse model are consistent with differences identified in excised human cartilage specimens from OA and healthy cartilage specimens. Thus, our studies reveal important cell-matrix interactions at the onset of OA that may enable improved understanding of OA development and identification of new potential treatment targets.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, Zhejiang, 314000, China
| | - Carrie K Hui Mingalone
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | | | - Judith M Hollander
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jia Meng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
- Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
7
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
8
|
Wu M, Ma YJ, Liu M, Xue Y, Gong L, Wei Z, Jerban S, Jang H, Chang DG, Chang EY, Ma L, Du J. Quantitative assessment of articular cartilage degeneration using 3D ultrashort echo time cones adiabatic T 1ρ (3D UTE-Cones-AdiabT 1ρ) imaging. Eur Radiol 2022; 32:6178-6186. [PMID: 35357540 PMCID: PMC9388581 DOI: 10.1007/s00330-022-08722-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate articular cartilage degeneration using quantitative three-dimensional ultrashort-echo-time cones adiabatic-T1ρ (3D UTE-Cones-AdiabT1ρ) imaging. METHODS Sixty-six human subjects were recruited for this study. Kellgren-Lawrence (KL) grade and Whole-Organ Magnetic-Resonance-Imaging Score (WORMS) were evaluated by two musculoskeletal radiologists. The human subjects were categorized into three groups, namely normal controls (KL0), doubtful-minimal osteoarthritis (OA) (KL1-2), and moderate-severe OA (KL3-4). WORMS were regrouped to encompass the extent of lesions and the depth of lesions. The UTE-Cones-AdiabT1ρ values were obtained using 3D UTE-Cones data acquisitions preceded by seven paired adiabatic full passage pulses that corresponded to seven spin-locking times (TSLs) of 0, 12, 24, 36, 48, 72, and 96 ms. The performance of the UTE-Cones-AdiabT1ρ technique in evaluating the degeneration of knee cartilage was assessed via the ANOVA comparisons with subregional analysis and Spearman's correlation coefficient as well as the receiver-operating-characteristic (ROC) curve. RESULTS UTE-Cones-AdiabT1ρ showed significant positive correlations with KL grade (r = 0.15, p < 0.05) and WORMS (r = 0.57, p < 0.05). Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the cartilage. The differences in UTE-Cones-AdiabT1ρ values among different extent and depth groups of cartilage lesions were all statistically significant (p < 0.05). Subregional analyses showed that the correlations between UTE-Cones-AdiabT1ρ and WORMS varied with the location of cartilage. The AUC value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration (WORMS=1) was 0.8. The diagnostic threshold value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration was 39.4 ms with 80.8% sensitivity. CONCLUSIONS The 3D UTE-Cones-AdiabT1ρ sequence can be useful in quantitative evaluation of articular cartilage degeneration. KEY POINTS • The 3D UTE-Cones-AdiabT1ρ sequence can distinguish mild cartilage degeneration from normal cartilage with a diagnostic threshold value of 39.4 ms for mild cartilage degeneration with 80.8% sensitivity. • Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the articular cartilage. • UTE-Cones-AdiabT1ρ is a promising biomarker for quantitative evaluation of early cartilage degeneration.
Collapse
Affiliation(s)
- Mei Wu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Mouyuan Liu
- Imaging Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yanping Xue
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Lillian Gong
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Zhao Wei
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Douglas G Chang
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Liheng Ma
- Imaging Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiang Du
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA.
| |
Collapse
|
9
|
Su X, Zhang Y, Gao Q, Liang Z, Wan L, Zhang L, Tang G. Preliminary study on the assessment of early cartilage degeneration by quantitative ultrashort echo time magnetic resonance imaging in vivo. Quant Imaging Med Surg 2022; 12:3803-3812. [PMID: 35782245 PMCID: PMC9246734 DOI: 10.21037/qims-21-1181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/14/2022] [Indexed: 12/31/2023]
Abstract
BACKGROUND To investigate the feasibility of quantitative ultrashort echo time magnetic resonance imaging (UTE-MRI) techniques for assessing early cartilage degeneration in vivo. METHODS A total of 46 patients with knee pain due to osteoarthritis (OA) as the main complaint were recruited into the study. We performed MRI examinations with different quantitative UTE-MRI techniques, including UTE-based magnetization transfer (MT), UTE-adiabaticT1ρ, and UTE-T2* mapping on a 3.0T clinical magnetic resonance (MR) scanner (MR750; GE Healthcare, Milwaukee, WI, USA). Three regions of interest (ROIs) were manually drawn on the medial and lateral femoral condyles and the corresponding medial and lateral tibial plateaus, respectively. A total of 561 ROIs (12 ROIs for each knee) were finally included and divided into 3 groups according to the MRI Osteoarthritis Knee Score (MOAKS): normal (MOAKS 0, n=175), mild degeneration (MOAKS 1, n=283), and moderate degeneration (MOAKS 2, n=103). One-way analysis of variance (ANOVA) and Tamhane's T2 test were used to compare the differences of quantitative UTE-biomarkers among different groups. The analysis of Spearman's correlation was used to assess the correlation between the UTE-biomarkers and MOAKS grading. The diagnostic efficacy of different quantitative UTE-MRI techniques for detecting mild cartilage degeneration was evaluated using the receiver operating characteristic (ROC) curve. RESULTS The UTE-MT ratio (UTE-MTR) and the UTE-adiabatic T1ρ values had a moderate correlation with the MOAKS grading (r=-0.523, P<0.001; r=0.531, P<0.001, respectively), while the UTE-T2* was weakly correlated with the MOAKS grading (r=-0.396, P<0.001). For the normal group (MOAKS 0) and the mild group (MOAKS 1), the UTE-MTR values were 21.09%±3.03% and 17.30%±3.22%, respectively. The UTE-adiabatic T1ρ values were 30.43±6.26 ms and 35.05±8.78 ms for the normal group (MOAKS 0) and the mild group (MOAKS 1), respectively. With respect to the UTE-T2* values, the normal group (MOAKS 0) values were 21.49±3.96 ms and the mild group (MOAKS 1) values were 19.86±3.08 ms. All the differences between the 2 groups of the 3 UTE-MRI values were significant. The AUCs of the UTE-MTR, UTE-adiabatic T1ρ, and UTE-T2* mapping were 0.794, 0.732, and 0.651, respectively. CONCLUSIONS The quantitative UTE-MRI techniques (UTE-MT, UTE-adiabatic T1ρ, and UTE-T2* mapping) show great promise for assessing the early degeneration of articular cartilage in vivo, and the UTE-MT and UTE-adiabatic T1ρ values show better diagnostic efficacy than UTE-T2* mapping.
Collapse
Affiliation(s)
- Xiaolian Su
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yixuan Zhang
- Department of Radiology, Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
| | - Qiuming Gao
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Shanghai Jing’an District Central Hospital, Shanghai, China
| | - Lidi Wan
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Afsahi AM, Ma Y, Jang H, Jerban S, Chung CB, Chang EY, Du J. Ultrashort Echo Time Magnetic Resonance Imaging Techniques: Met and Unmet Needs in Musculoskeletal Imaging. J Magn Reson Imaging 2021; 55:1597-1612. [PMID: 34962335 DOI: 10.1002/jmri.28032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
This review article summarizes recent technical developments in ultrashort echo time (UTE) magnetic resonance imaging of musculoskeletal (MSK) tissues with short-T2 relaxation times. A series of contrast mechanisms are discussed for high-contrast morphological imaging of short-T2 MSK tissues including the osteochondral junction, menisci, ligaments, tendons, and bone. Quantitative UTE mapping of T1, T2*, T1ρ, adiabatic T1ρ, magnetization transfer ratio, MT modeling of macromolecular proton fraction, quantitative susceptibility mapping, and water content is also introduced. Met and unmet needs in MSK imaging are discussed. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Amir Masoud Afsahi
- Department of Radiology, University of California, San Diego, California, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
11
|
Bansal H, Leon J, Pont JL, Wilson DA, Bansal A, Agarwal D, Preoteasa I. Platelet-rich plasma (PRP) in osteoarthritis (OA) knee: Correct dose critical for long term clinical efficacy. Sci Rep 2021; 11:3971. [PMID: 33597586 PMCID: PMC7889864 DOI: 10.1038/s41598-021-83025-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Despite encouraging results reported with regards to Platelet-rich plasma (PRP) application in osteoarthritis (OA) knee, still critical issues like conclusive structural evidence of its efficacy, standard dose and good manual method of preparation to obtain high yield remains unanswered. Present study is an attempt to optimise the dose and concentration of therapeutic PRP and its correlation with structural, physiologic efficacy with a new manual method of PRP preparation. A total of one hundred and fifty patients were randomized to receive either PRP (10 billion platelets) or hyaluronic acid (HA; 4 ml; 75 patients in each group) and followed up till 1 year. An addition of filtration step with 1 µm filter in manual PRP processing improved platelet recovery upto 90%. Significant improvements in WOMAC (51.94 ± 7.35 vs. 57.33 ± 8.92; P < 0.001), IKDC scores (62.8 ± 6.24 vs 52.7 ± 6.39; P < 0.001), 6-min pain free walking distance (+ 120 vs. + 4; P < 0.001) persisted in PRP compared to HA group at 1 year. Significant decline IL-6 and TNF-α levels observed in PRP group (P < 0.05) compared to HA at 1 month. Study demonstrated that an absolute count of 10 billion platelets is crucial in a PRP formulation to have long sustained chondroprotective effect upto one year in moderate knee OA.
Collapse
Affiliation(s)
- Himanshu Bansal
- Mother Cell Spinal Injury and Stem Cell Research, Anupam Hospital, Rudrapur, Uttarakhand, India.
| | - Jerry Leon
- PMR Advance Health Institute Mayaguez, Puerto Rico, USA
| | | | | | - Anupama Bansal
- Mother Cell Spinal Injury and Stem Cell Research, Anupam Hospital, Rudrapur, Uttarakhand, India
| | | | | |
Collapse
|
12
|
Kajabi AW, Casula V, Sarin JK, Ketola JH, Nykänen O, te Moller NCR, Mancini IAD, Visser J, Brommer H, René van Weeren P, Malda J, Töyräs J, Nieminen MT, Nissi MJ. Evaluation of articular cartilage with quantitative MRI in an equine model of post-traumatic osteoarthritis. J Orthop Res 2021; 39:63-73. [PMID: 32543748 PMCID: PMC7818146 DOI: 10.1002/jor.24780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/19/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Chondral lesions lead to degenerative changes in the surrounding cartilage tissue, increasing the risk of developing post-traumatic osteoarthritis (PTOA). This study aimed to investigate the feasibility of quantitative magnetic resonance imaging (qMRI) for evaluation of articular cartilage in PTOA. Articular explants containing surgically induced and repaired chondral lesions were obtained from the stifle joints of seven Shetland ponies (14 samples). Three age-matched nonoperated ponies served as controls (six samples). The samples were imaged at 9.4 T. The measured qMRI parameters included T1 , T2 , continuous-wave T1ρ (CWT1ρ ), adiabatic T1ρ (AdT1ρ ), and T2ρ (AdT2ρ ) and relaxation along a fictitious field (TRAFF ). For reference, cartilage equilibrium and dynamic moduli, proteoglycan content and collagen fiber orientation were determined. Mean values and profiles from full-thickness cartilage regions of interest, at increasing distances from the lesions, were used to compare experimental against control and to correlate qMRI with the references. Significant alterations were detected by qMRI parameters, including prolonged T1 , CWT1ρ , and AdT1ρ in the regions adjacent to the lesions. The changes were confirmed by the reference methods. CWT1ρ was more strongly associated with the reference measurements and prolonged in the affected regions at lower spin-locking amplitudes. Moderate to strong correlations were found between all qMRI parameters and the reference parameters (ρ = -0.531 to -0.757). T1 , low spin-lock amplitude CWT1ρ , and AdT1ρ were most responsive to changes in visually intact cartilage adjacent to the lesions. In the context of PTOA, these findings highlight the potential of T1 , CWT1ρ , and AdT1ρ in evaluation of compositional and structural changes in cartilage.
Collapse
Affiliation(s)
- Abdul Wahed Kajabi
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland
| | - Victor Casula
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland
| | - Jaakko K. Sarin
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | - Juuso H. Ketola
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland
| | - Olli Nykänen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Nikae C. R. te Moller
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Irina A. D. Mancini
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Jetze Visser
- Department of OrthopaedicsUniversity Medical Center Utrechtthe Netherlands
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands,Department of OrthopaedicsUniversity Medical Center Utrechtthe Netherlands
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland,School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland,Department of Diagnostic RadiologyOulu University HospitalOuluFinland
| | - Mikko J. Nissi
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
13
|
Jandacka D, Uchytil J, Zahradnik D, Farana R, Vilimek D, Skypala J, Urbaczka J, Plesek J, Motyka A, Blaschova D, Beinhauerova G, Rygelova M, Brtva P, Balazova K, Horka V, Malus J, Silvernail JF, Irwin G, Nieminen MT, Casula V, Juras V, Golian M, Elavsky S, Knapova L, Sram R, Hamill J. Running and Physical Activity in an Air-Polluted Environment: The Biomechanical and Musculoskeletal Protocol for a Prospective Cohort Study 4HAIE (Healthy Aging in Industrial Environment-Program 4). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239142. [PMID: 33297585 PMCID: PMC7730319 DOI: 10.3390/ijerph17239142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Far too little attention has been paid to health effects of air pollution and physical (in)activity on musculoskeletal health. The purpose of the Healthy aging in industrial environment study (4HAIE) is to investigate the potential impact of physical activity in highly polluted air on musculoskeletal health. A total of 1500 active runners and inactive controls aged 18–65 will be recruited. The sample will be recruited using quota sampling based on location (the most air-polluted region in EU and a control region), age, sex, and activity status. Participants will complete online questionnaires and undergo a two-day baseline laboratory assessment, including biomechanical, physiological, psychological testing, and magnetic resonance imaging. Throughout one-year, physical activity data will be collected through Fitbit monitors, along with data regarding the incidence of injuries, air pollution, psychological factors, and behavior collected through a custom developed mobile application. Herein, we introduce a biomechanical and musculoskeletal protocol to investigate musculoskeletal and neuro-mechanical health in this 4HAIE cohort, including a design for controlling for physiological and psychological injury factors. In the current ongoing project, we hypothesize that there will be interactions of environmental, biomechanical, physiological, and psychosocial variables and that these interactions will cause musculoskeletal diseases/protection.
Collapse
Affiliation(s)
- Daniel Jandacka
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
- Correspondence:
| | - Jaroslav Uchytil
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - David Zahradnik
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Roman Farana
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Dominik Vilimek
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Jiri Skypala
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Jan Urbaczka
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Jan Plesek
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Adam Motyka
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Denisa Blaschova
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Gabriela Beinhauerova
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Marketa Rygelova
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Pavel Brtva
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Klara Balazova
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Veronika Horka
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Jan Malus
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Julia Freedman Silvernail
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Gareth Irwin
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, FI-90014 Oulu, Finland; (M.T.N.); (V.C.)
| | - Victor Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, FI-90014 Oulu, Finland; (M.T.N.); (V.C.)
| | - Vladimir Juras
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria;
| | - Milos Golian
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Steriani Elavsky
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Lenka Knapova
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
| | - Radim Sram
- Institute of Experimental Medicine AS CR, 142 20 Prague, Czech Republic;
| | - Joseph Hamill
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200 Ostrava, Czech Republic; (J.U.); (D.Z.); (R.F.); (D.V.); (J.S.); (J.U.); (J.P.); (A.M.); (D.B.); (G.B.); (M.R.); (P.B.); (K.B.); (V.H.); (J.M.); (G.I.); (M.G.); (S.E.); (L.K.); (J.H.)
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Kajabi AW, Casula V, Ojanen S, Finnilä MA, Herzog W, Saarakkala S, Korhonen RK, Nissi MJ, Nieminen MT. Multiparametric MR imaging reveals early cartilage degeneration at 2 and 8 weeks after ACL transection in a rabbit model. J Orthop Res 2020; 38:1974-1986. [PMID: 32129515 DOI: 10.1002/jor.24644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/20/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
In this study, the rabbit model with anterior cruciate ligament transection (ACLT) was used to investigate early degenerative changes in cartilage using multiparametric quantitative magnetic resonance imaging (qMRI). ACLT was surgically induced in the knees of skeletally mature New Zealand White rabbits (n = 14). ACL transected and contralateral knee compartments-medial femur, lateral femur, medial tibia, and lateral tibia-were harvested 2 (n = 8) and 8 weeks (n = 6) postsurgery. Twelve age-matched nonoperated rabbits served as control. qMRI was conducted at 9.4 T and included relaxation times T1 , T2 , continuous-wave T1ρ (CWT1ρ ), adiabatic T1ρ (AdT1ρ ), adiabatic T2ρ (AdT2ρ ), and relaxation along a fictitious field (TRAFF ). For reference, quantitative histology and biomechanical measurements were carried out. Posttraumatic changes were primarily noted in the superficial half of the cartilage. Prolonged T1 , T2 , CWT1ρ , and AdT1ρ were observed in the lateral femur 2 and 8 weeks post-ACLT, compared with the corresponding control and contralateral groups (P < .05). Collagen orientation was significantly altered in the lateral femur at 2 weeks post-ACLT compared with the corresponding control group. In the medial femur, all the studied relaxation time parameters, except TRAFF , were increased 8 weeks post-ACLT, as compared with the corresponding contralateral and control groups (P < .05). Similarly, significant proteoglycan loss was observed in the medial femur at 8 weeks following surgery (P < .05). Multiparametric MRI demonstrated early degenerative changes primarily in the superficial cartilage with T1 , T2 , CWT1ρ , and AdT1ρ sensitive to cartilage changes at 2 weeks after surgery.
Collapse
Affiliation(s)
- Abdul Wahed Kajabi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Victor Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Simo Ojanen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko J Nissi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
15
|
Lehtovirta S, Mäkitie RE, Casula V, Haapea M, Niinimäki J, Niinimäki T, Peuna A, Lammentausta E, Mäkitie O, Nieminen MT. Defective WNT signaling may protect from articular cartilage deterioration - a quantitative MRI study on subjects with a heterozygous WNT1 mutation. Osteoarthritis Cartilage 2019; 27:1636-1646. [PMID: 31299386 DOI: 10.1016/j.joca.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/01/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE WNT signaling is of key importance in chondrogenesis and defective WNT signaling may contribute to the pathogenesis of osteoarthritis and other cartilage diseases. Biochemical composition of articular cartilage in patients with aberrant WNT signaling has not been studied. Our objective was to assess the knee articular cartilage in WNT1 mutation-positive individuals using a 3.0T MRI unit to measure cartilage thickness, relaxation times, and texture features. DESIGN Cohort comprised mutation-positive (N = 13; age 17-76 years) and mutation-negative (N = 13; 16-77 years) subjects from two Finnish families with autosomal dominant WNT1 osteoporosis due to a heterozygous missense mutation c.652T>G (p.C218G) in WNT1. All subjects were imaged with a 3.0T MRI unit and assessed for cartilage thickness, T2 and T1ρ relaxation times, and T2 texture features contrast, dissimilarity and homogeneity of T2 relaxation time maps in six regions of interest (ROIs) in the tibiofemoral cartilage. RESULTS All three texture features showed opposing trends with age between the groups in the medial tibiofemoral cartilage (P = 0.020-0.085 for the difference of the regression coefficients), the mutation-positive individuals showing signs of cartilage preservation. No significant differences were observed in the lateral tibiofemoral cartilage. Cartilage thickness and means of T2 relaxation time did not differ between groups. Means of T1ρ relaxation time were significantly different in one ROI but the regression analysis displayed no differences. CONCLUSIONS Our results show less age-related cartilage deterioration in the WNT1 mutation-positive than the mutation-negative subjects. This suggests, that the WNT1 mutation may alter cartilage turnover and even have a potential cartilage-preserving effect.
Collapse
Affiliation(s)
- S Lehtovirta
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, FI-90014, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland
| | - R E Mäkitie
- Folkhälsan Institute of Genetics and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, FI-00290, Finland.
| | - V Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, FI-90014, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland
| | - M Haapea
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| | - J Niinimäki
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, FI-90014, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| | - T Niinimäki
- Department of Orthopedics, Oulu University Hospital, Oulu, FI-90220, Finland
| | - A Peuna
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| | - E Lammentausta
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| | - O Mäkitie
- Folkhälsan Institute of Genetics and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, FI-00290, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00290, Finland; Center for Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - M T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, FI-90014, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| |
Collapse
|
16
|
Abstract
OBJECTIVE. For many years, MRI of the musculoskeletal system has relied mostly on conventional sequences with qualitative analysis. More recently, using quantitative MRI applications to complement qualitative imaging has gained increasing interest in the MRI community, providing more detailed physiologic or anatomic information. CONCLUSION. In this article, we review the current state of quantitative MRI, technical and software advances, and the most relevant clinical and research musculoskeletal applications of quantitative MRI.
Collapse
|
17
|
Ma YJ, Carl M, Searleman A, Lu X, Chang EY, Du J. 3D adiabatic T 1ρ prepared ultrashort echo time cones sequence for whole knee imaging. Magn Reson Med 2018; 80:1429-1439. [PMID: 29493004 PMCID: PMC6097905 DOI: 10.1002/mrm.27131] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE To develop a 3D adiabatic T1ρ prepared ultrashort echo time cones (3D AdiabT1ρ UTE-Cones) sequence for whole knee imaging on a clinical 3T scanner. METHODS A train of adiabatic full passage pulses were used for spin locking, followed by time-efficient multispoke UTE acquisition to detect signals from both short and long T2 tissues in the whole knee joint. A modified signal model was proposed for multispoke UTE data fitting. The feasibility of this 3D AdiabT1ρ UTE-Cones technique was demonstrated through numerical simulation, phantom, and ex vivo knee sample studies. The 3D AdiabT1ρ UTE-Cones technique was then applied to 6 in vivo knee joints of healthy volunteers to measure T1ρ values of quadriceps tendon, patellar tendon, anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), meniscus, patellar cartilage, and muscle. RESULTS Numerical simulation, phantom and ex vivo knee sample studies demonstrated the feasibility of whole knee imaging using the proposed multispoke 3D AdiabT1ρ UTE-Cones sequence. The healthy volunteer knee study demonstrated an averaged T1ρ of 13.9 ± 0.7 ms for the quadriceps tendon, 9.7 ± 0.8 ms for the patellar tendon, 34.9 ± 2.8 ms for the ACL, 21.6 ± 1.4 ms for the PCL, 22.5 ± 1.9 ms for the meniscus, 44.5 ± 2.4 ms for the patellar cartilage, and 43.2 ± 1.1 ms for the muscle. CONCLUSION The 3D AdiabT1ρ UTE-Cones sequence allows volumetric T1ρ assessment of both short and long T2 tissues in the knee joint on a clinical 3T scanner.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, CA
| | | | - Adam Searleman
- Department of Radiology, University of California, San Diego, CA
| | - Xing Lu
- Department of Radiology, University of California, San Diego, CA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA
| |
Collapse
|
18
|
Hui Mingalone CK, Liu Z, Hollander JM, Garvey KD, Gibson AL, Banks RE, Zhang M, McAlindon TE, Nielsen HC, Georgakoudi I, Zeng L. Bioluminescence and second harmonic generation imaging reveal dynamic changes in the inflammatory and collagen landscape in early osteoarthritis. J Transl Med 2018; 98:656-669. [PMID: 29540857 PMCID: PMC7735372 DOI: 10.1038/s41374-018-0040-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of chronic disability whose mechanism of pathogenesis is largely elusive. Local inflammation is thought to play a key role in OA progression, especially in injury-associated OA. While multiple inflammatory cytokines are detected, the timing and extent of overall inflammatory activities in early OA and the manner by which joint inflammation correlates with cartilage structural damage are still unclear. We induced OA via destabilization of the medial meniscus (DMM) in NFκB luciferase reporter mice, whose bioluminescent signal reflects the activity of NFκB, a central mediator of inflammation. Bioluminescence imaging data showed that DMM and sham control joints had a similar surge of inflammation at 1-week post-surgery, but the DMM joint exhibited a delay in resolution of inflammation in subsequent weeks. A similar trend was observed with synovitis, which we found to be mainly driven by synovial cell density and inflammatory infiltration rather than synovial lining thickness. Interestingly, an association between synovitis and collagen structural damage was observed in early OA. Using Second Harmonic Generation (SHG) imaging, we analyzed collagen fiber organization in articular cartilage. Zonal differences in collagen fiber thickness and organization were observed as soon as OA initiated after DMM surgery, and persisted over time. Even at 1-week post-surgery, the DMM joint showed a decrease in collagen fiber thickness in the deep zone and an increase in collagen fiber disorganization in the superficial zone. Since we were able detect and quantify collagen structural changes very early in OA development by SHG imaging, we concluded that SHG imaging is a highly sensitive tool to evaluate pathological changes in OA. In summary, this study uncovered a dynamic profile of inflammation and joint cartilage damage during OA initiation and development, providing novel insights into OA pathology.
Collapse
Affiliation(s)
- Carrie K. Hui Mingalone
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Judith M. Hollander
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Kirsten D. Garvey
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Averi L. Gibson
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rose E. Banks
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ming Zhang
- Division of Rheumatology, Tufts Medical Center, Boston, MA 02111, USA
| | | | - Heber C. Nielsen
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA. .,Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA. .,Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
19
|
Kajabi AW, Casula V, Nissi MJ, Peuna A, Podlipská J, Lammentausta E, Saarakkala S, Guermazi A, Nieminen MT. Assessment of meniscus with adiabatic T 1ρ and T 2ρ relaxation time in asymptomatic subjects and patients with mild osteoarthritis: a feasibility study. Osteoarthritis Cartilage 2018; 26:580-587. [PMID: 29269326 DOI: 10.1016/j.joca.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/23/2017] [Accepted: 12/08/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the ability of magnetic resonance imaging (MRI) adiabatic relaxation times in the rotating frame (adiabatic T1ρ and T2ρ) to detect structural alterations in meniscus tissue of mild OA patients and asymptomatic volunteers. METHOD MR images of 24 subjects (age range: 50-67 years, 12 male), including 12 patients with mild osteoarthritis (OA) (Kellgren-Lawrence (KL) = 1, 2) and 12 asymptomatic volunteers, were acquired using a 3 T clinical MRI system. Morphological assessment was performed using semiquantitative MRI OA Knee Score (MOAKS). Adiabatic T1ρ and T2ρ (AdT1ρ, AdT2ρ) relaxation time maps were calculated in regions of interest (ROIs) containing medial and lateral horns of menisci. The median relaxation time values of the ROIs were compared between subjects classified based on radiographic findings and MOAKS evaluations. RESULTS MOAKS assessment of patients and volunteers indicated the presence of meniscal and cartilage lesions in both groups. For the combined cohort group, prolonged AdT1ρ was observed in the posterior horn of the medial meniscus (PHMED) in subjects with MOAKS meniscal tear (P < 0.05). AdT2ρ was statistically significantly longer in PHMED of subjects with MOAKS full-thickness cartilage loss (P < 0.05). After adjusting for multiple comparisons, differences in medians of observed AdT1ρ and AdT2ρ values between mild OA patients and asymptomatic volunteers did not reach statistical significance. CONCLUSION AdT1ρ and AdT2ρ measurements have the potential to identify changes in structural composition of meniscus tissue associated with meniscal tear and cartilage loss in a cohort group of mild OA patients and asymptomatic volunteers.
Collapse
Affiliation(s)
- A W Kajabi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - V Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - M J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - A Peuna
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - J Podlipská
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Infotech Oulu, University of Oulu, Oulu, Finland.
| | - E Lammentausta
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - A Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA.
| | - M T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
20
|
Hafezi-Nejad N, Demehri S, Guermazi A, Carrino JA. Osteoarthritis year in review 2017: updates on imaging advancements. Osteoarthritis Cartilage 2018; 26:341-349. [PMID: 29330100 DOI: 10.1016/j.joca.2018.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This narrative review covers original research publications related to imaging advancements in osteoarthritis (OA) published in the English language between 1st April 2016 and 30th April 2017. METHODS Relevant human studies (excluding pre-clinical and in vitro studies), were searched and selected from PubMed database using the search terms of "osteoarthritis (OA)" in combination with "radiography", "magnetic resonance imaging (MRI)", "computed tomography (CT)", "ultrasound", "positron emission tomography (PET)," "single-photon emission computed tomography (SPECT)," and "scintigraphy". The included studies were sorted according to their relevance, novelty, and impact. Original research articles with both imaging advancements and novel clinical information were discussed in this review. RESULTS A large portion of the published studies were focused on MRI-based semi-quantitative and quantitative (morphological and structural) metrics of the knee joint to assess OA-related structural damages. New imaging technologies, such as PET, have been investigated for OA diagnosis and characterization, the delineation of predictive factors for OA progression, and to monitor the treatment responses. CONCLUSION Advanced imaging modalities play a pivotal role in OA research, and make a significant contribution to our understanding of OA diagnosis, pathogenesis, risk stratification, and prognosis.
Collapse
Affiliation(s)
- N Hafezi-Nejad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - S Demehri
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - A Guermazi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, India
| | - J A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
21
|
Mangia S, Svatkova A, Mascali D, Nissi MJ, Burton PC, Bednarik P, Auerbach EJ, Giove F, Eberly LE, Howell MJ, Nestrasil I, Tuite PJ, Michaeli S. Multi-modal Brain MRI in Subjects with PD and iRBD. Front Neurosci 2017; 11:709. [PMID: 29311789 PMCID: PMC5742124 DOI: 10.3389/fnins.2017.00709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a condition that often evolves into Parkinson's disease (PD). Therefore, by monitoring iRBD it is possible to track the neurodegeneration of individuals who may progress to PD. Here we aimed at piloting the characterization of brain tissue properties in mid-brain subcortical regions of 10 healthy subjects, 8 iRBD, and 9 early-diagnosed PD. We used a battery of magnetic resonance imaging (MRI) contrasts at 3 T, including adiabatic and non-adiabatic rotating frame techniques developed by our group, along with diffusion tensor imaging (DTI) and resting-state fMRI. Adiabatic T1ρ and T2ρ, and non-adiabatic RAFF4 (Relaxation Along a Fictitious Field in the rotating frame of rank 4) were found to have lower coefficient of variations and higher sensitivity to detect group differences as compared to DTI parameters such as fractional anisotropy and mean diffusivity. Significantly longer T1ρ were observed in the amygdala of PD subjects vs. controls, along with a trend of lower functional connectivity as measured by regional homogeneity, thereby supporting the notion that amygdalar dysfunction occurs in PD. Significant abnormalities in reward networks occurred in iRBD subjects, who manifested lower network strength of the accumbens. In agreement with previous studies, significantly longer T1ρ occurred in the substantia nigra compacta of PD vs. controls, indicative of neuronal degeneration, while regional homogeneity was lower in the substantia nigra reticulata. Finally, other trend-level findings were observed, i.e., lower RAFF4 and T2ρ in the midbrain of iRBD subjects vs. controls, possibly indicating changes in non-motor features as opposed to motor function in the iRBD group. We conclude that rotating frame relaxation methods along with functional connectivity measures are valuable to characterize iRBD and PD subjects, and with proper validation in larger cohorts may provide pathological signatures of iRBD and PD.
Collapse
Affiliation(s)
- Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Alena Svatkova
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Daniele Mascali
- MARBILab, Centro Fermi - Museo Storico Della Fisica e Centro di Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Philip C Burton
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Petr Bednarik
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Edward J Auerbach
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Federico Giove
- MARBILab, Centro Fermi - Museo Storico Della Fisica e Centro di Studi e Ricerche Enrico Fermi, Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Michael J Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Igor Nestrasil
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Paul J Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Hänninen N, Rautiainen J, Rieppo L, Saarakkala S, Nissi MJ. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue. Sci Rep 2017; 7:9606. [PMID: 28852032 PMCID: PMC5574987 DOI: 10.1038/s41598-017-10053-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/04/2022] Open
Abstract
In highly organized tissues, such as cartilage, tendons and white matter, several quantitative MRI parameters exhibit dependence on the orientation of the tissue constituents with respect to the main imaging magnetic field (B0). In this study, we investigated the dependence of multiple relaxation parameters on the orientation of articular cartilage specimens in the B0. Bovine patellar cartilage-bone samples (n = 4) were investigated ex vivo at 9.4 Tesla at seven different orientations, and the MRI results were compared with polarized light microscopy findings on specimen structure. Dependences of T2 and continuous wave (CW)-T1ρ relaxation times on cartilage orientation were confirmed. T2 (and T2*) had the highest sensitivity to orientation, followed by TRAFF2 and adiabatic T2ρ. The highest dependence was seen in the highly organized deep cartilage and the smallest in the least organized transitional layer. Increasing spin-lock amplitude decreased the orientation dependence of CW-T1ρ. T1 was found practically orientation-independent and was closely followed by adiabatic T1ρ. The results suggest that T1 and adiabatic T1ρ should be preferred for orientation-independent quantitative assessment of organized tissues such as articular cartilage. On the other hand, based on the literature, parameters with higher orientation anisotropy appear to be more sensitive to degenerative changes in cartilage.
Collapse
Affiliation(s)
- Nina Hänninen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, POB 5000, FI-90014, Oulu, Finland
| | - Jari Rautiainen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Lassi Rieppo
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, POB 5000, FI-90014, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, POB 5000, FI-90014, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Mikko Johannes Nissi
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|