1
|
Yuan H, Huang Q, Wen J, Gao Y. Ultrasound viscoelastic imaging in the noninvasive quantitative assessment of chronic kidney disease. Ren Fail 2024; 46:2407882. [PMID: 39344493 PMCID: PMC11443565 DOI: 10.1080/0886022x.2024.2407882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND This study aims to evaluate the clinical application value of ultrasound viscoelastic imaging in noninvasive quantitative assessment of chronic kidney disease (CKD). METHODS A total of 332 patients with CKD and 190 healthy adults as a control group were prospectively enrolled. Before kidney biopsy, ultrasound viscoelastic imaging was performed to measure the mean stiffness value (Emean), mean viscosity coefficient (Vmean), and mean dispersion coefficient (Dmean) of the renal. CKD patients were divided into three groups based on estimated glomerular filtration rate. The differences in clinic, pathology, ultrasound image parameters between the control and patient groups, or among different CKD groups were compared. The correlation between viscoelastic parameters and pathology were analyzed. RESULTS Emean, Vmean, and Dmean in the control group were less than the CKD group (p < 0.05). In the identification of CKD from control groups, the area under curve of Vmean, Dmean, Emean, and combining the three parameters is 0.90, 0.79, 0.69, 0.91, respectively. Dmean and Vmean were increased with the decline of renal function (p < 0.05). Vmean and Dmean were positively correlated with white blood cell, urea, serum creatinine, and uric acid (p < 0.05). Vmean is positively correlated with interstitial fibrosis and inflammatory cell infiltration grades (p < 0.001). CONCLUSIONS Ultrasound viscoelastic imaging has advantages in noninvasive quantitative identification and evaluating renal function of CKD. Emean > 6.61 kPa, Vmean > 1.86 Pa·s, or Dmean > 7.51 m/s/kHz may suggest renal dysfunction. Combining Vmean, Dmean, and Emean can improve the efficiency of identifying CKD.
Collapse
Affiliation(s)
- Han Yuan
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qun Huang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jing Wen
- Department of Hematology and Rheumatology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yong Gao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
2
|
Jin L, Zong Y, Pan Y, Hu Y, Xie Q, Wang Z. Application of functional magnetic resonance imaging to evaluate renal structure and function in type 2 cardiorenal syndrome. BMC Cardiovasc Disord 2024; 24:637. [PMID: 39538120 PMCID: PMC11562356 DOI: 10.1186/s12872-024-04324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND There is a lack of diagnostic non-invasive imaging technology for assessing the early structural and functional changes of the kidney in type 2 cardiorenal (CRS) patients. This study aims to explore the value of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for clinical application in type 2 CRS patients, to provide imaging markers for the assessment of kidney damage. METHODS This is a retrospective observational clinical study conducted in Nanjing, China. The clinical characteristics, including age, gender, medical history, laboratory results, and ultrasound and magnetic resonance imaging results were collected from the electronic medical record. Thirty-one patients with type 2 CRS, 20 patients with chronic heart failure (HF) and 20 healthy controls were enrolled and divided into type 2 CRS, HF and control groups. All the participants underwent magnetic resonance imaging (MRI) scanning. The apparent diffusion coefficient (ADC) value and IVIM-DWI parameters including true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) were obtained. The correlation between estimated glomerular filtration rate (eGFR), renal size and imaging parameters was evaluated by Spearman correlation analysis. RESULTS ADC and D of the renal cortex in patients with type 2 CRS were lower than those in the healthy control group. ADC and f in the HF group were lower than those in the control group. D was positively correlated with the length (r = 0.3752, P = 0.0013) and transverse diameter (r = 0.3258, P = 0.0056) of the kidney. ADC (r = 0.2964, P = 0.0121) and D (r = 0.3051, P = 0.0097) were positively correlated with eGFR. Renal cortical ADC and D values could distinguish type 2 CRS patients from the healthy controls with area under the curve (AUC) of 0.723 and 0.706, respectively. CONCLUSION The ADC and D values were not only correlated with renal function, but also had lower levels in type 2 CRS. The IVIM-DWI parameter D was also related to kidney size, but further research is needed to determine whether it can be used as a novel imaging marker for type 2 CRS.
Collapse
Affiliation(s)
- Liangli Jin
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiovascular Medicine, The First People's Hospital of Bengbu, Bengbu, China
| | - Yani Zong
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuexin Hu
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Xie
- Department of Imaging Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhi Wang
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Hamelink TL, Ogurlu B, Pamplona CC, Castelein J, Bennedsgaard SS, Qi H, Weiss T, Lantinga VA, Pool MBF, Laustsen C, Jespersen B, Leuvenink HGD, Ringgaard S, Borra RJH, Keller AK, Moers C. Magnetic resonance imaging as a noninvasive adjunct to conventional assessment of functional differences between kidneys in vivo and during ex vivo normothermic machine perfusion. Am J Transplant 2024; 24:1761-1771. [PMID: 38615901 DOI: 10.1016/j.ajt.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Normothermic machine perfusion (NMP) is increasingly considered for pretransplant kidney quality assessment. However, fundamental questions about differences between in vivo and ex vivo renal function, as well as the impact of ischemic injury on ex vivo physiology, remain unanswered. This study utilized magnetic resonance imaging (MRI), alongside conventional parameters to explore differences between in vivo and ex vivo renal function and the impact of warm ischemia on a kidney's behavior ex vivo. Renal MRI scans and samples were obtained from living pigs (n = 30) in vivo. Next, kidney pairs were procured and exposed to minimal, or 75 minutes of warm ischemia, followed by 6 hours of hypothermic machine perfusion. Both kidneys simultaneously underwent 6-hour ex vivo perfusion in MRI-compatible NMP circuits to obtain multiparametric MRI data. Ischemically injured ex vivo kidneys showed a significantly altered regional blood flow distribution compared to in vivo and minimally damaged organs. Both ex vivo groups showed diffusion restriction relative to in vivo. Our findings underscore the differences between in vivo and ex vivo MRI-based renal characteristics. Therefore, when assessing organ viability during NMP, it should be considered to incorporate parameters beyond the conventional functional markers that are common in vivo.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carolina C Pamplona
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johannes Castelein
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Haiyun Qi
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Weiss
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Veerle A Lantinga
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ronald J H Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna K Keller
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
梁 灿, 李 莹, 贺 晓. [Functional MRI assessment of microstructural and perfusion changes in the kidneys of rats with intrauterine growth restriction]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:289-296. [PMID: 38557382 PMCID: PMC10986373 DOI: 10.7499/j.issn.1008-8830.2309004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/28/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES To explore the value of functional magnetic resonance imaging (MRI) techniques, including intravoxel incoherent motion (IVIM), T1 mapping, and T2 mapping, in assessing the microstructural and perfusion changes in the kidneys of rats with intrauterine growth restriction (IUGR). METHODS An IUGR rat model was established through a low-protein diet during pregnancy. Offspring from pregnant rats on a low-protein diet were randomly divided into an IUGR 8-week group and an IUGR 12-week group, while offspring from pregnant rats on a normal diet were divided into a normal 8-week group and a normal 12-week group (n=8 for each group). The apparent diffusion coefficient (ADC), true diffusion coefficient (Dt), pseudo-diffusion coefficient (D*), perfusion fraction (f), T1 value, and T2 value of the renal cortex and medulla were compared, along with serum creatinine and blood urea nitrogen levels among the groups. RESULTS The Dt value in the renal medulla was higher in the IUGR 12-week group than in the IUGR 8-week group, and the D* value in the renal medulla was lower in the IUGR 12-week group than in both the normal 12-week group and the IUGR 8-week group (P<0.05). The T1 value in the renal medulla was higher than in the cortex in the IUGR 8-week group, and the T1 value in the renal medulla was higher in the IUGR 12-week group than in both the IUGR 8-week group and the normal 12-week group, with the cortical T1 value in the IUGR 12-week group also being higher than that in the normal 12-week group (P<0.05). The T2 values in the renal medulla were higher than those in the cortex across all groups (P<0.05). There were no significant differences in the T2 values of either the cortex or medulla among the groups (P>0.05). There were no significant differences in serum creatinine and blood urea nitrogen levels among the groups (P>0.05). Glomerular hyperplasia and hypertrophy without significant fibrotic changes were observed in the IUGR 8-week group, whereas glomerular atrophy, cystic stenosis, and interstitial inflammatory infiltration and fibrosis were seen in the IUGR 12-week group. CONCLUSIONS IVIM MRI can be used to assess and dynamically observe the microstructural and perfusion damage in the kidneys of IUGR rats. MRI T1 mapping can be used to evaluate kidney damage in IUGR rats, and the combination of MRI T1 mapping and T2 mapping can further differentiate renal fibrosis in IUGR rats.
Collapse
Affiliation(s)
- 灿 梁
- 中南大学湘雅二医院新生儿疾病研究室,湖南长沙410011
| | - 莹 李
- 中南大学湘雅二医院新生儿疾病研究室,湖南长沙410011
| | | |
Collapse
|
5
|
Weissinger M, Seyfried KC, Ursprung S, Castaneda-Vega S, Seith F, von Beschwitz S, Vogel J, Ghibes P, Nikolaou K, la Fougère C, Dittmann H. Non-invasive estimation of split renal function from routine 68Ga-SSR-PET/CT scans. Front Med (Lausanne) 2023; 10:1169451. [PMID: 37448797 PMCID: PMC10337782 DOI: 10.3389/fmed.2023.1169451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023] Open
Abstract
Objective Patients with impaired kidney function are at elevated risk for nephrotoxicity and hematotoxicity from peptide receptor radionuclide therapy (PPRT) for advanced neuroendocrine tumors. Somatostatin receptor (SSR)-PET/CT imaging is the method of choice to identify sufficient SSR expression as a prerequisite for PRRT. Therefore, our study aimed to explore whether split renal function could be evaluated using imaging data from routine SSR-PET/CT prior to PRRT. Methods In total, 25 consecutive patients who underwent SSR-PET/CT (Siemens Biograph mCT®) before PRRT between June 2019 and December 2020 were enrolled in this retrospective study. PET acquisition in the caudocranial direction started at 20 ± 0.5 min after an i.v. injection of 173 ± 20 MBq [68Ga]Ga-ha DOTATATE, and the kidneys were scanned at 32 ± 0.5 min p.i. The renal parenchyma was segmented semi-automatically using an SUV-based isocontour (SUV between 5 and 15). Multiple parameters including SUVmean of renal parenchyma and blood pool, as well as parenchyma volume, were extracted, and accumulation index (ACI: renal parenchyma volume/SUVmean) and total kidney accumulation (TKA: SUVmean x renal parenchyma volume) were calculated. All data were correlated with the reference standard tubular extraction rate (TER-MAG) from [99mTc]Tc-MAG3 scintigraphy and glomerular filtration rate (GFRCDK - EPI). Results SUVmean of the parenchymal tracer retention showed a negative correlation with TERMAG (r: -0.519, p < 0.001) and GFRCDK - EPI (r: -0.555, p < 0.001) at 32 min p.i. The herein-introduced ACI revealed a significant correlation (p < 0.05) with the total tubular function (r: 0.482), glomerular renal function (r: 0.461), split renal function (r: 0.916), and absolute single-sided renal function (r: 0.549). The mean difference between the split renal function determined by renal scintigraphy and ACI was 1.8 ± 4.2 % points. Conclusion This pilot study indicates that static [68Ga]Ga-ha DOTATATE PET-scans at 32 min p.i. may be used to estimate both split renal function and absolute renal function using the herein proposed "Accumulation Index" (ACI).
Collapse
Affiliation(s)
- Matthias Weissinger
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Kyra Celine Seyfried
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan Ursprung
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Salvador Castaneda-Vega
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ferdinand Seith
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Sebastian von Beschwitz
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Jonas Vogel
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Patrick Ghibes
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
- iFIT-Cluster of Excellence, Eberhard Karls University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen, Tuebingen, Germany
| | - Christian la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
- iFIT-Cluster of Excellence, Eberhard Karls University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen, Tuebingen, Germany
| | - Helmut Dittmann
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Mao W, Ding Y, Ding X, Fu C, Cao B, Kuehn B, Benkert T, Grimm R, Zhou J, Zeng M. Capability of arterial spin labeling and intravoxel incoherent motion diffusion-weighted imaging to detect early kidney injury in chronic kidney disease. Eur Radiol 2023; 33:3286-3294. [PMID: 36512040 DOI: 10.1007/s00330-022-09331-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To prospectively investigate the capability of arterial spin labeling (ASL) and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for the identification of early kidney injury in chronic kidney disease (CKD) patients with normal estimated glomerular filtration rate (eGFR). METHODS Fifty-four CKD patients confirmed by renal biopsy (normal eGFR group [eGFR ≥ 90 mL/min/1.73 m2]: n = 26; abnormal eGFR group [eGFR < 90 mL/min/1.73 m2]: n = 28) and 20 healthy volunteers (HV) were recruited. All subjects were examined by IVIM-DWI and ASL imaging. Renal blood flow (RBF) derived from ASL, true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) derived from IVIM-DWI were measured from the renal cortex. One-way analysis of variance was used to compare MRI parameters among the three groups. The correlation between eGFR and MRI parameters was evaluated by Spearman correlation analysis. Diagnostic performances of MRI parameters for detecting kidney injury were assessed by receiver operating characteristic (ROC) curves. RESULTS The renal cortical D, D*, f, and RBF values showed statistically significant differences among the three groups. eGFR was positively correlated with MRI parameters (D: r = 0.299, D*: r = 0.569, f: r = 0.733, RBF: r = 0.586). The areas under the curve (AUCs) for discriminating CKD patients from HV were 0.725, 0.752, 0.947, and 0.884 by D, D*, f, and RBF, respectively. D, D*, f, RBF, and eGFR identified CKD patients with normal eGFR with AUCs of 0.735, 0.612, 0.917, 0.827, and 0.733, respectively, and AUC of f value was significantly larger than that of eGFR. CONCLUSION IVIM-DWI and ASL were useful for detecting underlying pathologic injury in early CKD patients with normal eGFR. KEY POINTS • The renal cortical f and RBF values in the control group were significantly higher than those in the normal eGFR group. • A negative correlation was observed between the renal cortical D, D*, f, and RBF values and SCr and 24 h-UPRO, while eGFR was significantly positively correlated with renal cortical D, D*, f, and RBF values. • The AUC of renal cortical f values was statistically larger than that of eGFR for the discrimination between the CKD with normal eGFR group and the control group.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuqin Ding
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Caixia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, People's Republic of China
| | - Bohong Cao
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Bernd Kuehn
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Department of Radiology, Zhongshan Hospital, Xiamen Branch, Fudan University, Xiamen, People's Republic of China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
7
|
Mei Y, Yang G, Guo Y, Zhao K, Wu S, Xu Z, Zhou S, Yan C, Seeliger E, Niendorf T, Xu Y, Feng Y. Parametric MRI Detects Aristolochic Acid Induced Acute Kidney Injury. Tomography 2022; 8:2902-2914. [PMID: 36548535 PMCID: PMC9786286 DOI: 10.3390/tomography8060243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to aristolochic acid (AA) is of increased concern due to carcinogenic and nephrotoxic effects, and incidence of aristolochic acid nephropathy (AAN) is increasing. This study characterizes renal alterations during the acute phase of AAN using parametric magnetic resonance imaging (MRI). An AAN and a control group of male Wistar rats received administration of aristolochic acid I (AAI) and polyethylene glycol (PEG), respectively, for six days. Both groups underwent MRI before and 2, 4 and 6 days after AAI or PEG administration. T2 relaxation times and apparent diffusion coefficients (ADCs) were determined for four renal layers. Serum creatinine levels (sCr) and blood urea nitrogen (BUN) were measured. Tubular injury scores (TIS) were evaluated based on histologic findings. Increased T2 values were detected since day 2 in the AAN group, but decreased ADCs and increased sCr levels and BUN were not detected until day 4. Significant linear correlations were observed between T2 of the cortex and the outer stripe of outer medulla and TIS. Our results demonstrate that parametric MRI facilitates early detection of renal injury induced by AAI in a rat model. T2 mapping may be a valuable tool for assessing kidney injury during the acute phase of AAN.
Collapse
Affiliation(s)
- Yingjie Mei
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Guixiang Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Kaixuan Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shuyu Wu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Zhongbiao Xu
- Radiotherapy Center, Guangdong General Hospital, Guangzhou 510080, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528399, China
- Correspondence:
| |
Collapse
|
8
|
Li Q, Cai M, Pu Q, Wu S, Liu X, Lin T, He D, Wen J, Wei G. A nomogram for predicting upper urinary tract damage risk in children with neurogenic bladder. Front Pediatr 2022; 10:1050013. [PMID: 36568416 PMCID: PMC9768210 DOI: 10.3389/fped.2022.1050013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To establish a predictive model for upper urinary tract damage (UUTD) in children with neurogenic bladder (NB) and verify its efficacy. METHODS A retrospective study was conducted that consisted of a training cohort with 167 NB patients and a validation cohort with 100 NB children. The clinical data of the two groups were compared first, and then univariate and multivariate logistic regression analyses were performed on the training cohort to identify predictors and develop the nomogram. The accuracy and clinical usefulness of the nomogram were verified by receiver operating characteristic (ROC) curve, calibration curve and decision curve analyses. RESULTS There were no significant differences in other parameters between the training and validation cohorts except for age (all P > 0.05). Recurrent urinary tract infection, bladder compliance, detrusor leak point pressure, overactive bladder and clean intermittent catheterization were identified as predictors and assembled into the nomogram. The nomogram showed good discrimination with the area under the ROC curve (AUC) in the training cohort (0.806, 95% CI: 0.737-0.874) and validation cohort (0.831, 95% CI: 0.753-0.0.909). The calibration curve showed that the nomograms were well calibrated, with no significant difference between the predicted and observed probabilities. Decision curve analysis indicated that the nomogram has good clinical applicability. CONCLUSION This study presents an effective nomogram incorporating five clinical characteristics that can be conveniently applied to assess NB children' risk of progressing to UUTD.
Collapse
Affiliation(s)
- Qi Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Miao Cai
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qingsong Pu
- Henan Joint International Pediatric Urodynamic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jianguo Wen
- Henan Joint International Pediatric Urodynamic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
9
|
Schutter R, Lantinga VA, Hamelink TL, Pool MBF, van Varsseveld OC, Potze JH, Hillebrands JL, van den Heuvel MC, Dierckx RAJO, Leuvenink HGD, Moers C, Borra RJH. Magnetic resonance imaging assessment of renal flow distribution patterns during ex vivo normothermic machine perfusion in porcine and human kidneys. Transpl Int 2021; 34:1643-1655. [PMID: 34448269 PMCID: PMC9290094 DOI: 10.1111/tri.13991] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Acceptance criteria of deceased donor organs have gradually been extended toward suboptimal quality, posing an urgent need for more objective pre‐transplant organ assessment. Ex vivo normothermic machine perfusion (NMP) combined with magnetic resonance imaging (MRI) could assist clinicians in deciding whether a donor kidney is suitable for transplantation. Aim of this study was to characterize the regional distribution of perfusate flow during NMP, to better understand how ex vivo kidney assessment protocols should eventually be designed. Nine porcine and 4 human discarded kidneys underwent 3 h of NMP in an MRI‐compatible perfusion setup. Arterial spin labeling scans were performed every 15 min, resulting in perfusion‐weighted images that visualize intrarenal flow distribution. At the start of NMP, all kidneys were mainly centrally perfused and it took time for the outer cortex to reach its physiological dominant perfusion state. Calculated corticomedullary ratios based on the perfusion maps reached a physiological range comparable to in vivo observations, but only after 1 to 2 h after the start of NMP. Before that, the functionally important renal cortex appeared severely underperfused. Our findings suggest that early functional NMP quality assessment markers may not reflect actual physiology and should therefore be interpreted with caution.
Collapse
Affiliation(s)
- Rianne Schutter
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Veerle A Lantinga
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Otis C van Varsseveld
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Jan Hendrik Potze
- Department of Radiology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Radiology, University of Groningen, University Medical Center, Groningen, The Netherlands.,Department of Nuclear Medicine, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Ronald J H Borra
- Department of Radiology, University of Groningen, University Medical Center, Groningen, The Netherlands.,Department of Nuclear Medicine, University of Groningen, University Medical Center, Groningen, The Netherlands
| |
Collapse
|
10
|
Liu Y, Zhang GMY, Peng X, Li X, Sun H, Chen L. Diffusion kurtosis imaging as an imaging biomarker for predicting prognosis in chronic kidney disease patients. Nephrol Dial Transplant 2021; 37:1451-1460. [PMID: 34302484 DOI: 10.1093/ndt/gfab229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Renal fibrosis is the strongest prognosis predictor of end-stage renal disease (ESRD) in chronic kidney disease (CKD). Diffusion kurtosis imaging (DKI) is a promising method of magnetic resonance imaging (MRI) successfully used to assess renal fibrosis in IgA nephropathy. This study first evaluated the long-term prognostic value of DKI in CKD patients. METHODS Forty-two patients with CKD were prospectively enrolled, and underwent DKI on a clinical 3 T MR scanner. We excluded patients with comorbidities that could affect the volume or the components of the kidney. DKI parameters, including mean kurtosis (K), mean diffusivity (D) and apparent diffusion coefficient (ADC) of kidney cortex were obtained by region-of-interest measurement. We followed up these patients for a median of 43 months and investigated the correlations between each DKI parameter and overall renal prognosis. RESULTS Both K and ADC values were correlated well with the eGFR on recruitment and the eGFR of the last visit in follow-up (p<0.001). K and ADC values were also well associated with the eGFR slopes in CKD patients, both with the first-last time point slope (p = 0.011 and p<0.001, respectively) and with the regression slope (p = 0.010 and p<0.001, respectively). Cox proportional hazard regression indicated that lower eGFR and ADC values independently predicted eGFR loss of more than 30% and ESRD. The receiver operating characteristic analysis showed that K and ADC values were predictable for renal prognosis, and ADC displayed better capabilities for both ESRD (AUC 0.936, sensitivity 92.31%, specificity 82.76%) and the composite endpoint (eGFR loss>30% or ESRD) (AUC 0.881, sensitivity 66.67%, specificity 96.3%). CONCLUSIONS Renal ADC values obtained from DKI showed significant predictive value for the prognosis of CKD patients, which could be a promising noninvasive technique in follow-up.
Collapse
Affiliation(s)
- Yan Liu
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases
| | - Gu-Mu-Yang Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyan Peng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases
| | - Xuemei Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases
| | - Hao Sun
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases
| |
Collapse
|
11
|
Ljimani A, Caroli A, Laustsen C, Francis S, Mendichovszky IA, Bane O, Nery F, Sharma K, Pohlmann A, Dekkers IA, Vallee JP, Derlin K, Notohamiprodjo M, Lim RP, Palmucci S, Serai SD, Periquito J, Wang ZJ, Froeling M, Thoeny HC, Prasad P, Schneider M, Niendorf T, Pullens P, Sourbron S, Sigmund EE. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:177-195. [PMID: 31676990 PMCID: PMC7021760 DOI: 10.1007/s10334-019-00790-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Objectives Standardization is an important milestone in the validation of DWI-based parameters as imaging biomarkers for renal disease. Here, we propose technical recommendations on three variants of renal DWI, monoexponential DWI, IVIM and DTI, as well as associated MRI biomarkers (ADC, D, D*, f, FA and MD) to aid ongoing international efforts on methodological harmonization. Materials and methods Reported DWI biomarkers from 194 prior renal DWI studies were extracted and Pearson correlations between diffusion biomarkers and protocol parameters were computed. Based on the literature review, surveys were designed for the consensus building. Survey data were collected via Delphi consensus process on renal DWI preparation, acquisition, analysis, and reporting. Consensus was defined as ≥ 75% agreement. Results Correlations were observed between reported diffusion biomarkers and protocol parameters. Out of 87 survey questions, 57 achieved consensus resolution, while many of the remaining questions were resolved by preference (65–74% agreement). Summary of the literature and survey data as well as recommendations for the preparation, acquisition, processing and reporting of renal DWI were provided. Discussion The consensus-based technical recommendations for renal DWI aim to facilitate inter-site harmonization and increase clinical impact of the technique on a larger scale by setting a framework for acquisition protocols for future renal DWI studies. We anticipate an iterative process with continuous updating of the recommendations according to progress in the field. Electronic supplementary material The online version of this article (10.1007/s10334-019-00790-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Anna Caroli
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Octavia Bane
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kanishka Sharma
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Paul Vallee
- Department of Diagnostic, Geneva University Hospital and University of Geneva, 1211, Geneva-14, Switzerland
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Mike Notohamiprodjo
- Die Radiologie, Munich, Germany.,Department of Radiology, University Hospital Tuebingen, Tübingen, Germany
| | - Ruth P Lim
- Department of Radiology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harriet C Thoeny
- Department of Radiology, Hôpital Cantonal Fribourgois (HFR), University of Fribourg, 1708, Fribourg, Switzerland
| | - Pottumarthi Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Moritz Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Pim Pullens
- Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium.,Department of Radiology, University Hospital Ghent, Ghent, Belgium
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Eric E Sigmund
- Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Health, New York, NY, USA
| |
Collapse
|
12
|
Yan X, Shao R, Wang Y, Mao X, Lei J, Zhang L, Zheng J, Liu A, Zhao H, Gao F, Wang J, Li P, Yao S, Xu M, Xu J, Liu D, Mi Y, Gong X, Ye J, Deng M, Dang T, Ji J, Shao C, Liu C, Gu Y, Wu Y, Wang F, Teng G, Li X, Qi X, Ju S, Qi X. Functional magnetic resonance imaging-based assessment of terlipressin vs. octreotide on renal function in cirrhotic patients with acute variceal bleeding (CHESS1903): study protocol of a multicenter randomized controlled trial. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:586. [PMID: 31807567 PMCID: PMC6861789 DOI: 10.21037/atm.2019.09.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute variceal bleeding is one of the critical complications in patients with liver cirrhosis. Severe renal vasoconstriction in consequence of low peripheral vascular resistance triggers the reduction of glomerular filtration rate (GFR), and thus induces acute kidney injury (AKI)/hepato-renal syndrome (HRS). Terlipressin and octreotide have been used in the management of cirrhotic patients with variceal bleeding. Also, terlipressin has been recommended as the international first-line pharmacological therapy for the treatment of HRS. In addition, the use of renal functional magnetic resonance imaging (fMRI) has become increasingly prevalent in research and clinical applications. However, the renal function-protective effect of terlipressin and octreotide and the value of fMRI in monitoring renal function remains unclear in patients with cirrhosis undergoing acute variceal bleeding. METHODS This is a multicenter, randomized controlled trial (RCT). Participants will be 1:1 assigned randomly into either terlipressin or octreotide groups. Sixty participants with clinically and/or pathologically diagnosed cirrhosis and active gastroesophageal variceal bleeding (GVB) will be recruited in several sites in China. Participants will receive either the treatment of terlipressin or octreotide after assigned into each group. The primary end point for the trial is the renal function. The secondary end points are (I) renal perfusion; (II) renal blood oxygenation; (III) failure to control bleeding; (IV) intra-hospital rebleeding; (V) intra-hospital mortality; (VI) adverse events (AE); (VII) overall survival. Statistical analysis including multivariate Cox regression, Kaplan-Meier analysis with log-rank test, etc. will be conducted. DISCUSSION The study will provide new insight into the protection of renal function in the process of the treatment of variceal bleeding in patients with cirrhosis. TRIAL REGISTRATION NUMBER NCT04028323.
Collapse
Affiliation(s)
- Xinwen Yan
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Hepatology Unit and Infectious Diseases, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruoyang Shao
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Hepatology Unit and Infectious Diseases, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuancheng Wang
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xiaorong Mao
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Junqiang Lei
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liting Zhang
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jianjun Zheng
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Aimin Liu
- Department of Gastroenterology, Fuling Central Hospital of Chongqing City, Chongqing 404000, China
| | - Huimin Zhao
- CHESS Working Party, Xingtai People’s Hospital, Xingtai 054031, China
| | - Fengxiao Gao
- CHESS Working Party, Xingtai People’s Hospital, Xingtai 054031, China
| | - Jitao Wang
- CHESS Working Party, Xingtai People’s Hospital, Xingtai 054031, China
| | - Ping Li
- CHESS Working Party, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Shengjuan Yao
- CHESS Working Party, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Ming Xu
- Department of Gastroenterology, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jian Xu
- Department of Hepatology & Translation Medicine, Fuling Center Hospital of Chongqing City, Chongqing 404000, China
| | - Dengxiang Liu
- CHESS Working Party, Xingtai People’s Hospital, Xingtai 054031, China
| | - Yuqiang Mi
- CHESS Working Party, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Xijun Gong
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jun Ye
- Department of Hepatology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Chuxiao Shao
- Department of Hepatobiliary and Pancreatic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Chao Liu
- CHESS Working Party, Hospital of Chengdu Office, People’s Government of Tibet Autonomous Region, Chengdu 610041, China
| | - Ye Gu
- Department of Gastroenterology, The Sixth Peoples Hospital of Shenyang, Shenyang 110006, China
| | - Yunhong Wu
- CHESS Working Party, Hospital of Chengdu Office, People’s Government of Tibet Autonomous Region, Chengdu 610041, China
| | - Fengmei Wang
- CHESS Working Party, Tianjin Second People’s Hospital, Tianjin 300192, China
| | - Gaojun Teng
- Department of Interventional Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xun Li
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xingshun Qi
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang 110000, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xiaolong Qi
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|