1
|
Neelsen C, Elgeti T, Meyer T, Grittner U, Mödl L, Furth C, Geisel D, Hamm B, Sack I, Marticorena Garcia SR. Multifrequency Magnetic Resonance Elastography Detects Small Abdominal Lymph Node Metastasis by High Stiffness. Invest Radiol 2024; 59:787-793. [PMID: 38948965 DOI: 10.1097/rli.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
OBJECTIVES Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 is a clinical and research standard for evaluating malignant tumors and lymph node metastasis. However, quantitative analysis of nodal status is limited to measurement of short axis diameter (SAD), and metastatic lymph nodes below 10 mm in SAD are often not detected. The purpose of this study was to evaluate the value of multifrequency magnetic resonance elastography (MRE) when added to RECIST 1.1 for detection of lymph node metastasis. MATERIALS AND METHODS Twenty-five benign and 82 metastatic lymph nodes were prospectively examined by multifrequency MRE at 1.5 T using tomoelastography postprocessing at 30, 40, 50, and 60 Hz (total scan time of 4 minutes). Shear wave speed as a surrogate of soft tissue stiffness was provided in m/s. Positron emission tomography-computed tomography was used as reference standard for identification of abdominal lymph node metastasis from histologically confirmed primary tumors. The diagnostic performance of MRE was compared with that of SAD according to RECIST 1.1 and evaluated by receiver operating characteristic curve analysis using generalized linear mixed models and binary logistic mixed models. Sensitivity, specificity, and predictive values were calculated for different cutoffs. RESULTS Metastatic lymph nodes (1.90 ± 0.57 m/s) were stiffer than benign lymph nodes (0.98 ± 0.20 m/s, P < 0.001). An area under the curve of 0.95 for a cutoff of 1.32 m/s was calculated. Using a conservative approach with 1.0 specificity, we found sensitivity (SAD/MRE/MRE + SAD, 0.56/0.84/0.88), negative predictive values (0.41/0.66/0.71), and overall accuracy (0.66/0.88/0.91) to be improved using MRE and even higher for combined MRE and SAD. CONCLUSIONS Multifrequency MRE improves metastatic abdominal lymph node detection by 25% based on higher tissue stiffness-even for lymph nodes with an SAD ≤10 mm. Stiffness information is quick to obtain and would be a promising supplement to RECIST.
Collapse
Affiliation(s)
- Christian Neelsen
- From the Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany (C.N., T.E., T.M., B.H., I.S., S.R.M.G.); Division of Radiology, German Cancer Research Center, Heidelberg, Germany (C.N.); Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany (T.E., C.F.); Institute for Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany (U.G., L.M.); and Department of Radiology, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany (D.G., B.H.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Pagé G, Bied M, Garteiser P, Van Beers B, Etaix N, Fraschini C, Bel-Brunon A, Gennisson JL. Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus. Phys Med Biol 2023; 68:205003. [PMID: 37703895 DOI: 10.1088/1361-6560/acf98c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Objective. The aim of this study is to validate the estimation of the nonlinear shear modulus (A) from the acoustoelasticity theory with two experimental methods, ultrasound (US) elastography and magnetic resonance elastography (MRE), and a finite element method.Approach. Experiments were performed on agar (2%)-gelatin (8%) phantom considered as homogeneous, elastic and isotropic. Two specific setups were built to ensure a uniaxial stress step by step on the phantom, one for US and a nonmagnetic version for MRE. The stress was controlled identically in both imaging techniques, with a water tank placed on the top of the phantom and filled with increasing masses of water during the experiment. In US, the supersonic shear wave elastography was implemented on an ultrafast US device, driving a 6 MHz linear array to measure shear wave speed. In MRE, a gradient-echo sequence was used in which the three spatial directions of a 40 Hz continuous wave displacement generated with an external driver were encoded successively. Numerically, a finite element method was developed to simulate the propagation of the shear wave in a uniaxially stressed soft medium.Main results. Similar shear moduli were estimated at zero stress using experimental methods,μ0US= 12.3 ± 0.3 kPa andμ0MRE= 11.5 ± 0.7 kPa. Numerical simulations were set with a shear modulus of 12 kPa and the resulting nonlinear shear modulus was found to be -58.1 ± 0.7 kPa. A very good agreement between the finite element model and the experimental models (AUS= -58.9 ± 9.9 kPa andAMRE= -52.8 ± 6.5 kPa) was obtained.Significance. These results show the validity of such nonlinear shear modulus measurement quantification in shear wave elastography. This work paves the way to develop nonlinear elastography technique to get a new biomarker for medical diagnosis.
Collapse
Affiliation(s)
- Gwenaël Pagé
- BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale, Université Paris-Saclay, CEA, CNRS UMR 9011, Inserm UMR 1281, Service hospitalier Frédéric Joliot, F-91401 Orsay, France
| | - Marion Bied
- BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale, Université Paris-Saclay, CEA, CNRS UMR 9011, Inserm UMR 1281, Service hospitalier Frédéric Joliot, F-91401 Orsay, France
| | - Philippe Garteiser
- Laboratory of imaging biomarkers, Center for Research on inflammation, UMR 1149, Université Paris-Cité, Inserm, F-75018 Paris, France
| | - Bernard Van Beers
- Laboratory of imaging biomarkers, Center for Research on inflammation, UMR 1149, Université Paris-Cité, Inserm, F-75018 Paris, France
- Department of Radiology, Beaujon university hospital Paris Nord, AP-HP, F-92110 Clichy, France
| | - Nicolas Etaix
- Hologic - Supersonic Imagine, F-13290 Aix en Provence, France
| | | | - Aline Bel-Brunon
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, F-69621 Villeurbanne, France
| | - Jean-Luc Gennisson
- BioMaps, Laboratoire d'Imagerie Biomédicale Multimodale, Université Paris-Saclay, CEA, CNRS UMR 9011, Inserm UMR 1281, Service hospitalier Frédéric Joliot, F-91401 Orsay, France
| |
Collapse
|
3
|
van Schelt AS, Beek KJ, Wassenaar NPM, Schrauben EM, Runge JH, Gecse KB, van der Bilt JDW, Neefjes-Borst EA, Buskens CJ, Nederveen AJ, Stoker J. Viscoelastic properties of small bowel mesentery at MR elastography in Crohn's disease: a prospective cross-sectional exploratory study. Eur Radiol Exp 2023; 7:53. [PMID: 37718360 PMCID: PMC10505604 DOI: 10.1186/s41747-023-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Creeping fat is a pathological feature of small bowel Crohn's disease (CD), with literature suggesting that bowel resection with extended mesenteric resection is related to less postoperative recurrences. Conventional imaging is unable to accurately quantify the disease involvement (i.e., fibrosis) of creeping fat. Quantification of disease involvement could be useful in decision-making for additional extended mesenteric resection. We investigated the feasibility of magnetic resonance elastography (MRE) of the mesentery and if MRE is capable to detect fibrotic disease involvement of mesentery in active CD. METHODS Multifrequency MRE yielded spatial stiffness (shear wave speed, SWS, |G*|) and fluidity maps (φ). Viscoelastic properties of seven CD patients' mesentery were compared to age- and sex-matched healthy volunteers (HV) (Mann-Whitney U-test). Within CD patients, the affected and "presumably" unaffected mesentery were compared (Wilcoxon-signed rank test). Repeatability was tested in 15 HVs (Bland-Altman analysis, coefficient of variation [CoV]). Spearman rank correlations were used to investigate the relation between microscopically scored amount of mesenteric fibrosis and viscoelastic parameters. RESULTS SWS, |G*|, and φ of affected mesentery in CD were higher compared to HV (p = 0.017, p = 0.001, p = 0.017). Strong correlations were found between percentage of area of mesenteric fibrosis and SWS and |G*| (p < 0.010). No differences were found within CD between affected and presumably unaffected mesentery. Repeatability of SWS showed 95% limits of agreement of (-0.09, 0.13 m/s) and within-subject CoV of 5.3%. CONCLUSION MRE may have the potential to measure fibrotic disease involvement of the mesentery in CD, possibly guiding clinical decision-making with respect to extended mesenteric resection. TRIAL REGISTRATION Dutch trial register, NL9105 , registered 7 December 2020. RELEVANCE STATEMENT MRE may have the potential to measure the amount of mesenteric fibrosis of the affected mesenteric fat in active Crohn's disease, giving more insight into disease progression and could potentially play a role in clinical decision-making for extended mesenteric resection. KEY POINTS • MRE of the mesentery in patients with active CD is feasible. • Fluidity and stiffness of the mesentery increase in active CD, while stiffness correlates with the histopathological amount of mesenteric fibrosis. • MRE provides biomarkers to quantify mesenteric disease activity in active CD.
Collapse
Affiliation(s)
- Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Kim Johanna Beek
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands.
| | - Nienke Petronella Maria Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Krisztina Barbara Gecse
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jarmila D W van der Bilt
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Andra Neefjes-Borst
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christianne Johanna Buskens
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Abstract
ABSTRACT The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity is conducive to cell unjamming and metastatic spread. This reductionist view of tumorigenesis and malignant transformation provides a generalized framework for understanding the physical principles of tumor aggressiveness and harnessing them as novel in vivo imaging markers. Magnetic resonance elastography is an emerging imaging technology for depicting the viscoelastic properties of biological soft tissues and clinically characterizing tumors in terms of their biomechanical properties. This review article presents recent technical developments, basic results, and clinical applications of magnetic resonance elastography in patients with malignant tumors.
Collapse
Affiliation(s)
- Jing Guo
- From the Department of Radiology
| | | | | | | |
Collapse
|
5
|
Wang L, Yang JD, Yoo CC, Lai KKY, Braun J, McGovern DPB, Xie Y, Pandol SJ, Lu SC, Li D. Magnetic resonance imaging for characterization of hepatocellular carcinoma metabolism. Front Physiol 2022; 13:1056511. [PMID: 36589457 PMCID: PMC9800006 DOI: 10.3389/fphys.2022.1056511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
With a better understanding of the pathophysiological and metabolic changes in hepatocellular carcinoma (HCC), multiparametric and novel functional magnetic resonance (MR) and positron emission tomography (PET) techniques have received wide interest and are increasingly being applied in preclinical and clinical research. These techniques not only allow for non-invasive detection of structural, functional, and metabolic changes in malignant tumor cells but also characterize the tumor microenvironment (TME) and the interactions of malignant tumor cells with the TME, which has hypoxia and low pH, resulting from the Warburg effect and accumulation of metabolites produced by tumor cells and other cellular components. The heterogeneity and complexity of the TME require a combination of images with various parameters and modalities to characterize tumors and guide therapy. This review focuses on the value of multiparametric magnetic resonance imaging and PET/MR in evaluating the structural and functional changes of HCC and in detecting metabolites formed owing to HCC and the TME.
Collapse
Affiliation(s)
- Lixia Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States,Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States,Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Charles C. Yoo
- Office of the Medical Director 1st MRI, Los Angeles, CA, United States
| | - Keane K. Y. Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope and City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Jonathan Braun
- F. Widjaja Inflammatory Bowel Disease Institute, Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dermot P. B. McGovern
- F. Widjaja Inflammatory Bowel Disease Institute, Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States,Department of Bioengineering, University of California, Los Angeles, CA, United States,*Correspondence: Debiao Li,
| |
Collapse
|
6
|
Civale J, Parasaram V, Bamber JC, Harris EJ. High frequency ultrasound vibrational shear wave elastography for preclinical research. Phys Med Biol 2022; 67:245005. [PMID: 36410042 PMCID: PMC9728510 DOI: 10.1088/1361-6560/aca4b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Preclinical evaluation of novel therapies using models of cancer is an important tool in cancer research, where imaging can provide non-invasive tools to characterise the internal structure and function of tumours. The short propagation paths when imaging tumours and organs in small animals allow the use of high frequencies for both ultrasound and shear waves, providing the opportunity for high-resolution shear wave elastography and hence its use for studying the heterogeneity of tissue elasticity, where heterogeneity may be a predictor of tissue response. Here we demonstrate vibrational shear wave elastography (VSWE) using a mechanical actuator to produce high frequency (up to 1000 Hz) shear waves in preclinical tumours, an alternative to the majority of preclinical ultrasound SWE studies where an acoustic radiation force impulse is required to create a relatively low-frequency broad-band shear-wave pulse. We implement VSWE with a high frequency (17.8 MHz) probe running a focused line-by-line ultrasound imaging sequence which as expected was found to offer improved detection of 1000 Hz shear waves over an ultrafast planar wave imaging sequence in a homogenous tissue-mimicking phantom. We test the VSWE in anex vivotumour xenograft, demonstrating the ability to detect shear waves up to 10 mm from the contactor position at 1000 Hz. By reducing the kernel size used for shear wave speed estimation to 1 mm we are able to produce shear wave speed images with spatial resolution of this order. Finally, we present VSWE data from xenograft tumoursin vivo, demonstrating the feasibility of the technique in mice under isoflurane sedation. Mean shear wave speeds in the tumours are in good agreements with those reported by previous authors. Characterising the frequency dependence of shear wave speed demonstrates the potential to quantify the viscoelastic properties of tumoursin vivo.
Collapse
Affiliation(s)
- J Civale
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - V Parasaram
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - JC Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - EJ Harris
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
7
|
Harkos C, Svensson SF, Emblem KE, Stylianopoulos T. Inducing Biomechanical Heterogeneity in Brain Tumor Modeling by MR Elastography: Effects on Tumor Growth, Vascular Density and Delivery of Therapeutics. Cancers (Basel) 2022; 14:cancers14040884. [PMID: 35205632 PMCID: PMC8870149 DOI: 10.3390/cancers14040884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Biomechanical forces aggravate brain tumor progression. In this study, magnetic resonance elastography (MRE) is employed to extract tissue biomechanical properties from five glioblastoma patients and a healthy subject, and data are incorporated in a mathematical model that simulates tumor growth. Mathematical modeling enables further understanding of glioblastoma development and allows patient-specific predictions for tumor vascularity and delivery of drugs. Incorporating MRE data results in a more realistic intratumoral distribution of mechanical stress and anisotropic tumor growth and a better description of subsequent events that are closely related to the development of stresses, including heterogeneity of the tumor vasculature and intrapatient variations in tumor perfusion and delivery of drugs. Abstract The purpose of this study is to develop a methodology that incorporates a more accurate assessment of tissue mechanical properties compared to current mathematical modeling by use of biomechanical data from magnetic resonance elastography. The elastography data were derived from five glioblastoma patients and a healthy subject and used in a model that simulates tumor growth, vascular changes due to mechanical stresses and delivery of therapeutic agents. The model investigates the effect of tumor-specific biomechanical properties on tumor anisotropic growth, vascular density heterogeneity and chemotherapy delivery. The results showed that including elastography data provides a more realistic distribution of the mechanical stresses in the tumor and induces anisotropic tumor growth. Solid stress distribution differs among patients, which, in turn, induces a distinct functional vascular density distribution—owing to the compression of tumor vessels—and intratumoral drug distribution for each patient. In conclusion, incorporating elastography data results in a more accurate calculation of intratumoral mechanical stresses and enables a better mathematical description of subsequent events, such as the heterogeneous development of the tumor vasculature and intrapatient variations in tumor perfusion and delivery of drugs.
Collapse
Affiliation(s)
- Constantinos Harkos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus;
| | - Siri Fløgstad Svensson
- Division of Radiology and Nuclear Medicine, Department of Diagnostic Physics, Oslo University Hospital, 0372 Oslo, Norway; (S.F.S.); (K.E.E.)
- Department of Physics, The Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Kyrre E. Emblem
- Division of Radiology and Nuclear Medicine, Department of Diagnostic Physics, Oslo University Hospital, 0372 Oslo, Norway; (S.F.S.); (K.E.E.)
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus;
- Correspondence:
| |
Collapse
|
8
|
Shmelev ME, Titov SI, Belousov AS, Farniev VM, Zhmenia VM, Lanskikh DV, Penkova AO, Kumeiko VV. Cell and Tissue Nanomechanics: From Early Development to Carcinogenesis. Biomedicines 2022; 10:345. [PMID: 35203554 PMCID: PMC8961777 DOI: 10.3390/biomedicines10020345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cell and tissue nanomechanics, being inspired by progress in high-resolution physical mapping, has recently burst into biomedical research, discovering not only new characteristics of normal and diseased tissues, but also unveiling previously unknown mechanisms of pathological processes. Some parallels can be drawn between early development and carcinogenesis. Early embryogenesis, up to the blastocyst stage, requires a soft microenvironment and internal mechanical signals induced by the contractility of the cortical actomyosin cytoskeleton, stimulating quick cell divisions. During further development from the blastocyst implantation to placenta formation, decidua stiffness is increased ten-fold when compared to non-pregnant endometrium. Organogenesis is mediated by mechanosignaling inspired by intercellular junction formation with the involvement of mechanotransduction from the extracellular matrix (ECM). Carcinogenesis dramatically changes the mechanical properties of cells and their microenvironment, generally reproducing the structural properties and molecular organization of embryonic tissues, but with a higher stiffness of the ECM and higher cellular softness and fluidity. These changes are associated with the complete rearrangement of the entire tissue skeleton involving the ECM, cytoskeleton, and the nuclear scaffold, all integrated with each other in a joint network. The important changes occur in the cancer stem-cell niche responsible for tumor promotion and metastatic growth. We expect that the promising concept based on the natural selection of cancer cells fixing the most invasive phenotypes and genotypes by reciprocal regulation through ECM-mediated nanomechanical feedback loop can be exploited to create new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Mikhail E. Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Sergei I. Titov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vladislav M. Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Valeriia M. Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Daria V. Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Alina O. Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
9
|
Abstract
Magnetic resonance (MR) imaging is a crucial tool for evaluation of the skull base, enabling characterization of complex anatomy by utilizing multiple image contrasts. Recent technical MR advances have greatly enhanced radiologists' capability to diagnose skull base pathology and help direct management. In this paper, we will summarize cutting-edge clinical and emerging research MR techniques for the skull base, including high-resolution, phase-contrast, diffusion, perfusion, vascular, zero echo-time, elastography, spectroscopy, chemical exchange saturation transfer, PET/MR, ultra-high-field, and 3D visualization. For each imaging technique, we provide a high-level summary of underlying technical principles accompanied by relevant literature review and clinical imaging examples.
Collapse
Affiliation(s)
- Claudia F Kirsch
- Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY
| | - Mai-Lan Ho
- Associate Professor of Radiology, Director of Research, Department of Radiology, Director, Advanced Neuroimaging Core, Chair, Asian Pacific American Network, Secretary, Association for Staff and Faculty Women, Nationwide Children's Hospital and The Ohio State University, Columbus, OH; Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY.
| |
Collapse
|
10
|
Pagé G, Tardieu M, Gennisson JL, Besret L, Garteiser P, Van Beers BE. Tumor Solid Stress: Assessment with MR Elastography under Compression of Patient-Derived Hepatocellular Carcinomas and Cholangiocarcinomas Xenografted in Mice. Cancers (Basel) 2021; 13:cancers13081891. [PMID: 33920771 PMCID: PMC8071192 DOI: 10.3390/cancers13081891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023] Open
Abstract
Malignant tumors have abnormal biomechanical characteristics, including high viscoelasticity, solid stress, and interstitial fluid pressure. Magnetic resonance (MR) elastography is increasingly used to non-invasively assess tissue viscoelasticity. However, solid stress and interstitial fluid pressure measurements are performed with invasive methods. We studied the feasibility and potential role of MR elastography at basal state and under controlled compression in assessing altered biomechanical features of malignant liver tumors. MR elastography was performed in mice with patient-derived, subcutaneously xenografted hepatocellular carcinomas or cholangiocarcinomas to measure the basal viscoelasticity and the compression stiffening rate, which corresponds to the slope of elasticity versus applied compression. MR elastography measurements were correlated with invasive pressure measurements and digital histological readings. Significant differences in MR elastography parameters, pressure, and histological measurements were observed between tumor models. In multivariate analysis, collagen content and interstitial fluid pressure were determinants of basal viscoelasticity, whereas solid stress, in addition to collagen content, cellularity, and tumor type, was an independent determinant of compression stiffening rate. Compression stiffening rate had high AUC (0.87 ± 0.08) for determining elevated solid stress, whereas basal elasticity had high AUC for tumor collagen content (AUC: 0.86 ± 0.08). Our results suggest that MR elastography compression stiffening rate, in contrast to basal viscoelasticity, is a potential marker of solid stress in malignant liver tumors.
Collapse
Affiliation(s)
- Gwenaël Pagé
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, Université de Paris, UMR 1149, Inserm, F-75018 Paris, France; (P.G.); (B.E.V.B.)
- Correspondence:
| | - Marion Tardieu
- Montpellier Cancer Research Institute (IRCM), INSERM U1194, University of Montpellier, 34095 Montpellier, France;
- Montpellier Cancer Institute (ICM), 34298 Montpellier, France
| | - Jean-Luc Gennisson
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401 Orsay, France;
| | | | - Philippe Garteiser
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, Université de Paris, UMR 1149, Inserm, F-75018 Paris, France; (P.G.); (B.E.V.B.)
| | - Bernard E. Van Beers
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, Université de Paris, UMR 1149, Inserm, F-75018 Paris, France; (P.G.); (B.E.V.B.)
- Department of Radiology, AP-HP, Beaujon University Hospital Paris Nord, F-92110 Clichy, France
| |
Collapse
|
11
|
In Vivo Quantification of Water Diffusion, Stiffness, and Tissue Fluidity in Benign Prostatic Hyperplasia and Prostate Cancer. Invest Radiol 2020; 55:524-530. [DOI: 10.1097/rli.0000000000000685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|