1
|
van der Sluijs PM, Su R, Cornelissen SAP, van Es ACGM, Lycklama A Nijeholt G, Roozenbeek B, van Doormaal PJ, Hofmeijer J, van der Lugt A, van Walsum T. Clinical consequence of vessel perforations during endovascular treatment of acute ischemic stroke. Neuroradiology 2024; 66:237-247. [PMID: 38010403 DOI: 10.1007/s00234-023-03246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Endovascular treatment (EVT) of acute ischemic stroke can be complicated by vessel perforation. We studied the incidence and determinants of vessel perforations. In addition, we studied the association of vessel perforations with functional outcome, and the association between location of perforation on digital subtraction angiography (DSA) and functional outcome, using a large EVT registry. METHODS We included all patients in the MR CLEAN Registry who underwent EVT. We used DSA to determine whether EVT was complicated by a vessel perforation. We analyzed the association with baseline clinical and interventional parameters using logistic regression models. Functional outcome was measured using the modified Rankin Scale at 90 days. The association between vessel perforation and angiographic imaging features and functional outcome was studied using ordinal logistic regression models adjusted for prognostic parameters. These associations were expressed as adjusted common odds ratios (acOR). RESULTS Vessel perforation occurred in 74 (2.6%) of 2794 patients who underwent EVT. Female sex (aOR 2.0 (95% CI 1.2-3.2)) and distal occlusion locations (aOR 2.2 (95% CI 1.3-3.5)) were associated with increased risk of vessel perforation. Functional outcome was worse in patients with vessel perforation (acOR 0.38 (95% CI 0.23-0.63)) compared to patients without a vessel perforation. No significant association was found between location of perforation and functional outcome. CONCLUSION The incidence of vessel perforation during EVT in this cohort was low, but has severe clinical consequences. Female patients and patients treated at distal occlusion locations are at higher risk.
Collapse
Affiliation(s)
- P Matthijs van der Sluijs
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - R Su
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - S A P Cornelissen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A C G M van Es
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - B Roozenbeek
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - P J van Doormaal
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - J Hofmeijer
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - A van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - T van Walsum
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Varol E. The Role of Computed Tomographic Angiography in Predicting the Development of Vasospasm Following Ruptured Intracranial Aneurysm Microsurgery. Cureus 2023; 15:e45386. [PMID: 37724099 PMCID: PMC10505260 DOI: 10.7759/cureus.45386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 09/20/2023] Open
Abstract
Introduction Following subarachnoid hemorrhage, cerebral vasospasm is the primary cause of morbidity and death. The aim of this study is to predict the development of vasospasm by detecting changes in vessel diameter after surgery using computed tomography angiography. Methods We retrospectively evaluated the patients who underwent aneurysm clipping due to a bleeding aneurysm between 2019-2022. Age, gender, location, subarachnoid hemorrhage grades, development of perioperative rupture, and temporary clip use were examined. Preoperative and postoperative diameters of the internal carotid artery, A1-A2, and M1-M2 were measured. Radiological and clinical vasospasm development in the postoperative period was also documented. Results The aneurysm localizations of the 100 patients (mean age: 50.38±13.04 years) were anterior cerebral artery in 50 patients, internal carotid artery in 37 patients, and middle cerebral artery in 30 patients. In the postoperative follow-up, radiological vasospasm was apparent in 41 patients. The changes in arterial diameter reveal a statistically significant decrease in the internal carotid artery, M1-M2, and A1-A2 artery diameters on the operated side compared to the contralateral side (p<0.001). Based on the receiver operating characteristic (ROC) analysis, the most likely change in arterial diameter on the operated side to indicate the presence of vasospasm was calculated from the available data, where the decrease in total arterial diameter was 13.7%. Conclusion Vasospasm remains one of the significant causes of morbidity and mortality post subarachnoid hemorrhage. While there have been advances in imaging modalities, predicting which patients will develop vasospasm has remained elusive. Our research attempts to provide a quantifiable metric (13.7% decrease in vessel diameter) that can be an early predictor of this complication.
Collapse
Affiliation(s)
- Eyüp Varol
- Neurological Surgery, Umraniye Training and Research Hospital, Istanbul, TUR
| |
Collapse
|
3
|
Halama D, Merkel H, Werdehausen R, Gaber K, Schob S, Quäschling U, Ziganshyna S, Hoffmann KT, Lindner D, Richter C. Reference Values of Cerebral Artery Diameters of the Anterior Circulation by Digital Subtraction Angiography: A Retrospective Study. Diagnostics (Basel) 2022; 12:2471. [PMID: 36292160 PMCID: PMC9600370 DOI: 10.3390/diagnostics12102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
A threshold-based classification of cerebral vasospasm needs reference values for intracranial vessel diameters on digital subtraction angiography (DSA). We aimed to generate adjusted reference values for this purpose by retrospectively analyzing angiograms and potential influencing factors on vessel diameters. Angiograms of the anterior circulation were evaluated in 278 patients aged 18−81 years. The vessel diameters of 453 angiograms (175 bilateral) were gathered from nine defined measuring sites. The effect sizes of physical characteristics (i.e., body weight and height, body mass index, gender, age, and cranial side) and anatomical variations were calculated with MANOVA. Segments bearing aneurysms were excluded for the calculation of reference values. Adjusted vessel diameters were calculated via linear regression analysis of the vessel diameter data. Vessel diameters increased with age and body height. Male and right-sided vessels were larger in diameter. Of the anatomical variations, only the hypoplastic/aplastic A1 segment had a significant influence (p < 0.05) on values of the anterior cerebral artery and the internal carotid artery with a small effect size (|ω2| > 0.01) being excluded from the reference values. We provide gender-, age-, and side-adjusted reference values and nomograms of arterial vessel diameters in the anterior circulation.
Collapse
Affiliation(s)
- Dirk Halama
- Department of Oral and Maxillofacial Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Helena Merkel
- Department of Neuroradiology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Robert Werdehausen
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Khaled Gaber
- Department of Neurosurgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Stefan Schob
- Department of Radiology, Halle University Hospital, 06120 Halle, Germany
| | - Ulf Quäschling
- Department of Radiology, Kantonsspital Baselland, 4410 Liestal, Switzerland
| | - Svitlana Ziganshyna
- Transplant Coordinator Unit, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Karl-Titus Hoffmann
- Department of Oral and Maxillofacial Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Dirk Lindner
- Department of Neurosurgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Cindy Richter
- Department of Oral and Maxillofacial Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
4
|
A Semantic Segmentation Method with Emphasis on the Edges for Automatic Vessel Wall Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To develop a precise semantic segmentation method with an emphasis on the edges for automated segmentation of the arterial vessel wall and plaque based on the convolutional neural network (CNN) in order to facilitate the quantitative assessment of plaque in patients with ischemic stroke. A total of 124 subjects’ MR vessel wall images were used to train, validate, and test the model using deep learning. An end-to-end architecture network that can emphasize the edge information, namely the Edge Vessel Segmentation Network (EVSegNet) for automated segmentation of the arterial vessel wall, is proposed. The EVSegNet network consists of two workflows: one is implemented to achieve finely and multiscale segmentation by combining Dense Upsampling Convolution (DUC) and Hybrid Dilated Convolution (HDC) with different dilation rates modules, and the other utilizes edge information and is fused with another workflow to finally segment the vessel wall. The proposed network demonstrates robust segmentation of the vessel wall and better performance with a Dice (%) of 87.5, compared with the traditional U-net that has a Dice (%) of 81.0 and other U-net-based models on the test dataset. The results suggest that the proposed segmentation method with an emphasis on the edges improves segmentation accuracy effectively and will facilitate the quantitative assessment of atherosclerosis.
Collapse
|
5
|
Yan X, Tang M, Gao J, Wang L, Li L, Ma N, Shi X, Lei X, Zhang X. Sex Differences in Intracranial Atherosclerotic Plaques Among Patients With Ischemic Stroke. Front Cardiovasc Med 2022; 9:860675. [PMID: 35845071 PMCID: PMC9280275 DOI: 10.3389/fcvm.2022.860675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveHigh-risk intracranial arterial plaques are the most common cause of ischemic stroke and their characteristics vary between male and female patients. However, sex differences in intracranial plaques among symptomatic patients have rarely been discussed. This study aimed to evaluate sex differences in intracranial atherosclerotic plaques among Chinese patients with cerebral ischemia.MethodsOne hundred and ten patients who experienced ischemic events underwent 3T cardiovascular magnetic resonance vessel wall scanning for the evaluation of intracranial atherosclerotic disease. Each plaque was classified according to its likelihood of causing a stroke (as culprit, uncertain, or non-culprit). The outer wall area (OWA) and lumen area of the lesion and reference sites were measured, and the wall and plaque areas, remodeling ratio, and plaque burden (characterized by a normalized wall index) were further calculated. The composition (T1 hyperintensity, enhancement) and morphology (surface irregularity) of each plaque were analyzed. Sex differences in intracranial plaque characteristics were compared between male and female patient groups.ResultsOverall, 311 plaques were detected in 110 patients with ischemic stroke (81 and 29 male and female patients, respectively). The OWA (P < 0.001) and wall area (P < 0.001) of intracranial arterial lesions were significantly larger in male patients. Regarding culprit plaques, the plaque burden in male patients was similar to that in female patients (P = 0.178, odds ratio [OR]: 0.168, 95% confidence interval [CI]: −0.020 to 0.107). However, the prevalence of plaque T1 hyperintensity was significantly higher than that in female patients (P = 0.005, OR: 15.362, 95% CI: 2.280–103.49). In the overall ischemic stroke sample, intracranial T1 hyperintensity was associated with male sex (OR: 13.480, 95% CI: 2.444–74.354, P = 0.003), systolic blood pressure (OR: 1.019, 95% CI: 1.002–1.036, P = 0.031), and current smoker (OR: 3.245, 95% CI: 1.097–9.598, P = 0.033).ConclusionFor patients with ischemic stroke, the intracranial plaque burden in male patients was similar to that in female patients; however, the plaque characteristics in male patients are associated with higher risk, especially in culprit plaques.
Collapse
Affiliation(s)
- Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lihui Wang
- Department of Radiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Ling Li
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Niane Ma
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaorui Shi
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
- *Correspondence: Xiaoling Zhang
| |
Collapse
|
6
|
Li F, Wang Y, Hu T, Wu Y. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:714. [PMID: 35845481 PMCID: PMC9279807 DOI: 10.21037/atm-22-2364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective Atherosclerosis is a systemic disease that occurs in the arteries, and it is the most important causative factor of ischemic stroke. Vessel wall magnetic resonance imaging (VWMRI) is one of the best non-invasive methods for displaying the vascular features of intracranial atherosclerosis. The main clinical applications of this technique include the exploration of the pathogenesis of intracranial atherosclerotic lesions, follow-up monitoring, and treatment prognosis judgment. As the demand for intracranial VWMRI increases in clinical practice, radiologists should be aware of the selection of imaging parameters and how they affect image quality, clinical indications, evaluation methods, and limitations in interpreting these images. Therefore, this review focused on describing how to perform and interpret VWMRI of intracranial atherosclerotic lesions. Methods We searched the studies on the application of VWMRI in the PubMed database from January 1, 2000 to March 31, 2022, and focused on the analysis of related studies on VWMRI in atherosclerotic lesions, including technical application, expert consensus, imaging characteristics, and the clinical significance of intracranial atherosclerotic lesions. Key Content and Findings We reviewed and summarized recent advances in the clinical application of VWMRI in atherosclerotic diseases. Currently accepted principles and expert consensus recommendations for intracranial VWMRI include high spatial resolution, multiplanar two and three-dimensional imaging, multiple tissue-weighted sequences, and blood and cerebrospinal fluid suppression. Understanding the characteristics of VWMRI of normal intracranial arteries is the basis for interpreting VWMRI of atherosclerotic lesions. Evaluating VWMRI imaging features of intracranial atherosclerotic lesions includes plaque morphological and enhancement characteristics. The evaluation of atherosclerotic plaque stability is the highlight of VWMRI. Conclusions VWMRI has a wide range of clinical applications and can address important clinical questions and provide critical information for treatment decisions. VWMRI plays a key role in the comprehensive evaluation and prevention of intracranial atherosclerosis. However, intracranial VWMRI is still unable to obtain in vivo plaque pathological specimens for imaging—pathological comparison is the most significant limitation of this technique. Further technical improvements are expected to reduce acquisition time and may ultimately contribute to a better understanding of the underlying pathology of lesions on VWMRI.
Collapse
Affiliation(s)
- Fangbing Li
- Department of Radiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yilin Wang
- Department of Radiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianxiang Hu
- Department of Radiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yejun Wu
- Department of Radiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Tsuji K, Nakamura S, Aoki T, Nozaki K. The cerebral artery in cynomolgus monkeys (Macaca fascicularis). Exp Anim 2022; 71:391-398. [PMID: 35444076 PMCID: PMC9388346 DOI: 10.1538/expanim.22-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cerebral artery structure has not been extensively studied in primates. The aim of this study was to examine the cerebrovascular anatomy of cynomolgus monkeys (Macaca fascicularis), which are one of the most commonly used primates in medical research on human diseases, such as cerebral infarction and subarachnoid hemorrhage. In this study, we investigated the anatomy and diameter of cerebral arteries from 48 cynomolgus monkey brain specimens. We found three anatomical differences in the vascular structure of this species compared to that in humans. First, the distal anterior cerebral artery is single. Second, the pattern in which both the anterior inferior cerebellar artery and posterior inferior cerebellar artery branch from the basilar artery is the most common. Third, the basilar artery has the largest diameter among the major arteries. We expect that this anatomical information will aid in furthering research on cerebrovascular disease using cynomolgus monkeys.
Collapse
Affiliation(s)
- Keiichi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science
| | - Shinichiro Nakamura
- Laboratory of Laboratory Animal Science, Azabu University.,Research Center for Animal Life Science, Shiga University of Medical Science
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science
| |
Collapse
|
8
|
Li L, Tang M, Yan X, Gao J, Ma N, Shi X, Niu Y, Wen Y, Ai K, Lei X, Zhang X. Plaque Characteristics in Young Adults With Symptomatic Intracranial Atherosclerotic Stenosis: A Preliminary Study. Front Neurol 2022; 13:825503. [PMID: 35222253 PMCID: PMC8868124 DOI: 10.3389/fneur.2022.825503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To determine how intracranial vascular wall and atherosclerosis plaque characteristics differ between young and old adults with sICAS. Methods Eighty-four consecutive patients with sICAS who underwent high-resolution magnetic resonance imaging (HRMRI) from December 2017 to July 2020 were retrospectively collected. These participants were divided into young adult group (18–50 years, n = 28) and old adult group (>50 years, n = 56). Reviewers were blinded to any clinical information and HRMRI scans were analyzed for qualitative and quantitative indicators of vascular walls and plaque at the maximal lumen narrowing site using the independent-sample t-test, Mann–Whitney U-test, chi-square test or Fisher exact test, and logistic regression analysis. Results Young patients with sICAS had significantly smaller maximum wall thickness (1.45 ± 0.38 vs.1.75 ± 0.51 mm2, P = 0.003), higher prevalence of positive remodeling (53.57 vs. 21.43%, P = 0.003), and lower prevalence of diabetes mellitus (14.29 vs. 35.71%, P = 0.04) than old patients. Plaque burden and other plaque features were comparable between young and old patients. Conclusion Young patients with sICAS have smaller maximum wall thickness and greater ability to reconstruct, and are more likely to show positive remodeling, which may lead to some atherosclerotic lesions being missed. Young patients with evidence of vessel narrowing should be carefully examined for presence of high-risk atherosclerotic plaque.
Collapse
Affiliation(s)
- Ling Li
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xuejiao Yan
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Niane Ma
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaorui Shi
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yaxin Niu
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yu Wen
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Philips Healthcare, Xi'an, China
| | - Xiaoyan Lei
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
- *Correspondence: Xiaoyan Lei
| | - Xiaoling Zhang
- Department of Magnetic Resonance Imaging, Shaanxi Provincial People's Hospital, Xi'an, China
- Xiaoling Zhang
| |
Collapse
|
9
|
Yang Q, Wang DJ. Editorial for “Multi‐planar, multi‐contrast and multi‐time point analysis tool (
MOCHA
) for intracranial vessel wall characterization”. J Magn Reson Imaging 2022; 56:956-957. [DOI: 10.1002/jmri.28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital Capital Medical University Beijing China
| | - Danny J.J. Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine University of Southern California Los Angeles California USA
| |
Collapse
|
10
|
Gong Y, Cao C, Guo Y, Chang B, Sheng Z, Shen W, Zou Y, Lu X, Xing J, Xia S. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA. Eur Radiol 2021; 31:5479-5489. [PMID: 33585995 DOI: 10.1007/s00330-021-07719-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/17/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The purpose of this study was to compare the reproducibility and diagnostic agreement of high-resolution vessel wall imaging (HR-VWI) and time-of-flight magnetic resonance angiography (TOF-MRA) with digital subtraction angiography (DSA) to evaluate intracranial arterial stenosis. METHODS We retrospectively enrolled patients who underwent HR-VWI and TOF-MRA with suspected intracranial artery disease and had DSA results from our institutional imaging database. Two neuroradiologists separately and independently evaluated anonymous image data for the stenotic lesions. DSA was analyzed by two neurointerventionalists and it served as a standard criterion. The reproducibility of these two MR techniques was determined by the intraclass correlation coefficients (ICCs). The diagnostic agreement to DSA was assessed by the concordance correlation coefficients (CCCs). RESULTS A total of 246 lesions from 106 individuals were analyzed for stenotic degrees. The total intra-observer and inter-observer reproducibility of HR-VWI was excellent for identifying stenosis and better than of TOF-MRA. The overall concordance of HR-VWI with DSA was excellent with CCC = 0.932, whereas TOF-MRA was 0.694. In addition, HR-VWI could provide additional vessel wall information. CONCLUSIONS HR-VWI has more advantages over TOF-MRA, such as better reproducibilities and diagnostic agreements with DSA to analyze intracranial arterial stenosis. It provides additional information that helps in clinical diagnosis and management. KEY POINTS • High-resolution vessel wall imaging can assess intracranial arterial stenosis with a better reproducibility than TOF-MRA and has a higher diagnostic agreement with DSA. • High-resolution vessel wall imaging had a higher diagnostic agreement with DSA compared with TOF-MRA. • Apart from evaluating vascular stenosis, HR-VWI provided additional vessel wall information to help in clinical diagnosis.
Collapse
Affiliation(s)
- Yan Gong
- Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China.,Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, 300100, China
| | - Chen Cao
- Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China.,Department of Radiology, Tianjin Huanhu Hospital, Key Laboratory for Cerebral Artery and Neural Degeneration of Tianjin, Tianjin, 300350, China
| | - Yu Guo
- Department of Radiology, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China
| | - Binge Chang
- Department of Neurosurgery, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China
| | - Zhiguo Sheng
- Department of Neurosurgery, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China
| | - Ying Zou
- Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China.,Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Xiudi Lu
- Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China.,Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Jiahua Xing
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China.
| |
Collapse
|
11
|
Yuan S, Jordan LC, Davis LT, Cogswell PM, Lee CA, Patel NJ, Waddle SL, Juttukonda M, Sky Jones R, Griffin A, Donahue MJ. A cross-sectional, case-control study of intracranial arterial wall thickness and complete blood count measures in sickle cell disease. Br J Haematol 2020; 192:769-777. [PMID: 33326595 DOI: 10.1111/bjh.17262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
In sickle cell disease (SCD), cerebral oxygen delivery is dependent on the cerebral vasculature's ability to increase blood flow and volume through relaxation of the smooth muscle that lines intracranial arteries. We hypothesised that anaemia extent and/or circulating markers of inflammation lead to concentric macrovascular arterial wall thickening, visible on intracranial vessel wall magnetic resonance imaging (VW-MRI). Adult and pediatric SCD (n = 69; age = 19.9 ± 8.6 years) participants and age- and sex-matched control participants (n = 38; age = 22.2 ± 8.9 years) underwent 3-Tesla VW-MRI; two raters measured basilar and bilateral supraclinoid internal carotid artery (ICA) wall thickness independently. Mean wall thickness was compared with demographic, cerebrovascular and haematological variables. Mean vessel wall thickness was elevated (P < 0·001) in SCD (1·07 ± 0·19 mm) compared to controls (0·97 ± 0·07 mm) after controlling for age and sex. Vessel wall thickness was higher in participants on chronic transfusions (P = 0·013). No significant relationship between vessel wall thickness and flow velocity, haematocrit, white blood cell count or platelet count was observed; however, trends (P < 0·10) for wall thickness increasing with decreasing haematocrit and increasing white blood cell count were noted. Findings are discussed in the context of how anaemia and circulating inflammatory markers may impact arterial wall morphology.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry T Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Petrice M Cogswell
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Chelsea A Lee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer L Waddle
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meher Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Sky Jones
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison Griffin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
van Hespen KM, Mackaaij C, Waas ISE, de Bree MP, Zwanenburg JJM, Kuijf HJ, Daemen MJAP, Hendrikse J, Hermkens DMA. Arterial Remodeling of the Intracranial Arteries in Patients With Hypertension and Controls: A Postmortem Study. Hypertension 2020; 77:135-146. [PMID: 33222546 DOI: 10.1161/hypertensionaha.120.16029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intracranial arteries play a major role in cerebrovascular disease, but arterial remodeling due to hypertension has not been well described in humans. We aimed to quantify this remodeling for: the basilar artery, the vertebral, internal carotid, middle/anterior (inferior)/posterior cerebral, posterior communicating, and superior cerebellar arteries of the circle of Willis. Ex vivo circle of Willis specimens, selected from individuals with (n=24) and without (n=25) a history of hypertension, were imaged at 7T magnetic resonance imaging using a 3-dimensional gradient-echo sequence. Subsequently, histological analysis was performed. We validated the vessel wall thickness and area measurements from magnetic resonance imaging against histology. Next, we investigated potential differences in vessel wall thickness and area between both groups using both techniques. Finally, using histological analysis, we investigated potential differences in arterial wall stiffness and atherosclerotic plaque severity and load. All analyses were unadjusted. Magnetic resonance imaging and histology showed comparable vessel wall thickness (mean difference: 0.04 mm (limits of agreement:-0.12 to 0.19 mm) and area (0.43 mm2 [-0.97 to 1.8 mm2]) measurements. We observed no statistically significant differences in vessel wall thickness and area between both groups using either technique. Histological analysis showed early and advanced atherosclerotic plaques in almost all arteries for both groups. The arterial wall stiffness was significantly higher for the internal carotid artery in the hypertensive group. Concluding, we did not observe vessel wall thickening in the circle of Willis arteries in individuals with a history of hypertension using either technique. Using histological analysis, we observed a difference in vessel wall composition for the internal carotid artery.
Collapse
Affiliation(s)
- Kees M van Hespen
- From the Center for Image Sciences (K.M.v.H.), University Medical Center Utrecht, the Netherlands
| | - Claire Mackaaij
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (C.M., I.S.E.W., M.P.D.B., M.J.A.P.D., D.M.A.H.)
| | - Ingeborg S E Waas
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (C.M., I.S.E.W., M.P.D.B., M.J.A.P.D., D.M.A.H.)
| | - Marloes P de Bree
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (C.M., I.S.E.W., M.P.D.B., M.J.A.P.D., D.M.A.H.)
| | - Jaco J M Zwanenburg
- Department of Radiology (J.J.M.Z., J.H.), University Medical Center Utrecht, the Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute (H.J.K.), University Medical Center Utrecht, the Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (C.M., I.S.E.W., M.P.D.B., M.J.A.P.D., D.M.A.H.)
| | - Jeroen Hendrikse
- Department of Radiology (J.J.M.Z., J.H.), University Medical Center Utrecht, the Netherlands
| | - Dorien M A Hermkens
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (C.M., I.S.E.W., M.P.D.B., M.J.A.P.D., D.M.A.H.)
| |
Collapse
|
13
|
van Hespen KM, Zwanenburg JJM, Hendrikse J, Kuijf HJ. Subvoxel vessel wall thickness measurements of the intracranial arteries using a convolutional neural network. Med Image Anal 2020; 67:101818. [PMID: 33049576 DOI: 10.1016/j.media.2020.101818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 07/10/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Vessel wall thickening of the intracranial arteries has been associated with cerebrovascular disease and atherosclerotic plaque development. Visualization of the vessel wall has been enabled by recent advancements in vessel wall MRI. However, quantifying early wall thickening from these MR images is difficult and prone to severe overestimation, because the voxel size of clinically used acquisitions exceeds the wall thickness of the intracranial arteries. In this study, we aimed for accurate and precise subvoxel vessel wall thickness measurements. A convolutional neural network was trained on MR images of 34 ex vivo circle of Willis specimens, acquired with a clinically used protocol (isotropic acquired voxel size: 0.8 mm). Ground truth measurements were performed on images acquired with an ultra-high-resolution protocol (isotropic acquired voxel size: 0.11 mm) and were used for evaluation. Additionally, we determined the robustness of our method by applying Monte Carlo dropout and test time augmentation. Lastly, we applied our method on in vivo images of three intracranial aneurysms to measure their wall thickness. Our method shows resolvability of different vessel wall thicknesses, well below the acquired voxel size. The method described may facilitate quantitative measurements on MRI data for a wider range of clinical applications.
Collapse
Affiliation(s)
- Kees M van Hespen
- Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, the Netherlands.
| | - Jaco J M Zwanenburg
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, the Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, the Netherlands
| |
Collapse
|
14
|
Cogswell PM, Lants SK, Davis LT, Juttukonda MR, Fusco MR, Donahue MJ. Vessel Wall and Lumen Features in North American Moyamoya Patients. Clin Neuroradiol 2020; 30:545-552. [PMID: 31388688 PMCID: PMC7245731 DOI: 10.1007/s00062-019-00819-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To apply intracranial vessel wall imaging (VWI) to determine changes in vessel wall characteristics between North American moyamoya patients and controls, as well as with standard clinical measures of moyamoya disease severity. METHODS North American moyamoya patients and controls underwent intracranial 3.0 T VWI. Moyamoya patients also underwent digital subtraction angiography (DSA), from which modified Suzuki scores (mSS) were calculated. Lumen and outer vessel wall diameters of the supraclinoid internal carotid arteries (ICAs) and basilar artery on VWI were measured by two readers from which wall thickness was calculated. Controls and moyamoya patients were compared in logistic regression using disease category (moyamoya or none) as the dependent variable and wall thickness, age, gender, and side as the explanatory variables (significance: two-sided p < 0.05). In moyamoya patients, regression was performed with mSS as the dependent variable and wall thickness, age, gender, and side as the explanatory variables. Analyses were repeated for each lumen diameter and outer vessel wall diameter in place of wall thickness. RESULTS Patients with moyamoya (n = 23, gender = 3/20 male/female; age = 43 ± 12 years) and controls (n = 23, gender = 3/20 male/female, age = 43 ± 13 years) were included. Moyamoya patients showed a significantly smaller ICA lumen and outer vessel wall diameter compared to controls (p < 0.05) but no significant change in vessel wall thickness. Similarly, ICA lumen and outer vessel wall diameters decreased with increasing mSS (p < 0.05). CONCLUSION Findings suggest decreased ICA lumen and outer vessel wall diameters, but no significant difference in wall thickness, between patients and controls. Lumen and outer vessel wall diameters also decreased with disease severity.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, 55905, Rochester, MN, USA.
| | - Sarah K Lants
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meher R Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew R Fusco
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Neulen A, Kunzelmann S, Kosterhon M, Pantel T, Stein M, Berres M, Ringel F, Brockmann MA, Brockmann C, Kantelhardt SR. Automated Grading of Cerebral Vasospasm to Standardize Computed Tomography Angiography Examinations After Subarachnoid Hemorrhage. Front Neurol 2020; 11:13. [PMID: 32082241 PMCID: PMC7002561 DOI: 10.3389/fneur.2020.00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Computed tomography angiography (CTA) is frequently used with computed tomography perfusion imaging (CTP) to evaluate whether endovascular vasospasm treatment is indicated for subarachnoid hemorrhage patients with delayed cerebral ischemia. However, objective parameters for CTA evaluation are lacking. In this study, we used an automated, investigator-independent, digital method to detect vasospasm, and we evaluated whether the method could predict the need for subsequent endovascular vasospasm treatment. Methods: We retrospectively reviewed the charts and analyzed imaging data for 40 consecutive patients with subarachnoid hemorrhages. The cerebrovascular trees were digitally reconstructed from CTA data, and vessel volume and the length of the arteries of the circle of Willis and their peripheral branches were determined. Receiver operating characteristic curve analysis based on a comparison with digital subtraction angiographies was used to determine volumetric thresholds that indicated severe vasospasm for each vessel segment. Results: The automated threshold-based volumetric evaluation of CTA data was able to detect severe vasospasm with high sensitivity and negative predictive value for predicting cerebral hypoperfusion on CTP, although the specificity and positive predictive value were low. Combining the automated detection of vasospasm on CTA and cerebral hypoperfusion on CTP was superior to CTP or CTA alone in predicting endovascular vasospasm treatment within 24 h after the examination. Conclusions: This digital volumetric analysis of the cerebrovascular tree allowed the objective, investigator-independent detection and quantification of vasospasms. This method could be used to standardize diagnostics and the selection of subarachnoid hemorrhage patients with delayed cerebral ischemia for endovascular diagnostics and possible interventions.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Svenja Kunzelmann
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Maximilian Stein
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Manfred Berres
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Carolin Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Sven R Kantelhardt
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|