1
|
van der Voort A, van der Hoogt KJJ, Wessels R, Schipper RJ, Wesseling J, Sonke GS, Mann RM. Diffusion-weighted imaging in addition to contrast-enhanced MRI in identifying complete response in HER2-positive breast cancer. Eur Radiol 2024:10.1007/s00330-024-10857-7. [PMID: 38967659 DOI: 10.1007/s00330-024-10857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES The aim of this study is to investigate the added value of diffusion-weighted imaging (DWI) to dynamic-contrast enhanced (DCE)-MRI to identify a pathological complete response (pCR) in patients with HER2-positive breast cancer and radiological complete response (rCR). MATERIALS AND METHODS This is a single-center observational study of 102 patients with stage I-III HER2-positive breast cancer and real-world documented rCR on DCE-MRI. Patients were treated between 2015 and 2019. Both 1.5 T/3.0 T single-shot diffusion-weighted echo-planar sequence were used. Post neoadjuvant systemic treatment (NST) diffusion-weighted images were reviewed by two readers for visual evaluation and ADCmean. Discordant cases were resolved in a consensus meeting. pCR of the breast (ypT0/is) was used to calculate the negative predictive value (NPV). Breast pCR-percentages were tested with Fisher's exact test. ADCmean and ∆ADCmean(%) for patients with and without pCR were compared using a Mann-Whitney U-test. RESULTS The NPV for DWI added to DCE is 86% compared to 87% for DCE alone in hormone receptor (HR)-/HER2-positive and 67% compared to 64% in HR-positive/HER2-positive breast cancer. Twenty-seven of 39 non-rCR DWI cases were false positives. In HR-positive/HER2-positive breast cancer the NPV for DCE MRI differs between MRI field strength (1.5 T: 50% vs. 3 T: 81% [p = 0.02]). ADCmean at baseline, post-NST, and ∆ADCmean were similar between patients with and without pCR. CONCLUSION DWI has no clinically relevant effect on the NPV of DCE alone to identify a pCR in early HER2-positive breast cancer. The added value of DWI in HR-positive/HER2-positive breast cancer should be further investigated taken MRI field strength into account. CLINICAL RELEVANCE STATEMENT The residual signal on DWI after neoadjuvant systemic therapy in cases with early HER2-positive breast cancer and no residual pathologic enhancement on DCE-MRI breast should not (yet) be considered in assessing a complete radiologic response. KEY POINTS Radiologic complete response is associated with a pathologic complete response (pCR) in HER2+ breast cancer but further improvement is warranted. No relevant increase in negative predictive value was observed when DWI was added to DCE. Residual signal on DW-images without pathologic enhancement on DCE-MRI, does not indicate a lower chance of pCR.
Collapse
Affiliation(s)
- Anna van der Voort
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Kay J J van der Hoogt
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ronni Wessels
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert-Jan Schipper
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Jelle Wesseling
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- University of Amsterdam, Amsterdam, The Netherlands
| | - Ritse M Mann
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Kim JY, Partridge SC. Non-contrast Breast MR Imaging. Radiol Clin North Am 2024; 62:661-678. [PMID: 38777541 PMCID: PMC11116814 DOI: 10.1016/j.rcl.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Considering the high cost of dynamic contrast-enhanced MR imaging and various contraindications and health concerns related to administration of intravenous gadolinium-based contrast agents, there is emerging interest in non-contrast-enhanced breast MR imaging. Diffusion-weighted MR imaging (DWI) is a fast, unenhanced technique that has wide clinical applications in breast cancer detection, characterization, prognosis, and predicting treatment response. It also has the potential to serve as a non-contrast MR imaging screening method. Standardized protocols and interpretation strategies can help to enhance the clinical utility of breast DWI. A variety of other promising non-contrast MR imaging techniques are in development, but currently, DWI is closest to clinical integration, while others are still mostly used in the research setting.
Collapse
Affiliation(s)
- Jin You Kim
- Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Savannah C Partridge
- Department of Radiology, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Qadir A, Singh N, Moe AAK, Cahoon G, Lye J, Chao M, Foroudi F, Uribe S. Potential of MRI in Assessing Treatment Response After Neoadjuvant Radiation Therapy Treatment in Breast Cancer Patients: A Scoping Review. Clin Breast Cancer 2024:S1526-8209(24)00136-8. [PMID: 38906720 DOI: 10.1016/j.clbc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/23/2024]
Abstract
The objective of this scoping review is to evaluate the potential of Magnetic Resonance Imaging (MRI) and to determine which of the available MRI techniques reported in the literature are the most promising for assessing treatment response in breast cancer patients following neoadjuvant radiotherapy (NRT). Ovid Medline, Embase, CINAHL, and Cochrane databases were searched to identify relevant studies published from inception until March 13, 2023. After primary selection, 2 reviewers evaluated each study using a standardized data extraction template, guided by set inclusion and exclusion criteria. A total of 5 eligible studies were selected. The positive and negative predictive values for MRI predicting pathological complete response across the studies were 67% to 88% and 76% to 85%, respectively. MRI's potential in assessing postradiotherapy tumor sizes was greater for volume measurements than uni-dimensional longest diameter measurements; however, overestimation in surgical tumor sizes was observed. Apparent diffusion coefficient (ADC) values and Time to Enhance (TTE) was seen to increase post-NRT, with a notable difference between responders and nonresponders at 6 months, indicating a potential role in assessing treatment response. In conclusion, this review highlights tumor volume measurements, ADC, and TTE as promising MRI metrics for assessing treatment response post-NRT in breast cancer. However, further research with larger cohorts is needed to confirm their utility. If MRI can accurately identify responders from nonresponders to NRT, it could enable a more personalized and tailored treatment approach, potentially minimizing radiation therapy related toxicity and enhancing cosmetic outcomes.
Collapse
Affiliation(s)
- Ayyaz Qadir
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia.
| | - Nabita Singh
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Aung Aung Kywe Moe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Glenn Cahoon
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Jessica Lye
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Michael Chao
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia; Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Farshad Foroudi
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia; Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Musall BC, Rauch DE, Mohamed RM, Panthi B, Boge M, Candelaria RP, Chen H, Guirguis MS, Hunt KK, Huo L, Hwang KP, Korkut A, Litton JK, Moseley TW, Pashapoor S, Patel MM, Reed BJ, Scoggins ME, Son JB, Tripathy D, Valero V, Wei P, White JB, Whitman GJ, Xu Z, Yang WT, Yam C, Adrada BE, Ma J. Diffusion Tensor Imaging for Characterizing Changes in Triple-Negative Breast Cancer During Neoadjuvant Systemic Therapy. J Magn Reson Imaging 2024:10.1002/jmri.29267. [PMID: 38294179 PMCID: PMC11289164 DOI: 10.1002/jmri.29267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Assessment of treatment response in triple-negative breast cancer (TNBC) may guide individualized care for improved patient outcomes. Diffusion tensor imaging (DTI) measures tissue anisotropy and could be useful for characterizing changes in the tumors and adjacent fibroglandular tissue (FGT) of TNBC patients undergoing neoadjuvant systemic treatment (NAST). PURPOSE To evaluate the potential of DTI parameters for prediction of treatment response in TNBC patients undergoing NAST. STUDY TYPE Prospective. POPULATION Eighty-six women (average age: 51 ± 11 years) with biopsy-proven clinical stage I-III TNBC who underwent NAST followed by definitive surgery. 47% of patients (40/86) had pathologic complete response (pCR). FIELD STRENGTH/SEQUENCE 3.0 T/reduced field of view single-shot echo-planar DTI sequence. ASSESSMENT Three MRI scans were acquired longitudinally (pre-treatment, after 2 cycles of NAST, and after 4 cycles of NAST). Eleven histogram features were extracted from DTI parameter maps of tumors, a peritumoral region (PTR), and FGT in the ipsilateral breast. DTI parameters included apparent diffusion coefficients and relative diffusion anisotropies. pCR status was determined at surgery. STATISTICAL TESTS Longitudinal changes of DTI features were tested for discrimination of pCR using Mann-Whitney U test and area under the receiver operating characteristic curve (AUC). A P value <0.05 was considered statistically significant. RESULTS 47% of patients (40/86) had pCR. DTI parameters assessed after 2 and 4 cycles of NAST were significantly different between pCR and non-pCR patients when compared between tumors, PTRs, and FGTs. The median surface/average anisotropy of the PTR, measured after 2 and 4 cycles of NAST, increased in pCR patients and decreased in non-pCR patients (AUC: 0.78; 0.027 ± 0.043 vs. -0.017 ± 0.042 mm2 /s). DATA CONCLUSION Quantitative DTI features from breast tumors and the peritumoral tissue may be useful for predicting the response to NAST in TNBC. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Benjamin C. Musall
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David E. Rauch
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rania M.M. Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bikash Panthi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rosalind P. Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary S. Guirguis
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil Korkut
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tanya W. Moseley
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanaz Pashapoor
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Miral M. Patel
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandy J. Reed
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marion E. Scoggins
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason B. White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gary J. Whitman
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei T. Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beatriz E. Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Zhang MQ, Liu XP, Du Y, Zha HL, Zha XM, Wang J, Liu XA, Wang SJ, Zou QG, Zhang JL, Li CY. Prediction of pathological complete response of breast cancer patients who received neoadjuvant chemotherapy with a nomogram based on clinicopathologic variables, ultrasound, and MRI. Br J Radiol 2024; 97:228-236. [PMID: 38263817 PMCID: PMC11027305 DOI: 10.1093/bjr/tqad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE To establish a nomogram for predicting the pathologic complete response (pCR) in breast cancer (BC) patients after NAC by applying magnetic resonance imaging (MRI) and ultrasound (US). METHODS A total of 607 LABC women who underwent NAC before surgery between January 2016 and June 2022 were retrospectively enrolled, and then were randomly divided into the training (n = 425) and test set (n = 182) with the ratio of 7:3. MRI and US variables were collected before and after NAC, as well as the clinicopathologic features. Univariate and multivariate logistic regression analyses were applied to confirm the potentially associated predictors of pCR. Finally, a nomogram was developed in the training set with its performance evaluated by the area under the receiver operating characteristics curve (ROC) and validated in the test set. RESULTS Of the 607 patients, 108 (25.4%) achieved pCR. Hormone receptor negativity (odds ratio [OR], 0.3; P < .001), human epidermal growth factor receptor 2 positivity (OR, 2.7; P = .001), small tumour size at post-NAC US (OR, 1.0; P = .031), tumour size reduction ≥50% at MRI (OR, 9.8; P < .001), absence of enhancement in the tumour bed at post-NAC MRI (OR, 8.1; P = .003), and the increase of ADC value after NAC (OR, 0.3; P = .035) were all significantly associated with pCR. Incorporating the above variables, the nomogram showed a satisfactory performance with an AUC of 0.884. CONCLUSION A nomogram including clinicopathologic variables and MRI and US characteristics shows preferable performance in predicting pCR. ADVANCES IN KNOWLEDGE A nomogram incorporating MRI and US with clinicopathologic variables was developed to provide a brief and concise approach in predicting pCR to assist clinicians in making treatment decisions early.
Collapse
Affiliation(s)
- Man-Qi Zhang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Pei Liu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hai-Ling Zha
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Ming Zha
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jue Wang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-An Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shou-Ju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi-Gui Zou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiu-Lou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cui-Ying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
6
|
Janse MHA, Janssen LM, van der Velden BHM, Moman MR, Wolters-van der Ben EJM, Kock MCJM, Viergever MA, van Diest PJ, Gilhuijs KGA. Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study. J Magn Reson Imaging 2023; 58:1739-1749. [PMID: 36928988 DOI: 10.1002/jmri.28679] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND While several methods have been proposed for automated assessment of breast-cancer response to neoadjuvant chemotherapy on breast MRI, limited information is available about their performance across multiple institutions. PURPOSE To assess the value and robustness of deep learning-derived volumes of locally advanced breast cancer (LABC) on MRI to infer the presence of residual disease after neoadjuvant chemotherapy. STUDY TYPE Retrospective. SUBJECTS Training cohort: 102 consecutive female patients with LABC scheduled for neoadjuvant chemotherapy (NAC) from a single institution (age: 25-73 years). Independent testing cohort: 55 consecutive female patients with LABC from four institutions (age: 25-72 years). FIELD STRENGTH/SEQUENCE Training cohort: single vendor 1.5 T or 3.0 T. Testing cohort: multivendor 3.0 T. Gradient echo dynamic contrast-enhanced sequences. ASSESSMENT A convolutional neural network (nnU-Net) was trained to segment LABC. Based on resulting tumor volumes, an extremely randomized tree model was trained to assess residual cancer burden (RCB)-0/I vs. RCB-II/III. An independent model was developed using functional tumor volume (FTV). Models were tested on an independent testing cohort and response assessment performance and robustness across multiple institutions were assessed. STATISTICAL TESTS The receiver operating characteristic (ROC) was used to calculate the area under the ROC curve (AUC). DeLong's method was used to compare AUCs. Correlations were calculated using Pearson's method. P values <0.05 were considered significant. RESULTS Automated segmentation resulted in a median (interquartile range [IQR]) Dice score of 0.87 (0.62-0.93), with similar volumetric measurements (R = 0.95, P < 0.05). Automated volumetric measurements were significantly correlated with FTV (R = 0.80). Tumor volume-derived from deep learning of DCE-MRI was associated with RCB, yielding an AUC of 0.76 to discriminate between RCB-0/I and RCB-II/III, performing similar to the FTV-based model (AUC = 0.77, P = 0.66). Performance was comparable across institutions (IQR AUC: 0.71-0.84). DATA CONCLUSION Deep learning-based segmentation estimates changes in tumor load on DCE-MRI that are associated with RCB after NAC and is robust against variations between institutions. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 4.
Collapse
Affiliation(s)
- Markus H A Janse
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Liselore M Janssen
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bas H M van der Velden
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maaike R Moman
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Alexander Monro Hospital, Bilthoven, The Netherlands
| | | | - Marc C J M Kock
- Department of Radiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kenneth G A Gilhuijs
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Zhou Z, Adrada BE, Candelaria RP, Elshafeey NA, Boge M, Mohamed RM, Pashapoor S, Sun J, Xu Z, Panthi B, Son JB, Guirguis MS, Patel MM, Whitman GJ, Moseley TW, Scoggins ME, White JB, Litton JK, Valero V, Hunt KK, Tripathy D, Yang W, Wei P, Yam C, Pagel MD, Rauch GM, Ma J. Predicting pathological complete response to neoadjuvant systemic therapy for triple-negative breast cancers using deep learning on multiparametric MRIs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083160 DOI: 10.1109/embc40787.2023.10340987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
We trained and validated a deep learning model that can predict the treatment response to neoadjuvant systemic therapy (NAST) for patients with triple negative breast cancer (TNBC). Dynamic contrast enhanced (DCE) MRI and diffusion-weighted imaging (DWI) of the pre-treatment (baseline) and after four cycles (C4) of doxorubicin/cyclophosphamide treatment were used as inputs to the model for prediction of pathologic complete response (pCR). Based on the standard pCR definition that includes disease status in either breast or axilla, the model achieved areas under the receiver operating characteristic curves (AUCs) of 0.96 ± 0.05, 0.78 ± 0.09, 0.88 ± 0.02, and 0.76 ± 0.03, for the training, validation, testing, and prospective testing groups, respectively. For the pCR status of breast only, the retrained model achieved prediction AUCs of 0.97 ± 0.04, 0.82 ± 0.10, 0.86 ± 0.03, and 0.83 ± 0.02, for the training, validation, testing, and prospective testing groups, respectively. Thus, the developed deep learning model is highly promising for predicting the treatment response to NAST of TNBC.Clinical Relevance- Deep learning based on serial and multiparametric MRIs can potentially distinguish TNBC patients with pCR from non-pCR at the early stage of neoadjuvant systemic therapy, potentially enabling more personalized treatment of TNBC patients.
Collapse
|
8
|
Hayward JH, Linden OE, Lewin AA, Weinstein SP, Bachorik AE, Balija TM, Kuzmiak CM, Paulis LV, Salkowski LR, Sanford MF, Scheel JR, Sharpe RE, Small W, Ulaner GA, Slanetz PJ. ACR Appropriateness Criteria® Monitoring Response to Neoadjuvant Systemic Therapy for Breast Cancer: 2022 Update. J Am Coll Radiol 2023; 20:S125-S145. [PMID: 37236739 DOI: 10.1016/j.jacr.2023.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023]
Abstract
Imaging plays a vital role in managing patients undergoing neoadjuvant chemotherapy, as treatment decisions rely heavily on accurate assessment of response to therapy. This document provides evidence-based guidelines for imaging breast cancer before, during, and after initiation of neoadjuvant chemotherapy. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | - Olivia E Linden
- Research Author, University of California, San Francisco, San Francisco, California
| | - Alana A Lewin
- Panel Chair, New York University Grossman School of Medicine, New York, New York
| | - Susan P Weinstein
- Panel Vice-Chair, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Tara M Balija
- Hackensack University Medical Center, Hackensack, New Jersey; American College of Surgeons
| | - Cherie M Kuzmiak
- University of North Carolina Hospital, Chapel Hill, North Carolina
| | | | - Lonie R Salkowski
- University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin
| | | | | | | | - William Small
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Gary A Ulaner
- Hoag Family Cancer Institute, Newport Beach, California, and University of Southern California, Los Angeles, California; Commission on Nuclear Medicine and Molecular Imaging
| | - Priscilla J Slanetz
- Specialty Chair, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
9
|
Hottat N, Jani J, Badr D, Ridder MD, Nazac A, Houte KV, Lecomte S, Cannie M. Diffusion-Weighted MRI in the Evaluation of Early-Stage Breast Cancer Treated with a Short Preoperative Radiotherapy: Preliminary Results. J Belg Soc Radiol 2023; 107:8. [PMID: 36817566 PMCID: PMC9912849 DOI: 10.5334/jbsr.2815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/30/2022] [Indexed: 02/10/2023] Open
Abstract
Objective To assess tumor response with diffusion-weighted MRI (DW-MRI) after a short preoperative radiotherapy in early-stage breast cancer (BCa). Materials and Methods This was a prospective, single-center pilot study. 3T-MRI were performed before and after radiotherapy. The longest diameter (LD) and the apparent diffusion coefficient (ADC) value of a region of interest (ROI) of the tumors were recorded. Histopathology and immunohistochemistry, including the Ki-67 index of the core biopsy and of the surgical specimen, were the reference standards. Results Nineteen patients with 22 early-stage BCa were included. The mean ROI ADC value was 1.093 ± 0.278 × 10-3 mm2/s before radiotherapy and 1.490 ± 0.429 × 10-3 mm2/s (p-value < 0.001) after radiotherapy. The Ki-67 index was 9.2 ± 9.1% at the percutaneous biopsy before radiotherapy and 4.9 ± 7.5% (p-value = 0.005) after radiotherapy at the surgical specimen. After neoadjuvant radiotherapy, a 4.7% decrease in LD and a 36.3% increase in ROI-ADC of the tumors were measured at MRI and a 46.7% decrease in Ki-67 index was observed at histology of the surgical specimen in comparison with the percutaneous core biopsy. Conclusion In early-stage BCa, a significant increase in ROI-ADC at DWI and a significant decrease in Ki-67 index were observed after a short preoperative radiotherapy, suggesting early tumor response.
Collapse
|
10
|
Huang EP, Pennello G, deSouza NM, Wang X, Buckler AJ, Kinahan PE, Barnhart HX, Delfino JG, Hall TJ, Raunig DL, Guimaraes AR, Obuchowski NA. Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation. Acad Radiol 2023; 30:196-214. [PMID: 36273996 PMCID: PMC9825642 DOI: 10.1016/j.acra.2022.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 01/11/2023]
Abstract
Combinations of multiple quantitative imaging biomarkers (QIBs) are often able to predict the likelihood of an event of interest such as death or disease recurrence more effectively than single imaging measurements can alone. The development of such multiparametric quantitative imaging and evaluation of its fitness of use differs from the analogous processes for individual QIBs in several key aspects. A computational procedure to combine the QIB values into a model output must be specified. The output must also be reproducible and be shown to have reasonably strong ability to predict the risk of an event of interest. Attention must be paid to statistical issues not often encountered in the single QIB scenario, including overfitting and bias in the estimates of model performance. This is the fourth in a five-part series on statistical methodology for assessing the technical performance of multiparametric quantitative imaging. Considerations for data acquisition are discussed and recommendations from the literature on methodology to construct and evaluate QIB-based models for risk prediction are summarized. The findings in the literature upon which these recommendations are based are demonstrated through simulation studies. The concepts in this manuscript are applied to a real-life example involving prediction of major adverse cardiac events using automated plaque analysis.
Collapse
Affiliation(s)
- Erich P Huang
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9735, Bethesda, MD 20892-9735.
| | - Gene Pennello
- Center for Devices and Radiological Health, US Food and Drug Administration
| | - Nandita M deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research (London, UK), European Imaging Biomarkers Alliance
| | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation
| | | | | | | | - Jana G Delfino
- Center for Devices and Radiological Health, US Food and Drug Administration
| | - Timothy J Hall
- Department of Medical Physics, University of Wisconsin, Madison
| | - David L Raunig
- Data Science Institute, Statistical and Quantitative Sciences, Takeda
| | | | - Nancy A Obuchowski
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation
| |
Collapse
|
11
|
Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI. Sci Rep 2023; 13:1171. [PMID: 36670144 PMCID: PMC9859781 DOI: 10.1038/s41598-023-27518-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients' pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST.
Collapse
|
12
|
Assessment of diffusion-weighted MRI in predicting response to neoadjuvant chemotherapy in breast cancer patients. Sci Rep 2023; 13:614. [PMID: 36635514 PMCID: PMC9837175 DOI: 10.1038/s41598-023-27787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
To compare region of interest (ROI)-apparent diffusion coefficient (ADC) on diffusion-weighted imaging (DWI) measurements and Ki-67 proliferation index before and after neoadjuvant chemotherapy (NACT) for breast cancer. 55 women were enrolled in this prospective single-center study, with a final population of 47 women (49 cases of invasive breast cancer). ROI-ADC measurements were obtained on MRI before and after NACT and were compared to histological findings, including the Ki-67 index in the whole study population and in subgroups of "pathologic complete response" (pCR) and non-pCR. Nineteen percent of women experienced pCR. There was a significant inverse correlation between Ki-67 index and ROI-ADC before NACT (r = - 0.443, p = 0.001) and after NACT (r = - 0.614, p < 0.001). The mean Ki-67 index decreased from 45.8% before NACT to 18.0% after NACT (p < 0.001), whereas the mean ROI-ADC increased from 0.883 × 10-3 mm2/s before NACT to 1.533 × 10-3 mm2/s after NACT (p < 0.001). The model for the prediction of Ki67 index variations included patient age, hormonal receptor status, human epidermal growth factor receptor 2 status, Scarff-Bloom-Richardson grade 2, and ROI-ADC variations (p = 0.006). After NACT, a significant increase in breast cancer ROI-ADC on diffusion-weighted imaging was observed and a significant decrease in the Ki-67 index was predicted. Clinical trial registration number: clinicaltrial.gov NCT02798484, date: 14/06/2016.
Collapse
|
13
|
Lin P, Wan WJ, Kang T, Qin LF, Meng QX, Wu XX, Qin HY, Lin YQ, He Y, Yang H. Molecular hallmarks of breast multiparametric magnetic resonance imaging during neoadjuvant chemotherapy. LA RADIOLOGIA MEDICA 2023; 128:171-183. [PMID: 36680710 PMCID: PMC9860227 DOI: 10.1007/s11547-023-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
PURPOSE To identify molecular basis of four parameters obtained from dynamic contrast-enhanced magnetic resonance imaging, including functional tumor volume (FTV), longest diameter (LD), sphericity, and contralateral background parenchymal enhancement (BPE). MATERIAL AND METHODS Pretreatment-available gene expression profiling and different treatment timepoints MRI features were integrated for Spearman correlation analysis. MRI feature-related genes were submitted to hypergeometric distribution-based gene functional enrichment analysis to identify related Kyoto Encyclopedia of Genes and Genomes annotation. Gene set variation analysis was utilized to assess the infiltration of distinct immune cells, which were used to determine relationships between immune phenotypes and medical imaging phenotypes. The clinical significance of MRI and relevant molecular features were analyzed to identify their prediction performance of neoadjuvant chemotherapy (NAC) and prognostic impact. RESULTS Three hundred and eighty-three patients were included for integrative analysis of MRI features and molecular information. FTV, LD, and sphericity measurements were most positively significantly correlated with proliferation-, signal transmission-, and immune-related pathways, respectively. However, BPE did not show marked correlation relationships with gene expression alteration status. FTV, LD and sphericity all showed significant positively or negatively correlated with some immune-related processes and immune cell infiltration levels. Sphericity decreased at 3 cycles after treatment initiation was also markedly negatively related to baseline sphericity measurements and immune signatures. Its decreased status could act as a predictor for prediction of response to NAC. CONCLUSION Different MRI features capture different tumor molecular characteristics that could explain their corresponding clinical significance.
Collapse
Affiliation(s)
- Peng Lin
- grid.412594.f0000 0004 1757 2961Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi People’s Republic of China ,Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Image, Nanning, Guangxi People’s Republic of China
| | - Wei-Jun Wan
- grid.412594.f0000 0004 1757 2961Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Tong Kang
- grid.412594.f0000 0004 1757 2961Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Lian-feng Qin
- grid.256607.00000 0004 1798 2653Department of Medical Imaging, Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Qiu-xue Meng
- grid.256607.00000 0004 1798 2653Department of Medical Imaging, Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Xiao-xin Wu
- grid.256607.00000 0004 1798 2653Department of Medical Imaging, Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Hong-yan Qin
- grid.256607.00000 0004 1798 2653Department of Medical Imaging, Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Yi-qun Lin
- grid.12955.3a0000 0001 2264 7233Department of Radiology, Dongnan Hospital of Ximen University, School of Medicine, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Yun He
- grid.412594.f0000 0004 1757 2961Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi People’s Republic of China ,Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Image, Nanning, Guangxi People’s Republic of China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China. .,Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Image, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
14
|
Musall BC, Adrada BE, Candelaria RP, Mohamed RMM, Abdelhafez AH, Son JB, Sun J, Santiago L, Whitman GJ, Moseley TW, Scoggins ME, Mahmoud HS, White JB, Hwang KP, Elshafeey NA, Boge M, Zhang S, Litton JK, Valero V, Tripathy D, Thompson AM, Yam C, Wei P, Moulder SL, Pagel MD, Yang WT, Ma J, Rauch GM. Quantitative Apparent Diffusion Coefficients From Peritumoral Regions as Early Predictors of Response to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer. J Magn Reson Imaging 2022; 56:1901-1909. [PMID: 35499264 PMCID: PMC9626398 DOI: 10.1002/jmri.28219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pathologic complete response (pCR) to neoadjuvant systemic therapy (NAST) in triple-negative breast cancer (TNBC) is a strong predictor of patient survival. Edema in the peritumoral region (PTR) has been reported to be a negative prognostic factor in TNBC. PURPOSE To determine whether quantitative apparent diffusion coefficient (ADC) features from PTRs on reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) predict the response to NAST in TNBC. STUDY TYPE Prospective. POPULATION/SUBJECTS A total of 108 patients with biopsy-proven TNBC who underwent NAST and definitive surgery during 2015-2020. FIELD STRENGTH/SEQUENCE A 3.0 T/rFOV single-shot diffusion-weighted echo-planar imaging sequence (DWI). ASSESSMENT Three scans were acquired longitudinally (pretreatment, after two cycles of NAST, and after four cycles of NAST). For each scan, 11 ADC histogram features (minimum, maximum, mean, median, standard deviation, kurtosis, skewness and 10th, 25th, 75th, and 90th percentiles) were extracted from tumors and from PTRs of 5 mm, 10 mm, 15 mm, and 20 mm in thickness with inclusion and exclusion of fat-dominant pixels. STATISTICAL TESTS ADC features were tested for prediction of pCR, both individually using Mann-Whitney U test and area under the receiver operating characteristic curve (AUC), and in combination in multivariable models with k-fold cross-validation. A P value < 0.05 was considered statistically significant. RESULTS Fifty-one patients (47%) had pCR. Maximum ADC from PTR, measured after two and four cycles of NAST, was significantly higher in pCR patients (2.8 ± 0.69 vs 3.5 ± 0.94 mm2 /sec). The top-performing feature for prediction of pCR was the maximum ADC from the 5-mm fat-inclusive PTR after cycle 4 of NAST (AUC: 0.74; 95% confidence interval: 0.64, 0.84). Multivariable models of ADC features performed similarly for fat-inclusive and fat-exclusive PTRs, with AUCs ranging from 0.68 to 0.72 for the cycle 2 and cycle 4 scans. DATA CONCLUSION Quantitative ADC features from PTRs may serve as early predictors of the response to NAST in TNBC. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Benjamin C Musall
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beatriz E Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rosalind P Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rania M M Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abeer H Abdelhafez
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lumarie Santiago
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gary J Whitman
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tanya W Moseley
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marion E Scoggins
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagar S Mahmoud
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nabil A Elshafeey
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shu Zhang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alastair M Thompson
- Division of Surgical Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark D Pagel
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei T Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gaiane M Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Radiomic and Volumetric Measurements as Clinical Trial Endpoints—A Comprehensive Review. Cancers (Basel) 2022; 14:cancers14205076. [PMID: 36291865 PMCID: PMC9599928 DOI: 10.3390/cancers14205076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The extraction of quantitative data from standard-of-care imaging modalities offers opportunities to improve the relevance and salience of imaging biomarkers used in drug development. This review aims to identify the challenges and opportunities for discovering new imaging-based biomarkers based on radiomic and volumetric assessment in the single-site solid tumor sites: breast cancer, rectal cancer, lung cancer and glioblastoma. Developing approaches to harmonize three essential areas: segmentation, validation and data sharing may expedite regulatory approval and adoption of novel cancer imaging biomarkers. Abstract Clinical trials for oncology drug development have long relied on surrogate outcome biomarkers that assess changes in tumor burden to accelerate drug registration (i.e., Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria). Drug-induced reduction in tumor size represents an imperfect surrogate marker for drug activity and yet a radiologically determined objective response rate is a widely used endpoint for Phase 2 trials. With the addition of therapies targeting complex biological systems such as immune system and DNA damage repair pathways, incorporation of integrative response and outcome biomarkers may add more predictive value. We performed a review of the relevant literature in four representative tumor types (breast cancer, rectal cancer, lung cancer and glioblastoma) to assess the preparedness of volumetric and radiomics metrics as clinical trial endpoints. We identified three key areas—segmentation, validation and data sharing strategies—where concerted efforts are required to enable progress of volumetric- and radiomics-based clinical trial endpoints for wider clinical implementation.
Collapse
|
16
|
Janssen LM, Suelmann BBM, Elias SG, Janse MHA, van Diest PJ, van der Wall E, Gilhuijs KGA. Improving prediction of response to neoadjuvant treatment in patients with breast cancer by combining liquid biopsies with multiparametric MRI: protocol of the LIMA study - a multicentre prospective observational cohort study. BMJ Open 2022; 12:e061334. [PMID: 36127090 PMCID: PMC9490628 DOI: 10.1136/bmjopen-2022-061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/12/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The response to neoadjuvant chemotherapy (NAC) in breast cancer has important prognostic implications. Dynamic prediction of tumour regression by NAC may allow for adaption of the treatment plan before completion, or even before the start of treatment. Such predictions may help prevent overtreatment and related toxicity and correct for undertreatment with ineffective regimens. Current imaging methods are not able to fully predict the efficacy of NAC. To successfully improve response prediction, tumour biology and heterogeneity as well as treatment-induced changes have to be considered. In the LIMA study, multiparametric MRI will be combined with liquid biopsies. In addition to conventional clinical and pathological information, these methods may give complementary information at multiple time points during treatment. AIM To combine multiparametric MRI and liquid biopsies in patients with breast cancer to predict residual cancer burden (RCB) after NAC, in adjunct to standard clinico-pathological information. Predictions will be made before the start of NAC, approximately halfway during treatment and after completion of NAC. METHODS In this multicentre prospective observational study we aim to enrol 100 patients. Multiparametric MRI will be performed prior to NAC, approximately halfway and after completion of NAC. Liquid biopsies will be obtained immediately prior to every cycle of chemotherapy and after completion of NAC. The primary endpoint is RCB in the surgical resection specimen following NAC. Collected data will primarily be analysed using multivariable techniques such as penalised regression techniques. ETHICS AND DISSEMINATION Medical Research Ethics Committee Utrecht has approved this study (NL67308.041.19). Informed consent will be obtained from each participant. All data are anonymised before publication. The findings of this study will be submitted to international peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04223492.
Collapse
Affiliation(s)
- Liselore M Janssen
- Image Sciences Institute, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Britt B M Suelmann
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Markus H A Janse
- Image Sciences Institute, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kenneth G A Gilhuijs
- Image Sciences Institute, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Wu C, Jarrett AM, Zhou Z, Elshafeey N, Adrada BE, Candelaria RP, Mohamed RM, Boge M, Huo L, White JB, Tripathy D, Valero V, Litton JK, Yam C, Son JB, Ma J, Rauch GM, Yankeelov TE. MRI-Based Digital Models Forecast Patient-Specific Treatment Responses to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancer Res 2022; 82:3394-3404. [PMID: 35914239 PMCID: PMC9481712 DOI: 10.1158/0008-5472.can-22-1329] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/14/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is persistently refractory to therapy, and methods to improve targeting and evaluation of responses to therapy in this disease are needed. Here, we integrate quantitative MRI data with biologically based mathematical modeling to accurately predict the response of TNBC to neoadjuvant systemic therapy (NAST) on an individual basis. Specifically, 56 patients with TNBC enrolled in the ARTEMIS trial (NCT02276443) underwent standard-of-care doxorubicin/cyclophosphamide (A/C) and then paclitaxel for NAST, where dynamic contrast-enhanced MRI and diffusion-weighted MRI were acquired before treatment and after two and four cycles of A/C. A biologically based model was established to characterize tumor cell movement, proliferation, and treatment-induced cell death. Two evaluation frameworks were investigated using: (i) images acquired before and after two cycles of A/C for calibration and predicting tumor status after A/C, and (ii) images acquired before, after two cycles, and after four cycles of A/C for calibration and predicting response following NAST. For Framework 1, the concordance correlation coefficients between the predicted and measured patient-specific, post-A/C changes in tumor cellularity and volume were 0.95 and 0.94, respectively. For Framework 2, the biologically based model achieved an area under the receiver operator characteristic curve of 0.89 (sensitivity/specificity = 0.72/0.95) for differentiating pathological complete response (pCR) from non-pCR, which is statistically superior (P < 0.05) to the value of 0.78 (sensitivity/specificity = 0.72/0.79) achieved by tumor volume measured after four cycles of A/C. Overall, this model successfully captured patient-specific, spatiotemporal dynamics of TNBC response to NAST, providing highly accurate predictions of NAST response. SIGNIFICANCE Integrating MRI data with biologically based mathematical modeling successfully predicts breast cancer response to chemotherapy, suggesting digital twins could facilitate a paradigm shift from simply assessing response to predicting and optimizing therapeutic efficacy.
Collapse
Affiliation(s)
- Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin. Austin, Texas 78712
| | - Angela M. Jarrett
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin. Austin, Texas 78712
- Livestrong Cancer Institutes, The University of Texas at Austin. Austin, Texas 78712
| | - Zijian Zhou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Nabil Elshafeey
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Beatriz E. Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Rosalind P. Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Rania M.M. Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jason B. White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Gaiane M. Rauch
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin. Austin, Texas 78712
- Livestrong Cancer Institutes, The University of Texas at Austin. Austin, Texas 78712
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Department of Biomedical Engineering, The University of Texas at Austin. Austin, Texas 78712
- Department of Diagnostic Medicine, The University of Texas at Austin. Austin, Texas 78712
- Department of Oncology, The University of Texas at Austin. Austin, Texas 78712
| |
Collapse
|
18
|
Li W, Le NN, Onishi N, Newitt DC, Wilmes LJ, Gibbs JE, Carmona-Bozo J, Liang J, Partridge SC, Price ER, Joe BN, Kornak J, Magbanua MJM, Nanda R, LeStage B, Esserman LJ, I-Spy Imaging Working Group, I-Spy Investigator Network, Van't Veer LJ, Hylton NM. Diffusion-Weighted MRI for Predicting Pathologic Complete Response in Neoadjuvant Immunotherapy. Cancers (Basel) 2022; 14:4436. [PMID: 36139594 PMCID: PMC9497087 DOI: 10.3390/cancers14184436] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
This study tested the hypothesis that a change in the apparent diffusion coefficient (ADC) measured in diffusion-weighted MRI (DWI) is an independent imaging marker, and ADC performs better than functional tumor volume (FTV) for assessing treatment response in patients with locally advanced breast cancer receiving neoadjuvant immunotherapy. A total of 249 patients were randomized to standard neoadjuvant chemotherapy with pembrolizumab (pembro) or without pembrolizumab (control). DCE-MRI and DWI, performed prior to and 3 weeks after the start of treatment, were analyzed. Percent changes of tumor ADC metrics (mean, 5th to 95th percentiles of ADC histogram) and FTV were evaluated for the prediction of pathologic complete response (pCR) using a logistic regression model. The area under the ROC curve (AUC) estimated for the percent change in mean ADC was higher in the pembro cohort (0.73, 95% confidence interval [CI]: 0.52 to 0.93) than in the control cohort (0.63, 95% CI: 0.43 to 0.83). In the control cohort, the percent change of the 95th percentile ADC achieved the highest AUC, 0.69 (95% CI: 0.52 to 0.85). In the pembro cohort, the percent change of the 25th percentile ADC achieved the highest AUC, 0.75 (95% CI: 0.55 to 0.95). AUCs estimated for percent change of FTV were 0.61 (95% CI: 0.39 to 0.83) and 0.66 (95% CI: 0.47 to 0.85) for the pembro and control cohorts, respectively. Tumor ADC may perform better than FTV to predict pCR at an early treatment time-point during neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Wen Li
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - Nu N Le
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - Natsuko Onishi
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - David C Newitt
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - Lisa J Wilmes
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - Jessica E Gibbs
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - Julia Carmona-Bozo
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - Jiachao Liang
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - Savannah C Partridge
- Department of Radiology, University of Washington, 1100 Fairview Ave N, Seattle, Washington, DC 98109, USA
| | - Elissa R Price
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - Bonnie N Joe
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | - Mark Jesus M Magbanua
- Department of Laboratory Medicine, University of California, 2340 Sutter Street, San Francisco, CA 94115, USA
| | - Rita Nanda
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Barbara LeStage
- I-SPY 2 Advocacy Group, 499 Illinois Street, San Francisco, CA 94158, USA
| | - Laura J Esserman
- Department of Surgery, University of California, 550 16th Street, San Francisco, CA 94158, USA
| | | | - I-Spy Investigator Network
- Department of Radiology, University of Washington, 1100 Fairview Ave N, Seattle, Washington, DC 98109, USA
| | - Laura J Van't Veer
- Department of Laboratory Medicine, University of California, 2340 Sutter Street, San Francisco, CA 94115, USA
| | - Nola M Hylton
- Department of Radiology and Biomedical Imaging, University of California, 550 16th Street, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Mercado C, Chhor C, Scheel JR. MRI in the Setting of Neoadjuvant Treatment of Breast Cancer. JOURNAL OF BREAST IMAGING 2022; 4:320-330. [PMID: 38422421 DOI: 10.1093/jbi/wbab059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 03/02/2024]
Abstract
Neoadjuvant therapy may reduce tumor burden preoperatively, allowing breast conservation treatment for tumors previously unresectable or requiring mastectomy without reducing disease-free survival. Oncologists can also use the response of the tumor to neoadjuvant chemotherapy (NAC) to identify treatment likely to be successful against any unknown potential distant metastasis. Accurate preoperative estimations of tumor size are necessary to guide appropriate treatment with minimal delays and can provide prognostic information. Clinical breast examination and mammography are inaccurate methods for measuring tumor size after NAC and can over- and underestimate residual disease. While US is commonly used to measure changes in tumor size during NAC due to its availability and low cost, MRI remains more accurate and simultaneously images the entire breast and axilla. No method is sufficiently accurate at predicting complete pathological response that would obviate the need for surgery. Diffusion-weighted MRI, MR spectroscopy, and MRI-based radiomics are emerging fields that potentially increase the predictive accuracy of tumor response to NAC.
Collapse
Affiliation(s)
- Cecilia Mercado
- NYU Grossman School of Medicine, Department of Radiology, New York, NY, USA
| | - Chloe Chhor
- NYU Grossman School of Medicine, Department of Radiology, New York, NY, USA
| | - John R Scheel
- University of Washington, Department of Radiology, Seattle, WA, USA
| |
Collapse
|
20
|
Hottat NA, Badr DA, Lecomte S, Besse-Hammer T, Jani JC, Cannie MM. Value of diffusion-weighted MRI in predicting early response to neoadjuvant chemotherapy of breast cancer: comparison between ROI-ADC and whole-lesion-ADC measurements. Eur Radiol 2022; 32:4067-4078. [PMID: 35015127 DOI: 10.1007/s00330-021-08462-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The aim of the study was to assess DWI with ROI-ADC and WL-ADC measurements in early response after NAC in breast cancer. METHODS Between January 2016 and December 2019, 55 women were enrolled in this prospective single-center study. MRI was performed at three time points for each patient: before treatment (MRI 1: DW and DCE MRI), after one cycle of NAC (MRI 2: noncontrast DW MRI), and after completion of NAC before surgery (MRI 3: DW and DCE MRI). ROI-ADC and WL-ADC measurements were obtained on MRI and were compared to histology findings and to the RCB class. Patients were categorized as having pCR or non-pCR. RESULTS Among 48 patients, 9 experienced pCR. An increase of ROI-ADC between MRI 1 and 2 of more than 47.5% had a sensitivity of 88.9% and a specificity of 63.4% in predicting pCR, whereas WL-ADC did not predict pCR. An increase of ROI-ADC between MRI 1 and 2 of more than 47.5% had a sensitivity of 83.3% and a specificity of 64.9% in predicting radiologic complete response. An increase of WL-ADC between MRI 1 and 2 of more than 25.5% had a sensitivity of 83.3% and a specificity of 75.5% in predicting radiologic complete response. CONCLUSION After one cycle of NAC, a significant increase in breast tumor ROI-ADC at DWI predicted complete pathologic and radiologic responses. KEY POINTS • An increase of WL-ADC between MRI 1 and 2 of more than 25.5% had a sensitivity of 83.3% and a specificity of 75.5% in predicting radiologic complete response. • An increase of ROI-ADC between MRI 1 and 2 of more than 47.5% had a sensitivity of 88.9% and a specificity of 63.4% in predicting pCR, and a sensitivity of 83.3% and a specificity of 64.9% in predicting radiologic complete response. • A significant increase in breast tumor ROI-ADC at DWI predicted complete pathologic and radiologic responses.
Collapse
Affiliation(s)
- Nathalie A Hottat
- Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium. .,Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Dominique A Badr
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Lecomte
- Department of Pathology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Tatiana Besse-Hammer
- Department of Clinical Research Unit University, Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Mieke M Cannie
- Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Place A. Van Gehuchten 4, 1020, Brussels, Belgium.,Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Reig B, Lewin AA, Du L, Heacock L, Toth HK, Heller SL, Gao Y, Moy L. Breast MRI for Evaluation of Response to Neoadjuvant Therapy. Radiographics 2021; 41:665-679. [PMID: 33939542 DOI: 10.1148/rg.2021200134] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neoadjuvant therapy is increasingly being used to treat early-stage triple-negative and human epidermal growth factor 2-overexpressing breast cancers, as well as locally advanced and inflammatory breast cancers. The rationales for neoadjuvant therapy are to shrink tumor size and potentially decrease the extent of surgery, to serve as an in vivo test of response to therapy, and to reveal prognostic information for the patient. MRI is the most accurate modality to demonstrate response to therapy and to help ensure accurate presurgical planning. Changes in lesion diameter, volume, and enhancement are used to predict complete response, partial response, or nonresponse to therapy. However, residual disease may be overestimated or underestimated at MRI. Fibrosis, necrotic tumors, and residual benign masses may be causes of overestimation of residual disease. Nonmass lesions, invasive lobular carcinoma, hormone receptor-positive tumors, nonconcentric shrinkage patterns, the use of antiangiogenic therapy, and late-enhancing foci may be causes of underestimation of residual disease. In patients with known axillary lymph node metastasis, neoadjuvant therapy may be followed by targeted axillary dissection to avoid the potential morbidity associated with an axillary lymph node dissection. Diffusion-weighted imaging, radiomics, machine learning, and deep learning methods are under investigation to improve MRI accuracy in predicting treatment response.©RSNA, 2021.
Collapse
Affiliation(s)
- Beatriu Reig
- From the Department of Radiology (B.R., A.A.L., L.H., H.K.T., S.L.H., Y.G., L.M.), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology (L.M.), and Center for Advanced Imaging Innovation and Research (CAI2R) (L.M.), New York University Grossman School of Medicine, 160 E 34th St, New York, NY 10016; and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (L.D.)
| | - Alana A Lewin
- From the Department of Radiology (B.R., A.A.L., L.H., H.K.T., S.L.H., Y.G., L.M.), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology (L.M.), and Center for Advanced Imaging Innovation and Research (CAI2R) (L.M.), New York University Grossman School of Medicine, 160 E 34th St, New York, NY 10016; and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (L.D.)
| | - Linda Du
- From the Department of Radiology (B.R., A.A.L., L.H., H.K.T., S.L.H., Y.G., L.M.), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology (L.M.), and Center for Advanced Imaging Innovation and Research (CAI2R) (L.M.), New York University Grossman School of Medicine, 160 E 34th St, New York, NY 10016; and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (L.D.)
| | - Laura Heacock
- From the Department of Radiology (B.R., A.A.L., L.H., H.K.T., S.L.H., Y.G., L.M.), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology (L.M.), and Center for Advanced Imaging Innovation and Research (CAI2R) (L.M.), New York University Grossman School of Medicine, 160 E 34th St, New York, NY 10016; and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (L.D.)
| | - Hildegard K Toth
- From the Department of Radiology (B.R., A.A.L., L.H., H.K.T., S.L.H., Y.G., L.M.), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology (L.M.), and Center for Advanced Imaging Innovation and Research (CAI2R) (L.M.), New York University Grossman School of Medicine, 160 E 34th St, New York, NY 10016; and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (L.D.)
| | - Samantha L Heller
- From the Department of Radiology (B.R., A.A.L., L.H., H.K.T., S.L.H., Y.G., L.M.), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology (L.M.), and Center for Advanced Imaging Innovation and Research (CAI2R) (L.M.), New York University Grossman School of Medicine, 160 E 34th St, New York, NY 10016; and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (L.D.)
| | - Yiming Gao
- From the Department of Radiology (B.R., A.A.L., L.H., H.K.T., S.L.H., Y.G., L.M.), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology (L.M.), and Center for Advanced Imaging Innovation and Research (CAI2R) (L.M.), New York University Grossman School of Medicine, 160 E 34th St, New York, NY 10016; and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (L.D.)
| | - Linda Moy
- From the Department of Radiology (B.R., A.A.L., L.H., H.K.T., S.L.H., Y.G., L.M.), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology (L.M.), and Center for Advanced Imaging Innovation and Research (CAI2R) (L.M.), New York University Grossman School of Medicine, 160 E 34th St, New York, NY 10016; and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (L.D.)
| |
Collapse
|
22
|
Magbanua MJM, Li W, Wolf DM, Yau C, Hirst GL, Swigart LB, Newitt DC, Gibbs J, Delson AL, Kalashnikova E, Aleshin A, Zimmermann B, Chien AJ, Tripathy D, Esserman L, Hylton N, van 't Veer L. Circulating tumor DNA and magnetic resonance imaging to predict neoadjuvant chemotherapy response and recurrence risk. NPJ Breast Cancer 2021; 7:32. [PMID: 33767190 PMCID: PMC7994408 DOI: 10.1038/s41523-021-00239-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated whether serial measurements of circulating tumor DNA (ctDNA) and functional tumor volume (FTV) by magnetic resonance imaging (MRI) can be combined to improve prediction of pathologic complete response (pCR) and estimation of recurrence risk in early breast cancer patients treated with neoadjuvant chemotherapy (NAC). We examined correlations between ctDNA and FTV, evaluated the additive value of ctDNA to FTV-based predictors of pCR using area under the curve (AUC) analysis, and analyzed the impact of FTV and ctDNA on distant recurrence-free survival (DRFS) using Cox regressions. The levels of ctDNA (mean tumor molecules/mL plasma) were significantly correlated with FTV at all time points (p < 0.05). Median FTV in ctDNA-positive patients was significantly higher compared to those who were ctDNA-negative (p < 0.05). FTV and ctDNA trajectories in individual patients showed a general decrease during NAC. Exploratory analysis showed that adding ctDNA information early during treatment to FTV-based predictors resulted in numerical but not statistically significant improvements in performance for pCR prediction (e.g., AUC 0.59 vs. 0.69, p = 0.25). In contrast, ctDNA-positivity after NAC provided significant additive value to FTV in identifying patients with increased risk of metastatic recurrence and death (p = 0.004). In this pilot study, we demonstrate that ctDNA and FTV were correlated measures of tumor burden. Our preliminary findings based on a limited cohort suggest that ctDNA at surgery improves FTV as a predictor of metastatic recurrence and death. Validation in larger studies is warranted.
Collapse
Affiliation(s)
- Mark Jesus M Magbanua
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Wen Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christina Yau
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Gillian L Hirst
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David C Newitt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Gibbs
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Amy L Delson
- Breast Science Advocacy Core, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - A Jo Chien
- Division of Hematology Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nola Hylton
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Laura van 't Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Woitek R, Gallagher FA. The use of hyperpolarised 13C-MRI in clinical body imaging to probe cancer metabolism. Br J Cancer 2021; 124:1187-1198. [PMID: 33504974 PMCID: PMC8007617 DOI: 10.1038/s41416-020-01224-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of cancer and includes the Warburg effect, which is exhibited by many tumours. This can be exploited by positron emission tomography (PET) as part of routine clinical cancer imaging. However, an emerging and alternative method to detect altered metabolism is carbon-13 magnetic resonance imaging (MRI) following injection of hyperpolarised [1-13C]pyruvate. The technique increases the signal-to-noise ratio for the detection of hyperpolarised 13C-labelled metabolites by several orders of magnitude and facilitates the dynamic, noninvasive imaging of the exchange of 13C-pyruvate to 13C-lactate over time. The method has produced promising preclinical results in the area of oncology and is currently being explored in human imaging studies. The first translational studies have demonstrated the safety and feasibility of the technique in patients with prostate, renal, breast and pancreatic cancer, as well as revealing a successful response to treatment in breast and prostate cancer patients at an earlier stage than multiparametric MRI. This review will focus on the strengths of the technique and its applications in the area of oncological body MRI including noninvasive characterisation of disease aggressiveness, mapping of tumour heterogeneity, and early response assessment. A comparison of hyperpolarised 13C-MRI with state-of-the-art multiparametric MRI is likely to reveal the unique additional information and applications offered by the technique.
Collapse
Affiliation(s)
- Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
- Cancer Research UK Cambridge Centre, Cambridge, UK.
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| |
Collapse
|
24
|
Musall BC, Abdelhafez AH, Adrada BE, Candelaria RP, Mohamed RMM, Boge M, Le-Petross H, Arribas E, Lane DL, Spak DA, Leung JWT, Hwang KP, Son JB, Elshafeey NA, Mahmoud HS, Wei P, Sun J, Zhang S, White JB, Ravenberg EE, Litton JK, Damodaran S, Thompson AM, Moulder SL, Yang WT, Pagel MD, Rauch GM, Ma J. Functional Tumor Volume by Fast Dynamic Contrast-Enhanced MRI for Predicting Neoadjuvant Systemic Therapy Response in Triple-Negative Breast Cancer. J Magn Reson Imaging 2021; 54:251-260. [PMID: 33586845 DOI: 10.1002/jmri.27557] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dynamic contrast-enhanced (DCE) MRI is useful for diagnosis and assessment of treatment response in breast cancer. Fast DCE MRI offers a higher sampling rate of contrast enhancement curves in comparison to conventional DCE MRI, potentially characterizing tumor perfusion kinetics more accurately for measurement of functional tumor volume (FTV) as a predictor of treatment response. PURPOSE To investigate FTV by fast DCE MRI as a predictor of neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). STUDY TYPE Prospective. POPULATION/SUBJECTS Sixty patients with biopsy-confirmed TNBC between December 2016 and September 2020. FIELD STRENGTH/SEQUENCE A 3.0 T/3D fast spoiled gradient echo-based DCE MRI ASSESSMENT: Patients underwent MRI at baseline and after four cycles (C4) of NAST, followed by definitive surgery. DCE subtraction images were analyzed in consensus by two breast radiologists with 5 (A.H.A.) and 2 (H.S.M.) years of experience. Tumor volumes (TV) were measured on early and late subtractions. Tumors were segmented on 1 and 2.5-minute early phases subtractions and FTV was determined using optimized signal enhancement thresholds. Interpolated enhancement curves from segmented voxels were used to determine optimal early phase timing. STATISTICAL TESTS Tumor volumes were compared between patients who had a pathologic complete response (pCR) and those who did not using the area under the receiver operating curve (AUC) and Mann-Whitney U test. RESULTS About 26 of 60 patients (43%) had pCR. FTV at 1 minute after injection at C4 provided the best discrimination between pCR and non-pCR, with AUC (95% confidence interval [CI]) = 0.85 (0.74,0.95) (P < 0.05). The 1-minute timing was optimal for FTV measurements at C4 and for the change between C4 and baseline. TV from the early phase at C4 also yielded a good AUC (95%CI) of 0.82 (0.71,0.93) (P < 0.05). DATA CONCLUSION FTV and TV measured at 1 minute after injection can predict response to NAST in TNBC. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: 4.
Collapse
Affiliation(s)
- Benjamin C Musall
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abeer H Abdelhafez
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beatriz E Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rosalind P Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rania M M Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huong Le-Petross
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elsa Arribas
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Deanna L Lane
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David A Spak
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jessica W T Leung
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nabil A Elshafeey
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagar S Mahmoud
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shu Zhang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth E Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei T Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark D Pagel
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gaiane M Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Potter DA, Herrera-Ponzanelli CA, Hinojosa D, Castillo R, Hernandez-Cruz I, Arrieta VA, Franklin MJ, Yee D. Recent advances in neoadjuvant therapy for breast cancer. Fac Rev 2021; 10:2. [PMID: 33659921 PMCID: PMC7894264 DOI: 10.12703/r/10-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neoadjuvant trials for early breast cancer have accelerated the identification of novel active agents, enabling streamlined conduct of registration trials with fewer subjects. Measurement of neoadjuvant drug effects has also enabled the identification of patients with high risk of distant recurrence and has justified development of additional adjuvant approaches to improve outcomes. Neoadjuvant evaluation of new drugs was significantly improved by the introduction of pathologic complete response (pCR) rate as a quantitative surrogate endpoint for distant disease-free survival (DDFS) and event free survival (EFS). The neoadjuvant phase 2 platform trial I-SPY 2 simultaneously tests multiple drugs across multiple breast cancer subtypes using Bayesian methods of adaptive randomization for assessment of drug efficacy. In addition to the pCR endpoint, the I-SPY 2 trial has demonstrated that the residual cancer burden (RCB) score measures gradations of tumor response that correlate with DDFS and EFS across treatments and subtypes. For HER2-positive and triple-negative breast cancers that have failed to attain pCR with neoadjuvant chemotherapy (NAC), effective modifications of adjuvant treatment have improved outcomes and changed the standard of care for these subtypes. Neoadjuvant therapy is therefore preferred for stage II and III, as well as some stage I, HER2-positive and triple-negative tumors. Neoadjuvant endocrine therapy (NET) strategies have also emerged from innovative trials for stage II and III estrogen receptor (ER)-positive/HER2-negative tumors, as in the ALTERNATE trial. From neoadjuvant trials, opportunities have emerged to de-escalate therapy on the basis of metrics of response to chemotherapy or hormonal therapy. Neoadjuvant therapy for early breast cancer is therefore emerging as a promising approach to accelerate new drug development, optimize treatment strategies, and (where appropriate) de-escalate neoadjuvant therapy.
Collapse
Affiliation(s)
| | - César A Herrera-Ponzanelli
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, México
| | - Diego Hinojosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, México
| | - Rafael Castillo
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, México
| | - Irwin Hernandez-Cruz
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, México
| | - Victor A Arrieta
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, México
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | | | - Douglas Yee
- University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
26
|
Cancer Detection and Quantification of Treatment Response Using Diffusion-Weighted MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Li W, Newitt DC, Gibbs J, Wilmes LJ, Jones EF, Arasu VA, Strand F, Onishi N, Nguyen AAT, Kornak J, Joe BN, Price ER, Ojeda-Fournier H, Eghtedari M, Zamora KW, Woodard SA, Umphrey H, Bernreuter W, Nelson M, Church AL, Bolan P, Kuritza T, Ward K, Morley K, Wolverton D, Fountain K, Lopez-Paniagua D, Hardesty L, Brandt K, McDonald ES, Rosen M, Kontos D, Abe H, Sheth D, Crane EP, Dillis C, Sheth P, Hovanessian-Larsen L, Bang DH, Porter B, Oh KY, Jafarian N, Tudorica A, Niell BL, Drukteinis J, Newell MS, Cohen MA, Giurescu M, Berman E, Lehman C, Partridge SC, Fitzpatrick KA, Borders MH, Yang WT, Dogan B, Goudreau S, Chenevert T, Yau C, DeMichele A, Berry D, Esserman LJ, Hylton NM. Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL. NPJ Breast Cancer 2020; 6:63. [PMID: 33298938 PMCID: PMC7695723 DOI: 10.1038/s41523-020-00203-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype.
Collapse
Affiliation(s)
- Wen Li
- University of California, San Francisco, CA, USA
| | | | | | | | - Ella F Jones
- University of California, San Francisco, CA, USA
| | | | - Fredrik Strand
- University of California, San Francisco, CA, USA
- Karolinska Institute, Stockholm, Sweden
| | | | | | - John Kornak
- University of California, San Francisco, CA, USA
| | - Bonnie N Joe
- University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mark Rosen
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | - Pulin Sheth
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Karen Y Oh
- Oregon Health & Science University, Portland, OR, USA
| | - Neda Jafarian
- Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Wei T Yang
- University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Basak Dogan
- University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | - Don Berry
- Berry Consultants, LLC, Austin, TX, USA
| | | | | |
Collapse
|
28
|
Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol 2020; 32:229-239. [PMID: 33232761 PMCID: PMC9348585 DOI: 10.1016/j.annonc.2020.11.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is strongly associated with favorable outcome. We examined the utility of serial circulating tumor DNA (ctDNA) testing for predicting pCR and risk of metastatic recurrence. PATIENTS AND METHODS Cell-free DNA (cfDNA) was isolated from 291 plasma samples of 84 high-risk early breast cancer patients treated in the neoadjuvant I-SPY 2 TRIAL with standard NAC alone or combined with MK-2206 (AKT inhibitor) treatment. Blood was collected at pretreatment (T0), 3 weeks after initiation of paclitaxel (T1), between paclitaxel and anthracycline regimens (T2), or prior to surgery (T3). A personalized ctDNA test was designed to detect up to 16 patient-specific mutations (from whole-exome sequencing of pretreatment tumor) in cfDNA by ultra-deep sequencing. The median follow-up time for survival analysis was 4.8 years. RESULTS At T0, 61 of 84 (73%) patients were ctDNA positive, which decreased over time (T1: 35%; T2: 14%; and T3: 9%). Patients who remained ctDNA positive at T1 were significantly more likely to have residual disease after NAC (83% non-pCR) compared with those who cleared ctDNA (52% non-pCR; odds ratio 4.33, P = 0.012). After NAC, all patients who achieved pCR were ctDNA negative (n = 17, 100%). For those who did not achieve pCR (n = 43), ctDNA-positive patients (14%) had a significantly increased risk of metastatic recurrence [hazard ratio (HR) 10.4; 95% confidence interval (CI) 2.3-46.6]; interestingly, patients who did not achieve pCR but were ctDNA negative (86%) had excellent outcome, similar to those who achieved pCR (HR 1.4; 95% CI 0.15-13.5). CONCLUSIONS Lack of ctDNA clearance was a significant predictor of poor response and metastatic recurrence, while clearance was associated with improved survival even in patients who did not achieve pCR. Personalized monitoring of ctDNA during NAC of high-risk early breast cancer may aid in real-time assessment of treatment response and help fine-tune pCR as a surrogate endpoint of survival.
Collapse
|
29
|
Duric N, Littrup P, Sak M, Li C, Chen D, Roy O, Bey-Knight L, Brem R. A Novel Marker, Based on Ultrasound Tomography, for Monitoring Early Response to Neoadjuvant Chemotherapy. JOURNAL OF BREAST IMAGING 2020; 2:569-576. [PMID: 33385161 DOI: 10.1093/jbi/wbaa084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the combination of tumor volume and sound speed as a potential imaging marker for assessing neoadjuvant chemotherapy (NAC) response. METHODS This study was carried out under an IRB-approved protocol (written consent required). Fourteen patients undergoing NAC for invasive breast cancer were examined with ultrasound tomography (UST) throughout their treatment. The volume (V) and the volume-averaged sound speed (VASS) of the tumors and their changes were measured for each patient. Time-dependent response curves of V and VASS were constructed individually for each patient and then as averages for the complete versus partial response groups in order to characterize differences between the two groups. Differences in group means were assessed for statistical significance using t-tests. Differences in shapes of group curves were evaluated with Kolmogorov-Smirnoff tests. RESULTS On average, tumor volume and sound speed in the partial response group showed a gradual decline in the first 60 days of treatment, while the complete response group showed a much steeper decline (P < 0.05). The shapes of the response curves of the two groups, corresponding to the entire treatment period, were also found to be significantly different (P < 0.05). Furthermore, large simultaneous drops in volume and sound speed in the first 3 weeks of treatment were characteristic only of the complete responders (P < 0.05). CONCLUSION This study demonstrates the feasibility of using UST to monitor NAC response, warranting future studies to better define the potential of UST for noninvasive, rapid identification of partial versus complete responders in women undergoing NAC.
Collapse
Affiliation(s)
- Neb Duric
- Delphinus Medical Technologies, Inc., Novi, MI.,Wayne State University, Barbara Ann Karmanos Cancer Institute, Department of Oncology, Detroit, MI
| | - Peter Littrup
- Delphinus Medical Technologies, Inc., Novi, MI.,Wayne State University, Barbara Ann Karmanos Cancer Institute, Department of Oncology, Detroit, MI
| | - Mark Sak
- Delphinus Medical Technologies, Inc., Novi, MI
| | - Cuiping Li
- Delphinus Medical Technologies, Inc., Novi, MI
| | - Di Chen
- Delphinus Medical Technologies, Inc., Novi, MI
| | - Olivier Roy
- Delphinus Medical Technologies, Inc., Novi, MI
| | - Lisa Bey-Knight
- Delphinus Medical Technologies, Inc., Novi, MI.,Wayne State University, Barbara Ann Karmanos Cancer Institute, Department of Oncology, Detroit, MI
| | - Rachel Brem
- George Washington University, Department of Radiology, Washington, DC
| |
Collapse
|
30
|
Fusco R, Granata V, Pariante P, Cerciello V, Siani C, Di Bonito M, Valentino M, Sansone M, Botti G, Petrillo A. Blood oxygenation level dependent magnetic resonance imaging and diffusion weighted MRI imaging for benign and malignant breast cancer discrimination. Magn Reson Imaging 2020; 75:51-59. [PMID: 33080334 DOI: 10.1016/j.mri.2020.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this study is to assess Blood oxygenation level dependent Magnetic Resonance Imaging (BOLD-MRI) and Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) in the differentiation of benign and malignant breast lesions. METHODS Fifty-nine breast lesions (26 benign and 33 malignant lesions) pathologically proven in 59 patients were included in this retrospective study. As BOLD parameters were estimated basal signal S0 and the relaxation rate R2*, diffusion and perfusion parameters were derived by DWI (pseudo-diffusion coefficient (Dp), perfusion fraction (fp) and tissue diffusivity (Dt)). Wilcoxon-Mann-Whitney U test and Receiver operating characteristic (ROC) analyses were calculated and area under ROC curve (AUC) was obtained. Moreover, pattern recognition approaches (linear discrimination analysis (LDA), support vector machine, k-nearest neighbours, decision tree) with least absolute shrinkage and selection operator (LASSO) method and leave one out cross validation approach were considered. RESULTS A significant discrimination was obtained by the standard deviation value of S0, as BOLD parameter, that reached an AUC of 0.76 with a sensitivity of 65%, a specificity of 85% and an accuracy of 76%. No significant discrimination was obtained considering diffusion and perfusion parameters. Considering LASSO results, the features to use as predictors were all extracted parameters except that the mean value of R2* and the best result was obtained by a LDA that obtained an AUC = 0.83, with a sensitivity of 88%, a specificity of 77% and an accuracy of 83%. CONCLUSIONS Good performance to discriminate benign and malignant lesions could be obtained using BOLD and DWI derived parameters with a LDA classification approach. However, these findings should be proven on larger and several dataset with different MR scanners.
Collapse
Affiliation(s)
- Roberta Fusco
- Radiology Division, ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Naples, Italy
| | - Vincenza Granata
- Radiology Division, ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Naples, Italy.
| | - Paolo Pariante
- Radiology Division, ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Naples, Italy
| | - Vincenzo Cerciello
- Health Physics Unit, ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Naples, Italy
| | - Claudio Siani
- Senology Surgical Division, ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Naples, Italy
| | - Maurizio Di Bonito
- Pathology Division, ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Naples, Italy
| | - Marika Valentino
- Department, Electrical Engineering and Information Technologies, UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II, Naples, Italy
| | - Mario Sansone
- Department, Electrical Engineering and Information Technologies, UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II, Naples, Italy
| | - Gerardo Botti
- Scientific Director, ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Naples, Italy
| | - Antonella Petrillo
- Radiology Division, ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Naples, Italy
| |
Collapse
|
31
|
Tsarouchi MI, Vlachopoulos GF, Karahaliou AN, Costaridou LI. Diagnostic value of apparent diffusion coefficient lesion texture biomarkers in breast MRI. HEALTH AND TECHNOLOGY 2020. [DOI: 10.1007/s12553-020-00452-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Jones EF, Hathi DK, Freimanis R, Mukhtar RA, Chien AJ, Esserman LJ, van’t Veer LJ, Joe BN, Hylton NM. Current Landscape of Breast Cancer Imaging and Potential Quantitative Imaging Markers of Response in ER-Positive Breast Cancers Treated with Neoadjuvant Therapy. Cancers (Basel) 2020; 12:E1511. [PMID: 32527022 PMCID: PMC7352259 DOI: 10.3390/cancers12061511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, neoadjuvant treatment trials have shown that breast cancer subtypes identified on the basis of genomic and/or molecular signatures exhibit different response rates and recurrence outcomes, with the implication that subtype-specific treatment approaches are needed. Estrogen receptor-positive (ER+) breast cancers present a unique set of challenges for determining optimal neoadjuvant treatment approaches. There is increased recognition that not all ER+ breast cancers benefit from chemotherapy, and that there may be a subset of ER+ breast cancers that can be treated effectively using endocrine therapies alone. With this uncertainty, there is a need to improve the assessment and to optimize the treatment of ER+ breast cancers. While pathology-based markers offer a snapshot of tumor response to neoadjuvant therapy, non-invasive imaging of the ER disease in response to treatment would provide broader insights into tumor heterogeneity, ER biology, and the timing of surrogate endpoint measurements. In this review, we provide an overview of the current landscape of breast imaging in neoadjuvant studies and highlight the technological advances in each imaging modality. We then further examine some potential imaging markers for neoadjuvant treatment response in ER+ breast cancers.
Collapse
Affiliation(s)
- Ella F. Jones
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Deep K. Hathi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Rita Freimanis
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Rita A. Mukhtar
- Department of Surgery, University of California, San Francisco, CA 94115, USA;
| | - A. Jo Chien
- School of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (A.J.C.); (L.J.v.V.)
| | - Laura J. Esserman
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA;
| | - Laura J. van’t Veer
- School of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (A.J.C.); (L.J.v.V.)
| | - Bonnie N. Joe
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Nola M. Hylton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| |
Collapse
|
33
|
Kuhl CK, Lehman C, Bedrosian I. Imaging in Locoregional Management of Breast Cancer. J Clin Oncol 2020; 38:2351-2361. [PMID: 32442068 PMCID: PMC7343437 DOI: 10.1200/jco.19.03257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Christiane K Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, RWTH, Aachen, Germany
| | - Constance Lehman
- Breast Imaging Section, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, Division of Surgery, University of Texas MD Anderson Cancer, Center, Houston, TX
| |
Collapse
|
34
|
Reig B, Heacock L, Lewin A, Cho N, Moy L. Role of MRI to Assess Response to Neoadjuvant Therapy for Breast Cancer. J Magn Reson Imaging 2020; 52. [DOI: 10.1002/jmri.27145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Beatriu Reig
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
| | - Laura Heacock
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
| | - Alana Lewin
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
| | - Nariya Cho
- Department of Radiology Seoul National University Hospital Seoul Republic of Korea
- Department of Radiology Seoul National University College of Medicine Seoul Republic of Korea
| | - Linda Moy
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
- Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology, New York University Grossman School of Medicine New York New York USA
- Center for Advanced Imaging Innovation and Research (CAI2 R) New York University Grossman School of Medicine New York New York USA
| |
Collapse
|
35
|
Kim S, Kim MJ, Kim EK, Yoon JH, Park VY. MRI Radiomic Features: Association with Disease-Free Survival in Patients with Triple-Negative Breast Cancer. Sci Rep 2020; 10:3750. [PMID: 32111957 PMCID: PMC7048756 DOI: 10.1038/s41598-020-60822-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
Radiomic features hold potential to improve prediction of disease-free survival (DFS) in triple-negative breast cancer (TNBC) and may show better performance if developed from TNBC patients. We aimed to develop a radiomics score based on MRI features to estimate DFS in patients with TNBC. A total of 228 TNBC patients who underwent preoperative MRI and surgery between April 2012 and December 2016 were included. Patients were temporally divided into the training (n = 169) and validation (n = 59) set. Radiomic features of the tumor were extracted from T2-weighted and contrast-enhanced T1- weighted MRI. Then a radiomics score was constructed with the least absolute shrinkage and selection operator regression in the training set. Univariate and multivariate Cox proportional hazards models were used to determine what associations the radiomics score and clinicopathologic variables had with DFS. A combined clinicopathologic-radiomic (CCR) model was constructed based on multivariate Cox analysis. The incremental values of the radiomics score were evaluated by using the integrated area under the receiver operating characteristic curve (iAUC) and bootstrapping (n = 1000). The radiomics score, which consisted of 5 selected MRI features, was significantly associated with worse DFS in both the training and validation sets (p = 0.002, p = 0.033, respectively). In both the training and validation set, the radiomics score showed comparable performance with the clinicopathologic model. The CCR model demonstrated better performance than the clinicopathologic model in the training set (iAUC, 0.844; difference in iAUC, p < 0.001) and validation set (iAUC, 0.765, difference in iAUC, p < 0.001). In conclusion, MRI-based radiomic features can improve the prediction of DFS when integrated with clinicopathologic data in patients with TNBC.
Collapse
Affiliation(s)
- Sungwon Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Jung Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Kyung Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hyun Yoon
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Vivian Youngjean Park
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|