1
|
Zoghi S, Mingels C, Badawi RD, Spencer BA, Yarbrough TL, Nardo L, Chaudhari AJ. Role of Total Body PET/CT in Inflammatory Disorders. Semin Nucl Med 2025; 55:41-51. [PMID: 39578110 PMCID: PMC11645246 DOI: 10.1053/j.semnuclmed.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Inflammatory disorders historically have been difficult to monitor with conventional PET imaging due to limitations including radiation exposure, lack of validated imaging biomarkers, low spatial resolution, and long acquisition durations. However, the recent development of long-axial field-of-view (LAFOV) PET/CT scanners may allow utilization of novel noninvasive biomarkers to diagnose, predict outcomes, and monitor therapeutic response of inflammatory conditions. LAFOV PET scanners can image most of the human body (if not the entire body) simultaneously in one bed position, with improved signal collection efficiency compared to conventional PET scanners. This allows for imaging with shorter acquisition durations, decreased injected radiotracer dose, prolonged uptake times, or a combination of any of these. In addition, LAFOV PET scanners enable whole-body dynamic imaging. Altogether, these intrinsically superior capabilities in assessing both local and systemic diseases, have allowed these scanners to make increasingly significant contributions to the assessment of inflammatory conditions. This review aims to further explore the role and benefits of LAFOV scanners for imaging various inflammatory conditions while addressing future developments and challenges faced by this technology.
Collapse
Affiliation(s)
- Shervin Zoghi
- Department of Radiology, University of California Davis, Sacramento, CA, USA.
| | - Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, CA, USA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Tracy L Yarbrough
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Ulusoy OL, Server S, Yesilova M, İnan N. Whole-body PET/MRI to detect bone metastases: comparison of the diagnostic performance of the sequences. Radiol Oncol 2024; 58:494-500. [PMID: 39608007 PMCID: PMC11604270 DOI: 10.2478/raon-2024-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Whole-body positron emission tomography/magnetic resonance imaging (WB-PET/MRI) is increasingly used in the initial evaluation of oncology patients. The purpose of this study was to compare the diagnostic performance of WB MRI sequences, attenuation-corrected raw data positron-emission tomography (AC PET), and PET/MRI fused images to detect bone metastases. PATIENTS AND METHODS We included 765 consecutive oncologic patients who received WB-PET/MRI from between January 2017 and September 2023. The presence of bone metastases was assessed using the individual sequences by two radiologists. Interobserver agreement was calculated. A receiver operating characteristic (ROC) analysis was performed to assess the performance of each individual sequence and fused images. RESULTS Interobserver agreement for the detection of bone metastases on all sequences ranged from good to very good. The reading of the combination of MRI sequences with PET images showed statistically significantly better performance than the reading of individual MRI sequences and PET component only. Contrast enhanced T1 W Volume-interpolated breath-hold examination (CE T1W VIBE) sequence superior to PET for the detection of bone metastasis, but the statistical significance was not as high as with T1W-PET and CE T1W-PET fused images. The highest performance was achieved by the fused CE T1W-PET images with sensitivity of 100%, specificity of 92%, PPV of 96%, and NPV of 100%. CONCLUSIONS The combination of these CE T1W VIBE sequences with PET images have the highest diagnostic performance in detecting bone metastases in oncologic patients. This sequence should be integrated in WB-PET/MRI acquisitions for initial staging of cancer.
Collapse
Affiliation(s)
- Onur Levent Ulusoy
- Demiroglu Bilim University, İstanbul, Turkey
- Derpartment of Radiology, Florence Nigtingale Hospitals, İstanbul, Turkey
| | - Sadık Server
- Demiroglu Bilim University, İstanbul, Turkey
- Derpartment of Radiology, Florence Nigtingale Hospitals, İstanbul, Turkey
| | | | - Nagihan İnan
- Demiroglu Bilim University, İstanbul, Turkey
- Derpartment of Radiology, Florence Nigtingale Hospitals, İstanbul, Turkey
| |
Collapse
|
3
|
Moore L, Hughes H, Heffernan E. The Top 100 Most Cited Articles on Musculoskeletal Radiology: A Bibliometric Analysis. Cureus 2024; 16:e74137. [PMID: 39712783 PMCID: PMC11663030 DOI: 10.7759/cureus.74137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
The number of citations an article receives is reflective of its impact on the scientific community. The top 100 most cited articles were identified using the Web of Science database. Data relating to the publication year, publishing journal, number of citations, primary institution, journal impact factor, authorship, country of origin, radiological modality, and keywords were collected. In the top 100 list, the number of citations per article ranged from 149 to 709 (median 208; mean 240). Per article, the average number of citations per year ranged from five to 60 (median 12; mean 26). The United States was the most common country of origin (n=74). The journal with the greatest number of articles was Radiology (n=34). The University of California contributed the most articles (n=11). This study presents a detailed analysis of the top 100 most cited articles published in musculoskeletal radiology. It affords clinicians and researchers an understanding of the characteristics of the current most influential research papers in this field. It also highlights research trends and areas that may benefit from further research.
Collapse
Affiliation(s)
- Lucy Moore
- Radiology, St. Vincent's University Hospital, Dublin, IRL
| | - Hannah Hughes
- Radiology, St. Vincent's University Hospital, Dublin, IRL
| | - Eric Heffernan
- Radiology, St. Vincent's University Hospital, Dublin, IRL
| |
Collapse
|
4
|
Kasat PR, Kashikar SV, Parihar P, Sachani P, Shrivastava P, Mapari SA, Pradeep U, Bedi GN, Bhangale PN. Advances in Imaging for Metastatic Epidural Spinal Cord Compression: A Comprehensive Review of Detection, Diagnosis, and Treatment Planning. Cureus 2024; 16:e70110. [PMID: 39449880 PMCID: PMC11501474 DOI: 10.7759/cureus.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Metastatic epidural spinal cord compression (MESCC) is a critical oncologic emergency caused by the invasion of metastatic tumors into the spinal epidural space, leading to compression of the spinal cord. If not promptly diagnosed and treated, MESCC can result in irreversible neurological deficits, including paralysis, significantly impacting the patient's quality of life. Early detection and timely intervention are crucial to prevent permanent damage. Imaging modalities play a pivotal role in the diagnosis, assessment of disease extent, and treatment planning for MESCC. Magnetic resonance imaging (MRI) is the current gold standard due to its superior ability to visualize the spinal cord, epidural space, and metastatic lesions. However, recent advances in imaging technologies have enhanced the detection and management of MESCC. Innovations such as functional MRI, diffusion-weighted imaging (DWI), and hybrid techniques like positron emission tomography-computed tomography (PET-CT) and PET-MRI have improved the accuracy of diagnosis, particularly in detecting early metastatic changes and guiding therapeutic interventions. This review provides a comprehensive analysis of the evolution of imaging techniques for MESCC, focusing on their roles in detection, diagnosis, and treatment planning. It also discusses the impact of these advances on clinical outcomes and future research directions in imaging modalities for MESCC. Understanding these advancements is critical for optimizing the management of MESCC and improving patient prognosis.
Collapse
Affiliation(s)
- Paschyanti R Kasat
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shivali V Kashikar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratiksha Sachani
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Priyal Shrivastava
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Smruti A Mapari
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Utkarsh Pradeep
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Gautam N Bedi
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Paritosh N Bhangale
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
5
|
Kogan F, Yoon D, Teeter MG, Chaudhari AJ, Hales L, Barbieri M, Gold GE, Vainberg Y, Goyal A, Watkins L. Multimodal positron emission tomography (PET) imaging in non-oncologic musculoskeletal radiology. Skeletal Radiol 2024; 53:1833-1846. [PMID: 38492029 DOI: 10.1007/s00256-024-04640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Musculoskeletal (MSK) disorders are associated with large impacts on patient's pain and quality of life. Conventional morphological imaging of tissue structure is limited in its ability to detect pain generators, early MSK disease, and rapidly assess treatment efficacy. Positron emission tomography (PET), which offers unique capabilities to evaluate molecular and metabolic processes, can provide novel information about early pathophysiologic changes that occur before structural or even microstructural changes can be detected. This sensitivity not only makes it a powerful tool for detection and characterization of disease, but also a tool able to rapidly assess the efficacy of therapies. These benefits have garnered more attention to PET imaging of MSK disorders in recent years. In this narrative review, we discuss several applications of multimodal PET imaging in non-oncologic MSK diseases including arthritis, osteoporosis, and sources of pain and inflammation. We also describe technical considerations and recent advancements in technology and radiotracers as well as areas of emerging interest for future applications of multimodal PET imaging of MSK conditions. Overall, we present evidence that the incorporation of PET through multimodal imaging offers an exciting addition to the field of MSK radiology and will likely prove valuable in the transition to an era of precision medicine.
Collapse
Affiliation(s)
- Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Daehyun Yoon
- Department of Radiology, University of California-San Francisco, San Francisco, CA, USA
| | - Matthew G Teeter
- Department of Medical Biophysics, Western University, London, ON, Canada
| | | | - Laurel Hales
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Yael Vainberg
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ananya Goyal
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Lauren Watkins
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Kim KC, Wakeman B, Wissman R. Functional Imaging of the Knee-A Comprehensive Review. J Knee Surg 2023. [PMID: 37992754 DOI: 10.1055/a-2216-5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Knee pain is a common presenting problem in the general population. Radiographs and magnetic resonance imaging (MRI) are the cornerstones of imaging in current clinical practice. With advancements in technology, there has been increasing utilization of other modalities to evaluate knee disorders. Dynamic assessment utilizing computed tomography and portable ultrasounds have demonstrated the capacity to accurately assess and reproducibly quantify kinematics of knee disorders. Cartilage physiology can be evaluated with MRI. Emerging research has even demonstrated novel musculoskeletal applications of positron emission tomography to evaluate anterior cruciate ligament graft metabolic activity following reconstruction. As technology continues to evolve and traditional ways are improved upon, future comparative studies will elucidate the distinct advantages of the various modalities. Although radiology is still primarily an anatomic specialty, there is immense potential for functional imaging to be the standard of care. This review focuses on the most common musculoskeletal applications of functional imaging as well as future utilization.
Collapse
Affiliation(s)
- Kenneth C Kim
- Department of Radiology, University of Missouri Health Care, Columbia, Missouri
| | - Brooke Wakeman
- Department of Radiology, University of Missouri Health Care, Columbia, Missouri
| | - Rob Wissman
- Musculoskeletal Imaging Division, Department of Radiology, Faculty of Clinical Radiology, University of Missouri System, Columbia, Missouri
| |
Collapse
|
7
|
Fang Y, Chen S, Xu Y, Qiang M, Tao C, Huang S, Wang L, Chen X, Cao C. Assessment of bone lesions with 18 F-FDG PET/MRI in patients with nasopharyngeal carcinoma. Nucl Med Commun 2023; 44:457-462. [PMID: 36897049 DOI: 10.1097/mnm.0000000000001682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
PURPOSE The purpose of this study is to evaluate the role of 18 fluorodeoxyglucose ( 18 F) PET/MRI ( 18 F-FDG PET/MRI) for detecting bone metastasis in nasopharyngeal carcinoma (NPC). PATIENTS AND METHODS Between May 2017 and May 2021, 58 histologically proven NPC patients who underwent both 18 F-FDG PET/MRI and 99m Tc-MDP planar bone scintigraphy (PBS) for tumor staging were included. With the exception of the head, the skeletal system was classified into four groups: the spine, the pelvis, the thorax and the appendix. RESULTS Nine (15.5 %) of 58 patients were confirmed to have bone metastasis. There was no statistical difference between PET/MRI and PBS in patient-based analysis ( P = 0.125). One patient with a super scan was confirmed to have extensive and diffuse bone metastases and excluded for lesion-based analysis. Of the 57 patients, all 48 true metastatic lesions were positive in PET/MRI whereas only 24 true metastatic lesions were positive in PBS (spine: 8, thorax: 0, pelvis: 11 and appendix: 5). PET/MRI was observed to be more sensitive than PBS in lesion-based analysis (sensitivity 100.0% versus 50.0 %; P < 0.001). CONCLUSIONS Compared with PBS for tumor staging of NPC, PET/MRI was observed to be more sensitive in the lesion-based analysis of bone metastasis.
Collapse
Affiliation(s)
- Yuting Fang
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province
- Graduate school, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shoucong Chen
- Department of Nuclear Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences
| | - Yuanfan Xu
- Hangzhou Universal Medical Imagine Diagnostion Center, Hangzhou, Zhejiang, China
| | - Mengyun Qiang
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province
| | - Changjuan Tao
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province
| | - Shuang Huang
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province
| | - Lei Wang
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province
| | - Xiaozhong Chen
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province
| | - Caineng Cao
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province
| |
Collapse
|
8
|
Jena A, Goyal N, Rana P, Taneja S, Vaish A, Botchu R, Vaishya R. Qualitative and Quantitative Evaluation of Morpho-Metabolic Changes in Bone Cartilage Complex of Knee Joint in Osteoarthritis Using Simultaneous 18F-NaF PET/MRI—A Pilot Study. Indian J Radiol Imaging 2023; 33:173-182. [PMID: 37123591 PMCID: PMC10132889 DOI: 10.1055/s-0042-1760285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Background Articular cartilage (AC) loss and deterioration, as well as bone remodeling, are all symptoms of osteoarthritis (OA). As a result, an ideal imaging technique for researching OA is required, which must be sensitive to both soft tissue and bone health.
Objective The aim of this study was to assess the potential of simultaneous 18F sodium fluoride (18F-NaF) positron emission tomography/magnetic resonance imaging (PET/MRI) to identify as well as classify osseous metabolic abnormalities in knee OA and to see if degenerative changes in the cartilage and bone on MRI might be correlated with subchondral 18F-NaF uptake on PET.
Methods Sixteen (32 knees) volunteers with no past history of knee injury, with or without pain, were enrolled for the research from January to July 2021. The images of both knees were taken utilizing an molecular magnetic resonance (mMR) body matrix coil on a simultaneous PET/MRI biograph mMR. The acquisition was conducted after 45 minutes of intravenous infusion of 18F-NaF 185–370 MBq (5–10 mCi) over one PET bed for 40 minutes, while MRI sequences were performed simultaneously.
Results All pathologies showed significantly higher maximum standardized uptake value (SUVmax) than the background. Thirty-four subchondral magic spots were identified on 18F-NaF PET without any structural alteration on MRI. Bone marrow lesions (BMLs) and osteophytes with higher MRI osteoarthritis knee score (MOAKS) score showed higher 18F-NaF uptake (grade1˂grade2˂grade3). BMLs had corresponding AC degeneration. There was discordance between grade 1 osteophytes (86.6%), sclerosis (53.7%) and grade 1 BML in cruciate ligament insertion site (91.66%); they did not have high uptake of 18F-NaF. In case of cartilage, there was significant difference between AC grades and average subchondral SUVmax and T2* relaxometry (grade0˂grade1˂grade2˂grade3˂grade4). BMLs are much more metabolically active than other pathologies, while sclerosis is the least. We also found that the subchondral uptake was statistically increased in the areas of pathology:
Conclusion 18F-NaF PET/MRI was able to detect knee abnormalities unseen on MRI alone and simultaneously assessed metabolic and structural markers of knee OA across multiple tissues in the joint. Thus, it is a promising tool for detection of early metabolic changes in OA.
Collapse
Affiliation(s)
- Amarnath Jena
- Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospital, New Delhi, India
| | - Nidhi Goyal
- Department of Radiodiagnosis and Imaging, Indraprastha Apollo Hospitals, New Delhi, India
| | - Prerana Rana
- Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospital, New Delhi, India
- Apollo Hospitals Education and Research Foundation, Indraprastha Apollo Hospitals, New Delhi, India
| | - Sangeeta Taneja
- Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospital, New Delhi, India
| | - Abhishek Vaish
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, New Delhi, India
| | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopedic Hospital, Birmingham, United Kingdom
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, New Delhi, India
| |
Collapse
|
9
|
Pozzessere C, Cicone F, Barberio P, Papa A, Coppolino G, Biagini R, Cascini GL. Cross-sectional evaluation of FGD-avid polyostotic fibrous dysplasia: MRI, CT and PET/MRI findings. Eur J Hybrid Imaging 2022; 6:19. [PMID: 36184649 PMCID: PMC9527265 DOI: 10.1186/s41824-022-00139-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
A 42-year-old male with left hip pain was diagnosed of several right femoral and tibial bone tumours. All lesions were osteolytic with sclerotic margins. The symptomatic lesion in the proximal femur also showed bone expansion and focal cortical thinning. Whole-body [18F]-fluorodeoxyglucose (FDG) PET/CT and segmental PET/MRI of the left hip and femur were performed for metabolic characterization of the lesions and for biopsy guidance. The lesions showed a heterogenous degree of FDG uptake corresponding to different metabolic stages of the disease. A biopsy of the tumour portion showing the highest FDG uptake revealed a fibrous dysplasia (FD). In conclusion, although generally affecting paediatric and adolescent subjects, polyostotic FD may be detected in the adulthood. Despite the benign nature of the disease, increased glucose metabolism can be seen in some lesions. Hybrid imaging combining morphological and functional information may help guide biopsy and better define the treatment strategy.
Collapse
Affiliation(s)
- Chiara Pozzessere
- grid.416367.10000 0004 0485 6324Radiology Unit, AUSL Toscana Centro San Giuseppe Hospital, Empoli, Italy
| | - Francesco Cicone
- grid.488515.5Nuclear Medicine Unit, University Hospital “Mater Domini”, Catanzaro, Italy ,grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy ,grid.411489.10000 0001 2168 2547PET/MR Unit, Neuroscience Research Centre, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Paolo Barberio
- grid.411489.10000 0001 2168 2547PET/MR Unit, Neuroscience Research Centre, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Annalisa Papa
- grid.488515.5Nuclear Medicine Unit, University Hospital “Mater Domini”, Catanzaro, Italy
| | - Giuseppe Coppolino
- grid.411489.10000 0001 2168 2547Nephrology and Dialysis Unit, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Roberto Biagini
- grid.417520.50000 0004 1760 5276Oncological Orthopaedics Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Lucio Cascini
- grid.488515.5Nuclear Medicine Unit, University Hospital “Mater Domini”, Catanzaro, Italy ,grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy ,grid.411489.10000 0001 2168 2547PET/MR Unit, Neuroscience Research Centre, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
10
|
Abstract
Knee osteoarthritis is rising in prevalence, and more imaging studies are being requested to evaluate these patients. Although conventional radiographs of the knee are the most widely requested and available studies, other imaging modalities such as MRI, CT, and ultrasound may also be used. This article reviews commonly used imaging modalities, advantages and limitations of each, and their clinical applicability in diagnosing and monitoring knee osteoarthritis. New and advanced imaging techniques are also discussed as possible methods of early diagnosis and improved understanding of osteoarthritis pathophysiology.
Collapse
Affiliation(s)
- Preeti A Sukerkar
- Department of Radiology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Radiology, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| | - Zoe Doyle
- Department of Radiology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Radiology, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| |
Collapse
|
11
|
Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S, Deb PK. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med 2022; 11:3002. [PMID: 35683390 PMCID: PMC9181614 DOI: 10.3390/jcm11113002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| |
Collapse
|
12
|
Jena A, Goyal N, Rana P, Taneja S, Vaish A, Botchu R, Vaishya R. Differential 18F-NaF uptake in various compartments in knee osteoarthritis: an observational study using PET/MRI. Clin Radiol 2022; 77:613-620. [PMID: 35589431 DOI: 10.1016/j.crad.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
AIM To investigate if the pattern of fluorine-18-labelled sodium fluoride (18F-NaF) uptake on integrated positron-emission tomography (PET)/magnetic resonance imaging (MRI) of bone marrow lesions (BML) and osteophytes differs between different knee compartments. MATERIALS AND METHODS Sixteen patients with no prior history of knee injury with or without pain were recruited for the study. The images of both knees were acquired on simultaneous PET/MRI. The acquisition was done after 45 minutes of intravenous injection of 18F-NaF 185-370 MBq (5-10 mCi) for 40 minutes. Each knee was divided into eight compartments patella, trochlea, medial central femur, lateral central femur, medial posterior femur, lateral posterior femur, medial tibia, lateral tibia, and cruciate ligament insertion specifically for BML. BML and osteophytes were scored using MRI Osteoarthritis Knee Score (MOAKS) criteria and their corresponding maximum standardised uptake values (SUVmax) recorded. RESULTS BML and osteophytes both showed statistically significant differences among knee compartments, i.e., p-value <0.000 and < 0.043 respectively. SUVmax for BML and osteophytes was greatest in the medial tibia. CONCLUSION 18F-NaF PET/MRI showed that BML and osteophytes had differential uptake values due to bone remodelling amongst the various knee compartments and this may help to design disease-modifying osteoarthritis drugs in the future.
Collapse
Affiliation(s)
- A Jena
- PET Suite (Indraprastha Apollo Hospitals and House of Diagnostics), Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - N Goyal
- Department of Radiodiagnosis and Imaging, Indraprastha Apollo Hospitals, New Delhi, India
| | - P Rana
- PET Suite (Indraprastha Apollo Hospitals and House of Diagnostics), Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, New Delhi, India; Apollo Hospitals Education & Research Foundation, Indraprastha Apollo Hospitals, New Delhi, India
| | - S Taneja
- PET Suite (Indraprastha Apollo Hospitals and House of Diagnostics), Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - A Vaish
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, New Delhi, India
| | - R Botchu
- Department of Musculoskeletal Radiology, Royal Orthopaedic Hospital, Birmingham, UK.
| | - R Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, New Delhi, India
| |
Collapse
|
13
|
Annunziata S, Panagiotidis E. Hybrid positron emission tomography/magnetic resonance imaging in musculoskeletal conditions: be hybrid! THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:1-2. [PMID: 35362695 DOI: 10.23736/s1824-4785.21.03430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Salvatore Annunziata
- Unit of Nuclear Medicine, TracerGLab, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Emmanouil Panagiotidis
- Department of Nuclear Medicine - PET/CT, Theageneio Oncology Center, Thessaloniki, Greece -
| |
Collapse
|
14
|
van den Wyngaert T, de Schepper S, Elvas F, Seyedinia SS, Beheshti M. Positron emission tomography-magnetic resonance imaging as a research tool in musculoskeletal conditions. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:15-30. [PMID: 35005878 DOI: 10.23736/s1824-4785.22.03434-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared to positron emission tomography/computed tomography (PET/CT), the uptake of PET- magnetic resonance imaging (MRI) has been slow, even more so in clinical practice compared to the (pre-)clinical research setting. However, for applications in musculoskeletal (MSK) research, the combination of PET and MRI into a single modality offers attractive advantages over other imaging modalities. Most importantly, MRI has exquisite soft-tissue detail without the use of contrast agents or ionizing radiation, superior bone marrow visualization, and an extensive spectrum of distinct multiparametric assessment methods. In the preclinical setting, the introduction of PET inserts for small-animal MRI machines has proven to be a successful concept in bringing this technology to the lab. Initial hurdles in quantification have been mainly overcome in this setting. In parallel, a promising range of radiochemistry techniques has been developed to create multimodality probes that offer the possibility of simultaneously querying different metabolic pathways. Not only will these applications help in elucidating disease mechanisms, but they can also facilitate drug development. The clinical applications of PET/MRI in MSK are still limited, but encouraging initial results with novel radiotracers suggest a high potential for use in various MSK conditions, including osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and inflammation and infection. Further innovations will be required to bring down the cost of PET/MRI to justify a broader clinical implementation, and remaining issues with quality control and standardization also need to be addressed. Nevertheless, PET/MRI is a powerful platform for MSK research with distinct qualities that are not offered by other techniques.
Collapse
Affiliation(s)
- Tim van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium -
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium -
- Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium -
| | - Stijn de Schepper
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences (MICA), University of Antwerp, Wilrijk, Belgium
| | - Seyedeh S Seyedinia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
15
|
Ng KCG. CORR Insights®: How Does Chondrolabral Damage and Labral Repair Influence the Mechanics of the Hip in the Setting of Cam Morphology? A Finite-Element Modeling Study. Clin Orthop Relat Res 2022; 480:616-618. [PMID: 34797232 PMCID: PMC8846352 DOI: 10.1097/corr.0000000000002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/31/2023]
Affiliation(s)
- K C Geoffrey Ng
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
- Department of Surgery, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Spriet M, Edwards L, Arndt S, Wilson SS, Galuppo LD, Stepanov P, Beylin D. Validation of a dedicated positron emission tomography scanner for imaging of the distal limb of standing horses. Vet Radiol Ultrasound 2022; 63:469-477. [PMID: 35188701 DOI: 10.1111/vru.13078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 01/08/2023] Open
Abstract
A positron emission tomography (PET) scanner, with an openable ring of detectors, was specifically designed to image the distal limb of standing horses. The goals of this prospective, preclinical, experimental, methods comparison study were to validate the safety of the scanner, assess image quality, and optimize scanning protocols. Six research horses were imaged three times (twice standing, once anesthetized) and six horses in active race training were imaged once under standing sedation. Multiple scans of both front fetlocks were obtained with different scan durations and axial fields of view. A total of 94 fetlock scans were attempted and 90 provided images of diagnostic value. Radiotracer uptake was the main factor affecting image quality, while motion did not represent a major issue. Scan duration and field of view also affected image quality. Eight specific lesions were identified on PET images from anesthetized horses and were all also independently recognized on the PET images obtained on standing horses. Maximal standardized uptake values (SUVmax) had good repeatability for the assessment of specific lesions among different scans. Three feet and six carpi were also successfully imaged. This study validated the safety and practicality of a PET scanner specifically designed to image the distal limb in standing horses. Proper preparation of horses, similar to bone scintigraphy, is important for image quality. A 4-min scan with 12 cm field of view was considered optimal for clinical fetlock imaging. Evaluation of a larger clinical population is the next step for further assessment of the clinical utility of PET imaging in horses.
Collapse
Affiliation(s)
- Mathieu Spriet
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Lisa Edwards
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Stefanie Arndt
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Sabrina S Wilson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Larry D Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Pavel Stepanov
- LONGMILE Veterinary Imaging, A Division of Brain Biosciences Inc., Rockville, Maryland, USA
| | - David Beylin
- LONGMILE Veterinary Imaging, A Division of Brain Biosciences Inc., Rockville, Maryland, USA
| |
Collapse
|
17
|
Jena A, Taneja S, Rana P, Goyal N, Vaish A, Botchu R, Vaishya R. Emerging role of integrated PET-MRI in osteoarthritis. Skeletal Radiol 2021; 50:2349-2363. [PMID: 34185124 DOI: 10.1007/s00256-021-03847-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a common degenerative disorder of the articular cartilage, which is associated with hypertrophic changes in the bone, synovial inflammation, subchondral sclerosis, and joint space narrowing (JSN). Radiography remains the first line of imaging till now. Due to the lack of soft-tissue depiction in radiography, researchers are exploring various imaging techniques to detect OA at an early stage and understand its pathophysiology to restrict its progression and discover disease-modifying agents in OA. As the OA relates to the degradation of articular cartilage and remodeling of the underlying bone, an optimal imaging tool must be sensitive to the bone and soft tissue health. In that line, many non-invasive imaging and minimally invasive techniques have been explored. Out of these, the non-invasive compositional magnetic resonance imaging (MRI) for evaluation of the integrity of articular cartilage and positron emission tomography (PET) scan with fluorodeoxyglucose (FDG) and more specific bone-seeking tracer like sodium fluoride (18F-NaF) for bone cartilage interface are some of the leading areas of ongoing work. Integrated PET-MRI system, a new hybrid modality that combines the virtues of the above two individual modalities, allows detailed imaging of the entire joint, including soft tissue cartilage and bone, and holds great potential to research complex disease processes of OA. This narrative review attempts to signify individual characteristics of MRI, PET, the fusion of these characteristics in PET-MRI, and the ongoing research on PET-MRI as a potential tool to understand the pathophysiology of OA.
Collapse
Affiliation(s)
- Amarnath Jena
- PET SUITE (Indraprastha Apollo Hospitals and House of Diagnostics), Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi-Mathura Road, New Delhi, 110076, India
| | - Sangeeta Taneja
- PET SUITE (Indraprastha Apollo Hospitals and House of Diagnostics), Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi-Mathura Road, New Delhi, 110076, India
| | - Prerana Rana
- PET SUITE (Indraprastha Apollo Hospitals and House of Diagnostics), Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi-Mathura Road, New Delhi, 110076, India.,Apollo Hospitals Education & Research Foundation, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi-Mathura Road, New Delhi, 110076, India
| | - Nidhi Goyal
- Department of Radiodiagnosis and Imaging, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi-Mathura Road, New Delhi, 110076, India
| | - Abhishek Vaish
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi-Mathura Road, New Delhi, 110076, India
| | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopedic Hospital, Birmingham, UK.
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi-Mathura Road, New Delhi, 110076, India
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW In this paper, we discuss how recent advancements in image processing and machine learning (ML) are shaping a new and exciting era for the osteoporosis imaging field. With this paper, we want to give the reader a basic exposure to the ML concepts that are necessary to build effective solutions for image processing and interpretation, while presenting an overview of the state of the art in the application of machine learning techniques for the assessment of bone structure, osteoporosis diagnosis, fracture detection, and risk prediction. RECENT FINDINGS ML effort in the osteoporosis imaging field is largely characterized by "low-cost" bone quality estimation and osteoporosis diagnosis, fracture detection, and risk prediction, but also automatized and standardized large-scale data analysis and data-driven imaging biomarker discovery. Our effort is not intended to be a systematic review, but an opportunity to review key studies in the recent osteoporosis imaging research landscape with the ultimate goal of discussing specific design choices, giving the reader pointers to possible solutions of regression, segmentation, and classification tasks as well as discussing common mistakes.
Collapse
Affiliation(s)
- Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, CA, 94158, USA.
| | - Francesco Caliva
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, CA, 94158, USA
| | - Galateia Kazakia
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, CA, 94158, USA
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, CA, 94158, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, CA, 94158, USA
| |
Collapse
|
19
|
Vermersch M, Mulé S, Chalaye J, Galletto Pregliasco A, Emsen B, Amaddeo G, Monnet A, Stemmer A, Baranes L, Laurent A, Leroy V, Itti E, Luciani A. Impact of the 18F-FDG-PET/MRI on Metastatic Staging in Patients with Hepatocellular Carcinoma: Initial Results from 104 Patients. J Clin Med 2021; 10:jcm10174017. [PMID: 34501465 PMCID: PMC8432497 DOI: 10.3390/jcm10174017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Optimal HCC therapeutic management relies on accurate tumor staging. Our aim was to assess the impact of 18F-FDG-WB-PET/MRI on HCC metastatic staging, compared with the standard of care CT-CAP/liver MRI combination, in patients with HCC referred on a curative intent or before transarterial radioembolization. One hundred and four consecutive patients followed for HCC were retrospectively included. The WB-PET/MRI was compared with the standard of care CT-CAP/liver MRI combination for HCC metastatic staging, with pathology, followup, and multidisciplinary board assessment as a reference standard. Thirty metastases were identified within 14 metastatic sites in 11 patients. The sensitivity of WB-PET/MRI for metastatic sites and metastatic patients was significantly higher than that of the CT-CAP/liver MRI combination (respectively 100% vs. 43%, p = 0.002; and 100% vs. 45%, p = 0.01). Metastatic sites missed by CT-CAP were bone (n = 5) and distant lymph node (n = 3) in BCLC C patients. For the remaining 93 nonmetastatic patients, three BCLC A patients identified as potentially metastatic on the CT-CAP/liver MRI combination were correctly ruled out with the WB-PET/MRI without significant increase in specificity (100% vs. 97%; p = 0.25). The WB-PET/MRI may improve HCC metastatic staging and could be performed as a “one-stop-shop” examination for HCC staging with a significant impact on therapeutic management in about 10% of patients especially in locally advanced HCC.
Collapse
Affiliation(s)
- Mathilde Vermersch
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
- Institut Mondor de la Recherche Biomédicale (IMRB) Team 18, INSERM Unit 955, Henri Mondor Hospital, 94000 Créteil, France
- Medical Imaging Department, Lille University Hospital, 59000 Lille, France
- Correspondence: ; Tel.: +33-6-3119-1558
| | - Sébastien Mulé
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
- Institut Mondor de la Recherche Biomédicale (IMRB) Team 18, INSERM Unit 955, Henri Mondor Hospital, 94000 Créteil, France
| | - Julia Chalaye
- Nuclear Medicine Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (J.C.); (B.E.); (E.I.)
| | - Athena Galletto Pregliasco
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
| | - Berivan Emsen
- Nuclear Medicine Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (J.C.); (B.E.); (E.I.)
| | - Giuliana Amaddeo
- Department of Hepatogastroenterology, Henri Mondor Hospital, APHP, 94000 Créteil, France; (G.A.); (V.L.)
| | - Aurélien Monnet
- Siemens Healthineers, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (A.M.); (A.S.)
| | - Alto Stemmer
- Siemens Healthineers, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (A.M.); (A.S.)
| | - Laurence Baranes
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
| | - Alexis Laurent
- Hepatobiliary Surgery and Liver Transplantation, Henri Mondor Hospital, APHP, 94000 Créteil, France;
| | - Vincent Leroy
- Department of Hepatogastroenterology, Henri Mondor Hospital, APHP, 94000 Créteil, France; (G.A.); (V.L.)
| | - Emmanuel Itti
- Nuclear Medicine Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (J.C.); (B.E.); (E.I.)
| | - Alain Luciani
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
| |
Collapse
|
20
|
Jena A, Goyal N, Vaishya R. 18F-NaF simultaneous PET/MRI in osteoarthritis: Initial observations with case illustration. J Clin Orthop Trauma 2021; 22:101569. [PMID: 34513587 PMCID: PMC8411223 DOI: 10.1016/j.jcot.2021.101569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a debilitating disease generally of old age manifested as degeneration of articular cartilage. With no definitive treatment available, ongoing research aims at early detection and use specific noninvasive imaging markers to monitor therapeutic efficacy of disease modifying osteoarthritic drug (DMOAD) to reverse or/and arrest the disease process. Articular cartilage degradation and loss, as well as bone remodelling, are typical biomarkers of OA. As a result, an ideal imaging technique for early detection of OA is required, which must be sensitive to both soft tissue and bone health. PET/MRI is emerging as an imaging tool which can be used to study the underlying pathogenesis of OA as it enables us to assess molecular activity with PET markers while also linking them to qualitative and quantitative MRI indices of OA. In this regard recent work was exploring the role of 18F-Na Fluoride which is a marker of bone remodelling together with MRI in early detection of OA on simultaneous PET/MRI. In this article we intend to present different patterns of OA (mild to severe stages of OA) that we had observed on 18F-Sodium Fluoride (18F-NaF) PET/MRI.
Collapse
Affiliation(s)
- Amarnath Jena
- PET SUITE (Indraprastha Apollo Hospitals and House of Diagnostics), Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospital, Sarita Vihar, New Delhi, 110076, India
- Corresponding author. PET SUITE (Indraprastha Apollo Hospitals and House of Diagnostics), Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospital, Sarita Vihar, Delhi-Mathura Road, New Delhi, 110076, India.
| | - Nidhi Goyal
- Department of Radiodiagnosis and Imaging, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, 110076, India
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, 110076, India
| |
Collapse
|
21
|
Watkins L, MacKay J, Haddock B, Mazzoli V, Uhlrich S, Gold G, Kogan F. Assessment of quantitative [ 18F]Sodium fluoride PET measures of knee subchondral bone perfusion and mineralization in osteoarthritic and healthy subjects. Osteoarthritis Cartilage 2021; 29:849-858. [PMID: 33639259 PMCID: PMC8159876 DOI: 10.1016/j.joca.2021.02.563] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Molecular information derived from dynamic [18F]sodium fluoride ([18F]NaF) PET imaging holds promise as a quantitative marker of bone metabolism. The objective of this work was to evaluate physiological mechanisms of [18F]NaF uptake in subchondral bone of individuals with and without knee osteoarthritis (OA). METHODS Eleven healthy volunteers and twenty OA subjects were included. Both knees of all subjects were scanned simultaneously using a 3T hybrid PET/MRI system. MRI MOAKS assessment was performed to score the presence and size of osteophytes, bone marrow lesions, and cartilage lesions. Subchondral bone kinetic parameters of bone perfusion (K1), tracer extraction fraction, and total tracer uptake into bone (Ki) were evaluated using the Hawkins 3-compartment model. Measures were compared between structurally normal-appearing bone regions and those with structural findings. RESULTS Mean and maximum SUV and kinetic parameters Ki, K1, and extraction fraction were significantly different between Healthy subjects and subjects with OA. Between-group differences in metabolic parameters were observed both in regions where the OA group had degenerative changes as well as in regions that appeared structurally normal. CONCLUSIONS Results suggest that bone metabolism is altered in OA subjects, including bone regions with and without structural findings, compared to healthy subjects. Kinetic parameters of [18F]NaF uptake in subchondral bone show potential to quantitatively evaluate the role of bone physiology in OA initiation and progression. Objective measures of bone metabolism from [18F]NaF PET imaging can complement assessments of structural abnormalities observed on MRI.
Collapse
Affiliation(s)
- L Watkins
- Department of Bioengineering, Stanford University, Stanford CA, USA; Department of Radiology, Stanford University, Stanford CA, USA.
| | - J MacKay
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | | | - V Mazzoli
- Department of Radiology, Stanford University, Stanford CA, USA
| | - S Uhlrich
- Department of Mechanical Engineering, Stanford University, Stanford CA, USA
| | - G Gold
- Department of Bioengineering, Stanford University, Stanford CA, USA; Department of Radiology, Stanford University, Stanford CA, USA
| | - F Kogan
- Department of Radiology, Stanford University, Stanford CA, USA
| |
Collapse
|
22
|
Updates and Ongoing Challenges in Imaging of Multiple Myeloma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2021; 217:775-785. [PMID: 33978464 DOI: 10.2214/ajr.21.25878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in the understanding and treatment of multiple myeloma have led to the need for more sensitive and accurate imaging of intramedullary and extramedullary disease. This role of imaging is underscored by recently revised imaging recommendations of the International Myeloma Working Group (IMWG). This narrative review discusses these recommendations from the IMWG for different disease stages, focusing on advanced whole-body modalities, and addresses related challenges and controversies. In the recommendations, whole-body low-dose CT is central in initial patient assessment, replacing the conventional skeletal survey. Although the recommendations favor MRI for diagnosis because of its superior sensitivity and utility in identifying myeloma-defining events, FDG PET/CT is recommended as the modality of choice for assessing treatment response. Consensus opinions are offered regarding the role of imaging in multiple myeloma for characterization of disease distribution, determination of prognosis, and response evaluation.
Collapse
|
23
|
Gulati V, Chalian M, Yi J, Thakur U, Chhabra A. Sclerotic bone lesions caused by non-infectious and non-neoplastic diseases: a review of the imaging and clinicopathologic findings. Skeletal Radiol 2021; 50:847-869. [PMID: 33040177 DOI: 10.1007/s00256-020-03644-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/02/2023]
Abstract
Bone sclerosis is a focal, multifocal, or diffuse increase in the density of the bone matrix on radiographs or computed tomography (CT) imaging. This radiological finding can be caused by a broad spectrum of diseases, such as congenital and developmental disorders, depositional disorders, and metabolic diseases. The differential diagnosis can be effectively narrowed by an astute radiologist in the light of the clinical picture and typical findings on imaging. Some of these lesions are rare and have been described as case reports and series in the literature. This article aims to collate the clinical-radiologic findings of non-infectious and non-neoplastic causes of bone sclerosis with relevant imaging illustrations.
Collapse
Affiliation(s)
| | - Majid Chalian
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA, USA
| | - Jaehyuck Yi
- Department of Radiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Uma Thakur
- Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Avneesh Chhabra
- Radiology, UT Southwestern Medical Center, Dallas, TX, USA.
- Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
- Musculoskeletal Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9178, USA.
- Johns Hopkins University, Baltimore, MD, USA.
- Walton Centre of Neurosciences, Liverpool, UK.
| |
Collapse
|
24
|
Bauckneht M, Raffa S, Leale G, Sambuceti V, De Cesari M, Donegani MI, Marini C, Drakonaki E, Orlandi D. Molecular imaging in MSK radiology: Where are we going? Eur J Radiol 2021; 140:109737. [PMID: 33951567 DOI: 10.1016/j.ejrad.2021.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/18/2021] [Accepted: 04/25/2021] [Indexed: 11/15/2022]
Abstract
Musculoskeletal (MSK) pathologies are one of the leading causes of disability worldwide. However, treatment options and understanding of pathogenetic processes are still partially unclear, mainly due to a limited ability in early disease detection and response to therapy assessment. In this scenario, thanks to a strong technological advancement, structural imaging is currently established as the gold-standard of diagnosis in many MSK disorders but each single diagnostic modality (plain films, high-resolution ultrasound, computed tomography and magnetic resonance) still suffer by a low specificity regarding the characterization of inflammatory processes, the quantification of inflammatory activity levels, and the degree of response to therapy. To overcome these limitations, molecular imaging techniques may play a promising role. Starting from the strengths and weaknesses of structural anatomical imaging, the present narrative review aims to highlight the promising role of molecular imaging in the assessment of non-neoplastic MSK diseases with a special focus on its role to monitor treatment response.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Stefano Raffa
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Giacomo Leale
- Private MSK Imaging Institution, Heraklion, Crete, Greece & European University of Cyprus Medical School, Nicosia, Cyprus
| | - Virginia Sambuceti
- Postgraduate School of Radiology, Genoa University, Via Alberti 4, 16132, Genoa, Italy
| | | | - Maria Isabella Donegani
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate (MI), Italy
| | - Eleni Drakonaki
- Private MSK Imaging Institution, Heraklion, Crete, Greece & European University of Cyprus Medical School, Nicosia, Cyprus
| | - Davide Orlandi
- Department of Radiology, Ospedale Evangelico Internazionale, Corso Solferino, 1a, 16122, Genoa, Italy.
| |
Collapse
|
25
|
Identifying Musculoskeletal Pain Generators Using Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Chaudhari AJ, Raynor WY, Gholamrezanezhad A, Werner TJ, Rajapakse CS, Alavi A. Total-Body PET Imaging of Musculoskeletal Disorders. PET Clin 2021; 16:99-117. [PMID: 33218607 PMCID: PMC7684980 DOI: 10.1016/j.cpet.2020.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging of musculoskeletal disorders, including arthritis, infection, osteoporosis, sarcopenia, and malignancies, is often limited when using conventional modalities such as radiography, computed tomography (CT), and MR imaging. As a result of recent advances in Positron Emission Tomography (PET) instrumentation, total-body PET/CT offers a longer axial field-of-view, higher geometric sensitivity, and higher spatial resolution compared with standard PET systems. This article discusses the potential applications of total-body PET/CT imaging in the assessment of musculoskeletal disorders.
Collapse
Affiliation(s)
- Abhijit J Chaudhari
- Department of Radiology, University of California Davis, 4860 Y Street, Sacramento, CA 95825, USA.
| | - William Y Raynor
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA
| | - Ali Gholamrezanezhad
- Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA 90033, USA
| | - Thomas J Werner
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Tan YK, Hong C, Li H, Allen JC, Thumboo J. A novel use of combined thermal and ultrasound imaging in detecting joint inflammation in rheumatoid arthritis. Eur J Radiol 2020; 134:109421. [PMID: 33254064 DOI: 10.1016/j.ejrad.2020.109421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate the use of combined thermal and ultrasound imaging to assess joint inflammation in rheumatoid arthritis (RA). METHOD 22-joint (bilateral hands) thermography and ultrasonography were performed. For each patient, the MAX, MIN and AVG represent the sum of the temperature differences with a control temperature, for the respective maximum (Tmax), minimum (Tmin) and average (Tavg) temperatures at the joints. MAX (PD), MIN (PD) and AVG (PD) represent the results of combined thermal imaging with a patient's total ultrasound power Doppler (PD) joint inflammation score (Total PD) (when Total PD > median score, MAX, MIN and AVG was multiplied by a factor of 2, otherwise MAX (PD), MIN (PD) and AVG (PD) remained the same as the MAX, MIN and AVG). Pearson correlation and linear regression were used to assess correlation and characterize relationships of imaging parameters with the 28-joint disease activity score (DAS28). RESULTS In this cross-sectional study, 814 joints were examined in 37 adult RA patients (75.7 % female, 75.7 % Chinese; mean DAS28, 4.43). Among the imaging parameters, only MAX (PD) and AVG (PD) correlated significantly with DAS28 (correlation coefficient (95 % CI): MAX (PD), 0.393 (0.079, 0.636), P = 0.016; AVG (PD): 0.376 (0.060, 0.624), P = 0.022). Similarly, only MAX (PD) and AVG (PD) demonstrated a statistically significant relationship with DAS28 (regression coefficient (95 % CI): MAX (PD), 0.009 (0.002, 0.015), P = 0.016; AVG (PD), 0.011 (0.002, 0.020), P = 0.022). CONCLUSIONS Novel use of combined thermal and ultrasound imaging in RA shows superiority to either imaging alone in terms of correlation with DAS28.
Collapse
Affiliation(s)
- York Kiat Tan
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Cassandra Hong
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - HuiHua Li
- Health Services Research Unit, Singapore General Hospital, Singapore
| | - John Carson Allen
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Julian Thumboo
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Health Services Research Unit, Singapore General Hospital, Singapore
| |
Collapse
|
28
|
Hancin EC, Borja AJ, Nikpanah M, Raynor WY, Haldar D, Werner TJ, Morris MA, Saboury B, Alavi A, Gholamrezanezhad A. PET/MR Imaging in Musculoskeletal Precision Imaging - Third wave after X-Ray and MR. PET Clin 2020; 15:521-534. [DOI: 10.1016/j.cpet.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Haddock B, Hansen SK, Lindberg U, Nielsen JL, Frandsen U, Aagaard P, Larsson HBW, Suetta C. Physiological responses of human skeletal muscle to acute blood flow restricted exercise assessed by multimodal MRI. J Appl Physiol (1985) 2020; 129:748-759. [PMID: 32853108 DOI: 10.1152/japplphysiol.00171.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Important physiological quantities for investigating muscle hypertrophy include blood oxygenation, cell swelling, and changes in blood flow. The purpose of this study was to compare the acute changes of these parameters in human skeletal muscle induced by low-load (20% 1-RM) blood flow-restricted (BFR-20) knee extensor exercise compared with free-flow work-matched (FF-20WM) and free-flow 50% 1-RM (FF-50) knee extensor exercise using multimodal magnetic resonance imaging (MRI). Subjects (n = 11) completed acute exercise sessions for each exercise mode in an MRI scanner, where interleaved measures of muscle R2 (indicator of edema), [Formula: see text] (indicator of deoxyhemoglobin), macrovascular blood flow, and diffusion were performed before, between sets, and after the final set for each exercise protocol. BFR-20 exercise resulted in larger acute decreases in R2 and greater increases in cross-sectional area than FF-20WM and FF-50 (P < 0.01). Blood oxygenation decreased between sets during BFR-20, as indicated by a 13.6% increase in [Formula: see text] values (P < 0.01)), whereas they remained unchanged for FF-20WM and decreased during FF-50 exercise. Quadriceps blood flow between sets was highest for the heavier load (FF-50), averaging 305 mL/min, and lowest for BFR-20 at 123 ± 73 mL/min until post-exercise cuff release, where blood flow rates in BFR-20 exceeded both FF protocols (P < 0.01). Acute changes in diffusion rates were similar for all exercise protocols. This study was able to differentiate the acute exercise response of selected physiological factors associated with skeletal muscle hypertrophy. Marked differences in these parameters were found to exist between BFR and FF exercise conditions, which contribute to explain the anabolic potential of low-load blood flow restricted muscle exercise.NEW & NOTEWORTHY Acute changes in blood flow, diffusion, blood oxygenation, cross-sectional area, and the "T2 shift" are evaluated in human skeletal muscle in response to blood flow-restricted (BFR) and conventional free-flow knee extensor exercise performed in an MRI scanner. The acute physiological response to exercise was dependent on the magnitude of load and the application of BFR. Physiological variables changed markedly and established a steady state rapidly after the first of four exercise sets.
Collapse
Affiliation(s)
- Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sofie K Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg and Herlev-Gentofte Hospitals, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob Lindberg Nielsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ulrik Frandsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Henrik B W Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg and Herlev-Gentofte Hospitals, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
30
|
Yoon D, Kogan F, Gold GE, Biswal S. Identifying Musculoskeletal Pain Generators Using Clinical PET. Semin Musculoskelet Radiol 2020; 24:441-450. [DOI: 10.1055/s-0040-1713607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractIdentifying the source of a person's pain is a significant clinical challenge because the physical sensation of pain is believed to be subjective and difficult to quantify. The experience of pain is not only modulated by the individual's threshold to painful stimuli but also a product of the person's affective contributions, such as fear, anxiety, and previous experiences. Perhaps then to quantify pain is to examine the degree of nociception and pro-nociceptive inflammation, that is, the extent of cellular, chemical, and molecular changes that occur in pain-generating processes. Measuring changes in the local density of receptors, ion channels, mediators, and inflammatory/immune cells that are involved in the painful phenotype using targeted, highly sensitive, and specific positron emission tomography (PET) radiotracers is therefore a promising approach toward objectively identifying peripheral pain generators. Although several preclinical radiotracer candidates are being developed, a growing number of ongoing clinical PET imaging approaches can measure the degree of target concentration and thus serve as a readout for sites of pain generation. Further, when PET is combined with the spatial and contrast resolution afforded by magnetic resonance imaging, nuclear medicine physicians and radiologists can potentially identify pain drivers with greater accuracy and confidence. Clinical PET imaging approaches with fluorine-18 fluorodeoxyglucose, fluorine-18 sodium fluoride, and sigma-1 receptor PET radioligand and translocator protein radioligands to isolate the source of pain are described here.
Collapse
Affiliation(s)
- Daehyun Yoon
- Division of Musculoskeletal Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Feliks Kogan
- Division of Musculoskeletal Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Garry E. Gold
- Division of Musculoskeletal Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Sandip Biswal
- Division of Musculoskeletal Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
31
|
Tse JJ, Brunet SC, Salat P, Hazlewood GS, Barnabe C, Manske SL. Multi-Modal Imaging to Assess the Interaction Between Inflammation and Bone Damage Progression in Inflammatory Arthritis. Front Med (Lausanne) 2020; 7:545097. [PMID: 33102498 PMCID: PMC7544988 DOI: 10.3389/fmed.2020.545097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Combining results from multiple imaging techniques (i.e., multi-modal imaging) through image registration can result in the better characterization of joint tissue characteristics. In the context of inflammatory arthritis conditions, high-resolution peripheral quantitative computed tomography (HR-pQCT) provides excellent bone contrast while magnetic resonance imaging (MRI) provides superior contrast and resolution of soft tissue and inflammatory characteristics. Superimposing these imaging results upon each other provides a robust characterization of the joint. In a preliminary study of nine rheumatoid arthritis (RA) participants in clinical remission, we acquired HR-pQCT and MR images of their 2nd and 3rd metacarpophalangeal (MCP) joints at two timepoints 6 months apart. We present the benefits of a multi-modal imaging approach, in which we demonstrate the ability to localize regions of inflammation with subtle changes in bone erosion volume. Using HR-pQCT and MRI to visualize bone damage and inflammation, respectively, will improve our understanding of the impact that subclinical inflammation has on bone damage progression, and demonstrating if bone repair occurs where inflammation is resolved. The presented multi-modal imaging technique has the potential to study the progression of bone damage in relation to inflammation that otherwise would not be possible with either imaging technique alone. The multi-modal image registration technique will be helpful to understanding the development and pathogenesis of RA-associated bone erosions. Additionally, multi-modal imaging may provide a technique to probe the tissue-level changes that occur as a result of treatment regimes.
Collapse
Affiliation(s)
- Justin J. Tse
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Scott C. Brunet
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Peter Salat
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Glen S. Hazlewood
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Division of Rheumatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheryl Barnabe
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Division of Rheumatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah L. Manske
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Baffour FI, Glazebrook KN, Kumar SK, Broski SM. Role of imaging in multiple myeloma. Am J Hematol 2020; 95:966-977. [PMID: 32350883 DOI: 10.1002/ajh.25846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
With rapid advancements in the diagnosis and treatment of multiple myeloma (MM), imaging has become instrumental in detection of intramedullary and extramedullary disease, providing prognostic information, and assessing therapeutic efficacy. Whole-body low dose computed tomography (WBLDCT) has emerged as the study of choice to detect osteolytic bone disease. Positron emission tomography/computed tomography (PET/CT) combines functional and morphologic information to identify MM disease activity and assess treatment response. Magnetic resonance imaging (MRI) has excellent soft-tissue contrast and is the modality of choice for bone marrow evaluation. This review focuses on the imaging modalities available for MM patient management, highlighting advantages, disadvantages, and applications of each.
Collapse
Affiliation(s)
| | | | - Shaji K. Kumar
- Department of Internal Medicine, Division of HematologyMayo Clinic Rochester Minnesota USA
| | | |
Collapse
|
33
|
Towards Robust and Accurate Detection of Abnormalities in Musculoskeletal Radiographs with a Multi-Network Model. SENSORS 2020; 20:s20113153. [PMID: 32498374 PMCID: PMC7309003 DOI: 10.3390/s20113153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 11/17/2022]
Abstract
This study proposes a novel multi-network architecture consisting of a multi-scale convolution neural network (MSCNN) with fully connected graph convolution network (GCN), named MSCNN-GCN, for the detection of musculoskeletal abnormalities via musculoskeletal radiographs. To obtain both detailed and contextual information for a better description of the characteristics of the radiographs, the designed MSCNN contains three subnetwork sequences (three different scales). It maintains high resolution in each sub-network, while fusing features with different resolutions. A GCN structure was employed to demonstrate global structure information of the images. Furthermore, both the outputs of MSCNN and GCN were fused through the concat of the two feature vectors from them, thus making the novel framework more discriminative. The effectiveness of this model was verified by comparing the performance of radiologists and three popular CNN models (DenseNet169, CapsNet, and MSCNN) with three evaluation metrics (Accuracy, F1 score, and Kappa score) using the MURA dataset (a large dataset of bone X-rays). Experimental results showed that the proposed framework not only reached the highest accuracy, but also demonstrated top scores on both F1 metric and kappa metric. This indicates that the proposed model achieves high accuracy and strong robustness in musculoskeletal radiographs, which presents strong potential for a feasible scheme with intelligent medical cases.
Collapse
|
34
|
Abstract
PURPOSE [F]-sodium fluoride ([F]NaF) is a well-established bone-seeking agent that has shown promise to assess bone turnover in a variety of disorders, but its distribution in healthy knee joints has not been explored. This study aimed to investigate parametric values for [F]NaF uptake in various bone tissues types of the knee and their spatial distributions. METHODS Twelve healthy subjects were hand-injected with 92.5 MBq of [F]NaF and scanned on a 3-T PET/MRI system. Listmode PET data for both knees were acquired for 50 minutes from injection simultaneously with MRI Dixon and angiography data. The image-derived input function was determined from the popliteal artery. Using the Hawkins model, Patlak analysis was performed to obtain Ki (Ki) values and nonlinear regression analysis to obtain Ki, K1, k3/(k2 + k3), and blood volume. Comparisons for the measured kinetic parameters, SUV, and SUVmax were made between tissue types (subchondral, cortical, and trabecular bone) and between regional subsections of subchondral bone. RESULTS Cortical bone had the highest [F]NaF uptake differing significantly in all measured parameters when compared with trabecular bone and significantly higher SUVmax and K1 than subchondral bone. Subchondral bone also had significantly higher SUV, SUVmax, and Ki than trabecular bone tissue. Regional differences were observed in K1 and k3/(k2 + k3) values. CONCLUSIONS Quantitative [F]NaF PET is sensitive to variations in bone vascularization and metabolism in the knee joint.
Collapse
|
35
|
Kooraki S, Assadi M, Gholamrezanezhad A. Hot Topics of Research in Musculoskeletal Imaging. PET Clin 2019; 14:175-182. [DOI: 10.1016/j.cpet.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Pedoia V, Majumdar S. Translation of morphological and functional musculoskeletal imaging. J Orthop Res 2019; 37:23-34. [PMID: 30273968 DOI: 10.1002/jor.24151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
In an effort to develop quantitative biomarkers for degenerative joint disease and fill the void that exists for diagnosing, monitoring, and assessing the extent of whole joint degeneration, the past decade has been marked by a greatly increased role of noninvasive imaging. This coupled with recent advances in image processing and deep learning opens new possibilities for promising quantitative techniques. The clinical translation of quantitative imaging was previously hampered by tedious non-scalable and subjective image analysis. Osteoarthritis (OA) diagnosis using X-rays can be automated by the use of deep learning models and pilot studies showed feasibility of using similar techniques to reliably segment multiple musculoskeletal tissues and detect and stage the severity of morphological abnormalities in magnetic resonance imaging (MRI). Automation and more advanced feature extraction techniques have applications on larger more heterogeneous samples. Analyses based on voxel based relaxometry have shown local patterns in relaxation time elevations and local correlations with outcome variables. Bone cartilage interactions are also enhanced by the analysis of three-dimensional bone morphology and the potential for the assessment of metabolic activity with simultaneous Positron Emission Tomography (PET)/MR systems. Novel techniques in image processing and deep learning are augmenting imaging to be a source of quantitative and reliable data and new multidimensional analytics allow us to exploit the interactions of data from various sources. In this review, we aim to summarize recent advances in quantitative imaging, the application of image processing and deep learning techniques to study knee and hip OA. ©2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res XX:XX-XX, 2018.
Collapse
Grants
- GE Healthcare
- P50 AR060752 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
- R01AR046905 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
- K99AR070902 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
- R00AR070902 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
- R61AR073552 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, (NIH-NIAMS)
Collapse
Affiliation(s)
- Valentina Pedoia
- Department of Radiology and Biomedical Imaging, QB3 Building, 2nd Floor, Suite 203, 1700 - 4th Street, University of California, San Francisco, California, 94158
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, QB3 Building, 2nd Floor, Suite 203, 1700 - 4th Street, University of California, San Francisco, California, 94158
| |
Collapse
|
37
|
Abstract
This article examines new imaging, diagnostic, and assessment techniques that may affect the care of patients with orthopedic trauma and/or infection. Three-dimensional imaging has assisted in fracture assessment preoperatively, whereas improvement in C-arm technology has allowed real-time evaluation of implant placement and periarticular reduction before leaving the operating room. Advances in imaging techniques have allowed earlier and more accurate diagnosis of nonunion and infection. Innovations in bacteriologic testing have improved the sensitivity and specificity of perioperative and peri-implant infections. It is critical that surgeons remain up to date on the options available for optimal patient care.
Collapse
|