1
|
Kern AL, Pink I, Bonifacius A, Kaireit T, Speth M, Behrendt L, Klimeš F, Voskrebenzev A, Hohlfeld JM, Hoeper MM, Welte T, Wacker F, Eiz-Vesper B, Vogel-Claussen J. Alveolar membrane and capillary function in COVID-19 convalescents: insights from chest MRI. Eur Radiol 2024; 34:6502-6513. [PMID: 38460013 PMCID: PMC11399308 DOI: 10.1007/s00330-024-10669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 02/10/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVES To investigate potential presence and resolution of longer-term pulmonary diffusion limitation and microvascular perfusion impairment in COVID-19 convalescents. MATERIALS AND METHODS This prospective, longitudinal study was carried out between May 2020 and April 2023. COVID-19 convalescents repeatedly and age/sex-matched healthy controls once underwent MRI including hyperpolarized 129Xe MRI. Blood samples were obtained in COVID-19 convalescents for immunophenotyping. Ratios of 129Xe in red blood cells (RBC), tissue/plasma (TP), and gas phase (GP) as well as lung surface-volume ratio were quantified and correlations with CD4+/CD8+ T cell frequencies were assessed using Pearson's correlation coefficient. Signed-rank tests were used for longitudinal and U tests for group comparisons. RESULTS Thirty-five participants were recruited. Twenty-three COVID-19 convalescents (age 52.1 ± 19.4 years, 13 men) underwent baseline MRI 12.6 ± 4.2 weeks after symptom onset. Fourteen COVID-19 convalescents underwent follow-up MRI and 12 were included for longitudinal comparison (baseline MRI at 11.5 ± 2.7 weeks and follow-up 38.0 ± 5.5 weeks). Twelve matched controls were included for comparison. In COVID-19 convalescents, RBC-TP was increased at follow-up (p = 0.04). Baseline RBC-TP was lower in patients treated on intensive care unit (p = 0.03) and in patients with severe/critical disease (p = 0.006). RBC-TP correlated with CD4+/CD8+ T cell frequencies (R = 0.61/ - 0.60) at baseline. RBC-TP was not significantly different compared to matched controls at follow-up (p = 0.25). CONCLUSION Impaired microvascular pulmonary perfusion and alveolar membrane function persisted 12 weeks after symptom onset and resolved within 38 weeks after COVID-19 symptom onset. CLINICAL RELEVANCE STATEMENT 129Xe MRI shows improvement of microvascular pulmonary perfusion and alveolar membrane function between 11.5 ± 2.7 weeks and 38.0 ± 5.5 weeks after symptom onset in patients after COVID-19, returning to normal in subjects without significant prior disease. KEY POINTS • The study aims to investigate long-term effects of COVID-19 on lung function, in particular gas uptake efficiency, and on the cardiovascular system. • In COVID-19 convalescents, the ratio of 129Xe in red blood cells/tissue plasma increased longitudinally (p = 0.04), but was not different from matched controls at follow-up (p = 0.25). • Microvascular pulmonary perfusion and alveolar membrane function are impaired 11.5 weeks after symptom onset in patients after COVID-19, returning to normal in subjects without significant prior disease at 38.0 weeks.
Collapse
Affiliation(s)
- Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, Hannover, 30625, Germany.
| | - Isabell Pink
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover/Brunswick, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Till Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Milan Speth
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
- Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Marius M Hoeper
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover/Brunswick, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
2
|
Slawig A, Rothe M, Deistung A, Bohndorf K, Brill R, Graf S, Weng AM, Wohlgemuth WA, Gussew A. Ultra-short echo time (UTE) MR imaging: A brief review on technical considerations and clinical applications. ROFO-FORTSCHR RONTG 2024; 196:671-681. [PMID: 37995735 DOI: 10.1055/a-2193-1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Affiliation(s)
- Anne Slawig
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Maik Rothe
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Klaus Bohndorf
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
| | - Richard Brill
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
| | - Simon Graf
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Wurzburg, Wurzburg, Germany
| | - Walter A Wohlgemuth
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Alexander Gussew
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| |
Collapse
|
3
|
Pezzutti DL, Makary MS. Role of Imaging in Diagnosis and Management of COVID-19: Evidence-Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1457:237-246. [PMID: 39283430 DOI: 10.1007/978-3-031-61939-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Imaging has been demonstrated to play a crucial role in both the diagnosis and management of COVID-19. Depending on resources, pre-test probability, and risk factors for severe disease progression, real-time polymerase chain reaction (RT-PCR) testing may be followed by chest radiography (CXR) or chest computed tomography (CT) to further aid in diagnosis or excluding COVID-19 disease. SARS-CoV-2 has been shown not only to pathologically impact the pulmonary system, but also the cardiovascular, gastrointestinal, and neurological systems to name a few. Imaging has again proven useful in further investigating and managing extrapulmonary disease, with the use of echocardiogram, CT angiography of the cardiovascular and cerebrovascular structures, MRI of the brain, as well as ultrasound of the abdomen and CT of the abdomen and pelvis proving particularly useful. Research in artificial intelligence and its application in the diagnosis of COVID-19 and disease severity prediction is underway, and point-of-care ultrasound is an emerging bedside technique that may allow for more efficient and timely diagnosis of COVID-19.
Collapse
Affiliation(s)
- Dante L Pezzutti
- Department of Radiology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, 4th Floor, Columbus, OH, 43210, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, 4th Floor, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Saunders LC, Collier GJ, Chan HF, Hughes PJC, Smith LJ, Watson JGR, Meiring JE, Gabriel Z, Newman T, Plowright M, Wade P, Eaden JA, Thomas S, Strickland S, Gustafsson L, Bray J, Marshall H, Capener DA, Armstrong L, Rodgers J, Brook M, Biancardi AM, Rao MR, Norquay G, Rodgers O, Munro R, Ball JE, Stewart NJ, Lawrie A, Jenkins RG, Grist JT, Gleeson F, Schulte RF, Johnson KM, Wilson FJ, Cahn A, Swift AJ, Rajaram S, Mills GH, Watson L, Collini PJ, Lawson R, Thompson AAR, Wild JM. Longitudinal Lung Function Assessment of Patients Hospitalized With COVID-19 Using 1H and 129Xe Lung MRI. Chest 2023; 164:700-716. [PMID: 36965765 PMCID: PMC10036146 DOI: 10.1016/j.chest.2023.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION Do patients hospitalized with COVID-19 without evidence of architectural distortion on structural imaging exhibit longitudinal improvements in lung function measured by using 1H and 129Xe MRI between 6 and 52 weeks following hospitalization? STUDY DESIGN AND METHODS Patients who were hospitalized with COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25, and 51 weeks following hospital admission in a prospective cohort study between November 2020 and February 2022. The imaging protocol was as follows: 1H ultra-short echo time, contrast-enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion-weighted, and 129Xe spectroscopic imaging of gas exchange. RESULTS Nine patients were recruited (age 57 ± 14 [median ± interquartile range] years; six of nine patients were male). Patients underwent MRI at 6 (n = 9), 12 (n = 9), 25 (n = 6), and 51 (n = 8) weeks following hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients exhibited impaired 129Xe gas transfer (RBC to membrane fraction), but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6- to 25-week period. At 12 weeks, all patients with lung perfusion data (n = 6) showed an increase in both pulmonary blood volume and flow compared with 6 weeks, although this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared with 6-week examinations; however, 129Xe gas transfer remained abnormally low at weeks 12, 25, and 51. INTERPRETATION 129Xe gas transfer was impaired up to 1 year following hospitalization in patients who were hospitalized with COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation was normal at 52 weeks.
Collapse
Affiliation(s)
- Laura C Saunders
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Guilhem J Collier
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Ho-Fung Chan
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Paul J C Hughes
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Laurie J Smith
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - J G R Watson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - James E Meiring
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Zoë Gabriel
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Thomas Newman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Phillip Wade
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - James A Eaden
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Siby Thomas
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | | | - Lotta Gustafsson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Jody Bray
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Helen Marshall
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - David A Capener
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Leanne Armstrong
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Jennifer Rodgers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Martin Brook
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Alberto M Biancardi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Madhwesha R Rao
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Graham Norquay
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Oliver Rodgers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Ryan Munro
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - James E Ball
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Neil J Stewart
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, England
| | - James T Grist
- Department of Radiology, Oxford University Hospitals, Oxford, England; Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, England; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, England
| | - Fergus Gleeson
- Department of Oncology, University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England
| | | | - Kevin M Johnson
- Department of Medical Physics, University of Madison, Madison, WI, USA
| | | | | | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Smitha Rajaram
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Gary H Mills
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Lisa Watson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Paul J Collini
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Rod Lawson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England.
| |
Collapse
|
5
|
ATEŞ AŞ, YAĞDIRAN B, TAYDAŞ O, ATEŞ ÖF. Which sequence should be used in the thorax magnetic resonance imaging of COVID-19: a comparative study. Turk J Med Sci 2023; 53:1214-1223. [PMID: 38813029 PMCID: PMC10763759 DOI: 10.55730/1300-0144.5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/26/2023] [Accepted: 08/11/2023] [Indexed: 05/31/2024] Open
Abstract
Background and aim To evaluate and compare magnetic resonance imaging (MRI) sequences that could potentially be used in the diagnosis of coronavirus disease 2019 (COVID-19). Materials and methods Included in the study were 42 patient who underwent thorax computed tomography (CT) for COVID-19 pneumonia and thorax MRI for any reason within 24 h after CT. The T2-weighted fast spin echo periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (T2W-FSE-P), fast imaging employing steady-state acquisition, T2 fat-saturated FSE, axial T1 liver acquisition with volume acceleration (LAVA) and single-shot FSE images were compared in terms of their ability to show COVID-19 findings. Results The mean age of the patients was 47.2 ± 24 years. Of the patients, 22 were male (52.4%) and 20 (47.6%) were female. The interobserver intraclass coefficient (ICC) for the image quality score was the highest in the T2W-FSE-P sequence and lowest in the T1 LAVA sequence. All of the lesion-based evaluations of the interobserver agreement were statistically significant, with the kappa value varying between 0.798 and 0.998. Conclusion All 5 sequences evaluated in the study were successful in showing the parenchymal findings of COVID-19. Since the T2W-FSE-P sequence had the best scores in both interobserver agreement and ICC for the image quality score, it was considered that it can be included in thorax MRI examinations to assist the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Ayşe Şule ATEŞ
- Department of Chest Diseases, Faculty of Medicine, Sakarya University, Sakarya,
Turkiye
| | - Burak YAĞDIRAN
- Department of Radiology, Faculty of Medicine, Başkent University, Ankara,
Turkiye
| | - Onur TAYDAŞ
- Department of Radiology, Faculty of Medicine, Sakarya University, Sakarya,
Turkiye
| | - Ömer Faruk ATEŞ
- Department of Chest Diseases, Faculty of Medicine, Sakarya University, Sakarya,
Turkiye
| |
Collapse
|
6
|
Wu C, Krishnamoorthy G, Yu V, Subashi E, Rimner A, Otazo R. 4D lung MRI with high-isotropic-resolution using half-spoke (UTE) and full-spoke 3D radial acquisition and temporal compressed sensing reconstruction. Phys Med Biol 2023; 68. [PMID: 36535035 DOI: 10.1088/1361-6560/acace6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Objective. To develop a respiratory motion-resolved four-dimensional (4D) magnetic resonance imaging (MRI) technique with high-isotropic-resolution (1.1 mm) using 3D radial sampling, camera-based respiratory motion sensing, and temporal compressed sensing reconstruction for lung cancer imaging.Approach. Free-breathing half- and full-spoke 3D golden-angle radial acquisitions were performed on eight healthy volunteers and eight patients with lung tumors of varying size. A back-and-forth k-space ordering between consecutive interleaves of the 3D radial acquisition was performed to minimize eddy current-related artifacts. Data were sorted into respiratory motion states using camera-based motion navigation and 4D images were reconstructed using temporal compressed sensing to reduce scan time. Normalized sharpness indices of the diaphragm, apparent signal-to-noise ratio (aSNR) and contrast-to-noise ratio (CNR) of the lung tumor (patients only), liver, and aortic arch were compared between half- and full-spoke 4D MRI images to evaluate the impact of respiratory motion and image contrast on 4D MRI image quality. Respiration-induced changes in lung volumes and center of mass shifts were compared between half- and full-spoke 4D MRI measurements. In addition, the motion measurements from 4D MRI and the same-day 4D CT were presented in one of the lung tumor patients.Main results. Half-spoke 4D MRI provides better visualization of the lung parenchyma, while full-spoke 4D MRI presents sharper diaphragm images and higher aSNR and CNR in the lung tumor, liver, and aortic arch. Lung volume changes and center of mass shifts measured by half- and full-spoke 4D MRI were not statistically different. For the patient with 4D MRI and same-day 4D CT, lung volume changes and center of mass shifts were generally comparable.Significance. This work demonstrates the feasibility of a motion-resolved 4D MRI technique with high-isotropic-resolution using 3D radial acquisition, camera-based respiratory motion sensing, and temporal compressed sensing reconstruction for treatment planning and motion monitoring in radiotherapy of lung cancer.
Collapse
Affiliation(s)
- Can Wu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | | | - Victoria Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| |
Collapse
|
7
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
8
|
Pushparaj TL, Irudaya Raj EF, Irudaya Rani EF. A detailed review of contrast-enhanced fluorescence magnetic resonance imaging techniques for earlier prediction and easy detection of COVID-19. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2144762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - E. Fantin Irudaya Raj
- Department of Electrical and Electronics Engineering, Dr. Sivanthi Aditanar College of Engineering, India
| | - E. Francy Irudaya Rani
- Department of Electronics and Communication Engineering, Francis Xavier Engineering College, India
| |
Collapse
|
9
|
Ufuk F, Savaş R. COVID-19 pneumonia: lessons learned, challenges, and preparing for the future. Diagn Interv Radiol 2022; 28:576-585. [PMID: 36550758 PMCID: PMC9885718 DOI: 10.5152/dir.2022.221881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral disease that causes life-threatening health problems during acute illness, causing a pandemic and millions of deaths. Although computed tomography (CT) was used as a diagnostic tool for COVID-19 in the early period of the pan demic due to the inaccessibility or long duration of the polymerase chain reaction tests, cur rent studies have revealed that CT scan should not be used to diagnose COVID-19. However, radiologic findings are vital in assessing pneumonia severity and investigating complications in patients with COVID-19. Long-term symptoms, also known as long COVID, in people recovering from COVID-19 affect patients' quality of life and cause global health problems. Herein, we aimed to summarize the lessons learned in COVID-19 pneumonia, the challenges in diagnosing the disease and complications, and the prospects for future studies.
Collapse
Affiliation(s)
- Furkan Ufuk
- From the Department of Radiology (F.U. ✉ ), School of Medicine, University of Pamukkale, Denizli, Turkey Department of Radiology (R.S.), School of Medicine, University of Ege, Izmir, Turkey.
| | - Recep Savaş
- From the Department of Radiology (F.U. ✉ ), School of Medicine, University of Pamukkale, Denizli, Turkey Department of Radiology (R.S.), School of Medicine, University of Ege, Izmir, Turkey.
| |
Collapse
|
10
|
Azour L, Condos R, Keerthivasan MB, Bruno M, Pandit Sood T, Landini N, Silverglate Q, Babb J, Chandarana H, Moore WH. Low-field 0.55 T MRI for assessment of pulmonary groundglass and fibrosis-like opacities: Inter-reader and inter-modality concordance. Eur J Radiol 2022; 156:110515. [PMID: 36099832 PMCID: PMC10347896 DOI: 10.1016/j.ejrad.2022.110515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate detection and characterization of groundglass and fibrosis-like opacities imaged by non-contrast 0.55 Tesla MRI, and versus clinically-acquired chest CT images, in a cohort of post-Covid patients. MATERIALS AND METHODS 64 individuals (26 women, mean age 53 ± 14 years, range 19-85) with history of Covid-19 pneumonia were recruited through a survivorship registry, with 106 non-contrast low-field 0.55 T cardiopulmonary MRI exams acquired from 9/8/2020-9/28/2021. MRI exams were obtained at an average interval of 9.5 ± 4.5 months from initial symptom report (range 1-18 months). Of these, 20 participants with 22 MRI exams had corresponding clinically-acquired CT chest imaging obtained within 30 days of MRI (average interval 18 ± 9 days, range 0-30). MR and CT images were reviewed and scored by two thoracic radiologists, for presence and extent of lung opacity by quadrant, opacity distribution, and presence versus absence of fibrosis-like subpleural reticulation and subpleural lines. Scoring was performed for each of four lung quadrants: right upper and middle lobe, right lower lobe, left upper lobe and lingula, and left lower lobe. Agreement between readers and modalities was assessed with simple and linear weighted Cohen's kappa (k) coefficients. RESULTS Inter-reader concordance on CT for opacity presence, opacity extent, opacity distribution, and presence of subpleural lines and reticulation was 99%, 78%, 97%, 99%, and 94% (k 0.96, 0.86, 0.94, 0.97, 0.89), respectively. Inter-reader concordance on MR, among all 106 exams, for opacity presence, opacity extent, opacity distribution, and presence of subpleural lines and reticulation was 85%, 48%, 70%, 86%, and 76% (k 0.57, 0.32, 0.46, 0.47, 0.37), respectively. Inter-modality agreement between CT and MRI for opacity presence, opacity extent, opacity distribution, and presence subpleural lines and reticulation was 86%, 52%, 79%, 93%, and 76% (k 0.43, 0.63, 0.65, 0.80, 0.52). CONCLUSION Low-field 0.55 T non-contrast MRI demonstrates fair to moderate inter-reader concordance, and moderate to substantial inter-modality agreement with CT, for detection and characterization of groundglass and fibrosis-like opacities.
Collapse
Affiliation(s)
- Lea Azour
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| | - Rany Condos
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | | | - Mary Bruno
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Terlika Pandit Sood
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Nicholas Landini
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto, Rome, Italy
| | - Quinn Silverglate
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - James Babb
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Hersh Chandarana
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - William H Moore
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
11
|
Alghamdi F, Owen R, Ashton REM, Obotiba AD, Meertens RM, Hyde E, Faghy MA, Knapp KM, Rogers P, Strain WD. Post-acute COVID syndrome (long COVID): What should radiographers know and the potential impact for imaging services. Radiography (Lond) 2022; 28 Suppl 1:S93-S99. [PMID: 36109264 PMCID: PMC9468096 DOI: 10.1016/j.radi.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The COVID-19 pandemic caused an unprecedented health crisis resulting in over 6 million deaths worldwide, a figure, which continues to grow. In addition to the excess mortality, there are individuals who recovered from the acute stages, but suffered long-term changes in their health post COVID-19, commonly referred to as long COVID. It is estimated there are currently 1.8 million long COVID sufferers by May 2022 in the UK alone. The aim of this narrative literature review is to explore the signs, symptoms and diagnosis of long COVID and the potential impact on imaging services. KEY FINDINGS Long COVID is estimated to occur in 9.5% of those with two doses of vaccination and 14.6% if those with a single dose or no vaccination. Long COVID is defined by ongoing symptoms lasting for 12 or more weeks post acute infection. Symptoms are associated with reductions in the quality of daily life and may involve multisystem manifestations or present as a single symptom. CONCLUSION The full impact of long COVID on imaging services is yet to be realised, but there is likely to be significant increased demand for imaging, particularly in CT for the assessment of lung disease. Educators will need to include aspects related to long COVID pathophysiology and imaging presentations in curricula, underpinned by the rapidly evolving evidence base. IMPLICATIONS FOR PRACTICE Symptoms relating to long COVID are likely to become a common reason for imaging, with a particular burden on Computed Tomography services. Planning, education and updating protocols in line with a rapidly emerging evidence base is going to be essential.
Collapse
Affiliation(s)
- F Alghamdi
- College of Medicine and Health, University of Exeter, Exeter, UK.
| | - R Owen
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - R E M Ashton
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - A D Obotiba
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - R M Meertens
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - E Hyde
- College of Health, Psychology and Social Care, University of Derby, Derby, UK
| | - M A Faghy
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - K M Knapp
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - P Rogers
- Medical Imaging, Royal Devon and Exeter NHS Foundation Trust, UK
| | - W D Strain
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
12
|
Anikeeva M, Sangal M, Speck O, Norquay G, Zuhayra M, Lützen U, Peters J, Jansen O, Hövener JB. Nichtinvasive funktionelle Lungenbildgebung mit hyperpolarisiertem Xenon. ZEITSCHRIFT FÜR PNEUMOLOGIE 2022. [PMCID: PMC9387426 DOI: 10.1007/s10405-022-00462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hintergrund Die Magnetresonanztomographie (MRT) ist ein nichtinvasives Verfahren mit hervorragendem Weichteilkontrast. Aufgrund der geringen Protonendichte und vielen Luft-Gewebe-Übergängen ist die Anwendung in der Lunge jedoch eingeschränkt, so dass hier häufig röntgenbasierte Methoden eingesetzt werden (mit den bekannten Nachteilen ionisierender Strahlung). Fragestellung In dieser Übersichtsarbeit wird die Lungen-MRT mit hyperpolarisiertem Xenon-129 (Xe-MRT) dargestellt. Die Xe-MRT erlaubt einzigartige wertvolle Einblicke in die Mikrostruktur und Funktion der Lunge, einschließlich des Gasaustauschs mit roten Blutkörperchen – Parameter, die mit klinischen Standardmethoden nicht zugänglich sind. Material und Methoden Durch die magnetische Markierung, die Hyperpolarisierung, wird das Signal von Xenon-129 um bis zu 100.000-fach verstärkt. Hierbei werden die Elektronen von Rubidium mittels Laserlicht zunächst auf 100 % polarisiert und dann durch Stöße auf Xenon übertragen. Danach wird das hyperpolarisierte Gas in einem Beutel zum Patienten gebracht und eingeatmet, kurz bevor die MRT-Aufnahmen beginnen. Ergebnisse Durch spezielle Programmierungen (Sequenzen) in der MRT kann die Ventilation, Mikrostruktur oder der Gasaustausch der Lunge in 3‑D dargestellt werden. Dies ermöglicht z. B. die quantitative Darstellung von Belüftungsdefekten, der Größe der Alveolen, der Gasaufnahme im Gewebe und des Gastransfers ins Blut. Schlussfolgerung Die Xe-MRT liefert einzigartige Informationen über den Zustand der Lunge – nichtinvasiv, in vivo und in weniger als einer Minute.
Collapse
Affiliation(s)
- Mariia Anikeeva
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118 Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Maitreyi Sangal
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Oliver Speck
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, Großbritannien
| | - Maaz Zuhayra
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Ulf Lützen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Josh Peters
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118 Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Olav Jansen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Jan-Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118 Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| |
Collapse
|
13
|
Anikeeva M, Sangal M, Speck O, Norquay G, Zuhayra M, Lützen U, Peters J, Jansen O, Hövener JB. Nichtinvasive funktionelle Lungenbildgebung mit hyperpolarisiertem Xenon. Radiologe 2022; 62:475-485. [PMID: 35403905 PMCID: PMC8996207 DOI: 10.1007/s00117-022-00993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Mariia Anikeeva
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118, Kiel, Deutschland.
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland.
| | - Maitreyi Sangal
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Oliver Speck
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, Großbritannien
| | - Maaz Zuhayra
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Ulf Lützen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Josh Peters
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118, Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Olav Jansen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Jan-Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118, Kiel, Deutschland.
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland.
| |
Collapse
|
14
|
Ding Z, Cheng Z, She H, Liu B, Yin Y, Du YP. Dynamic pulmonary MRI using motion-state weighted motion-compensation (MostMoCo) reconstruction with ultrashort TE: A structural and functional study. Magn Reson Med 2022; 88:224-238. [PMID: 35388914 DOI: 10.1002/mrm.29204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE To improve the quality of structural images and the quantification of ventilation in free-breathing dynamic pulmonary MRI. METHODS A 3D radial ultrashort TE (UTE) sequence with superior-inferior navigators was used to acquire pulmonary data during free breathing. All acquired data were binned into different motion states according to the respiratory signal extracted from superior-inferior navigators. Motion-resolved images were reconstructed using eXtra-Dimensional (XD) UTE reconstruction. The initial motion fields were generated by registering images at each motion state to other motion states in motion-resolved images. A motion-state weighted motion-compensation (MostMoCo) reconstruction algorithm was proposed to reconstruct the dynamic UTE images. This technique, termed as MostMoCo-UTE, was compared with XD-UTE and iterative motion-compensation (iMoCo) on a porcine lung and 10 subjects. RESULTS MostMoCo reconstruction provides higher peak SNR (37.0 vs. 35.4 and 34.2) and structural similarity (0.964 vs. 0.931 and 0.947) compared to XD-UTE and iMoCo in the porcine lung experiment. Higher apparent SNR and contrast-to-noise ratio are achieved using MostMoCo in the human experiment. MostMoCo reconstruction better preserves the temporal variations of signal intensity of parenchyma compared to iMoCo, shows reduced random noise and improved sharpness of anatomical structures compared to XD-UTE. In the porcine lung experiment, the quantification of ventilation using MostMoCo images is more accurate than that using XD-UTE and iMoCo images. CONCLUSION The proposed MostMoCo-UTE provides improved quality of structural images and quantification of ventilation for free-breathing pulmonary MRI. It has the potential for the detection of structural and functional disorders of the lung in clinical settings.
Collapse
Affiliation(s)
- Zekang Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Huajun She
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Yin
- Department of Radiology, People's Hospital of Jilin Province, Changchun, China
| | - Yiping P Du
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Zeimpekis KG, Kellenberger CJ, Geiger J. Assessment of lung density in pediatric patients using three-dimensional ultrashort echo-time and four-dimensional zero echo-time sequences. Jpn J Radiol 2022; 40:722-729. [PMID: 35237890 PMCID: PMC8890957 DOI: 10.1007/s11604-022-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Purpose Lung magnetic resonance imaging (MRI) using conventional sequences is limited due to strong signal loss by susceptibility effects of aerated lung. Our aim is to assess lung signal intensity in children on ultrashort echo-time (UTE) and zero echo-time (ZTE) sequences. We hypothesize that lung signal intensity can be correlated to lung physical density. Materials and methods Lung MRI was performed in 17 children with morphologically normal lungs (median age: 4.7 years, range 15 days to 17 years). Both lungs were manually segmented in UTE and ZTE images and the average signal intensities were extracted. Lung-to-background signal ratios (LBR) were compared for both sequences and between both patient groups using non-parametric tests and correlation analysis. Anatomical region-of-interest (ROI) analysis was performed for the normal cohort for assessment of the anteroposterior lung gradient. Results There was no significant difference between LBR of normal lungs using UTE and ZTE (p < 0.05). Both sequences revealed a LBR age-dependency with a high negative correlation for UTE (Rs = – 0.77; range 2.98–1.41) and ZTE (Rs = – 0.82; range 2.66–1.38)). Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were age-dependent for both sequences. SNR was higher for children up to 2 years old with 3D UTE Cones while for the rest it was higher with 4D ZTE. CNR was similar for both sequences. Posterior lung areas exhibited higher signal intensity compared to anterior ones (UTE 9.4% and ZTE 12% higher), both with high correlation coefficients (R2UTE = 0.94, R2ZTE = 0.97). Conclusion The ZTE sequence can measure signal intensity similarly to UTE in pediatric patients. Both sequences reveal an age- and gravity-dependency of LBR.
Collapse
Affiliation(s)
- Konstantinos G Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Christian J Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Di Meglio L, Carriero S, Biondetti P, Wood BJ, Carrafiello G. Chest imaging in patients with acute respiratory failure because of coronavirus disease 2019. Curr Opin Crit Care 2022; 28:17-24. [PMID: 34864792 PMCID: PMC8711303 DOI: 10.1097/mcc.0000000000000906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the different imaging modalities, such as chest radiography (CXR), computed tomography (CT), ultrasound, PET/CT scan, and MRI to describe the main features for the evaluation of the chest in COVID-19 patients with ARDS. RECENT FINDINGS This article includes a systematic literature search, evidencing the different chest imaging modalities used in patients with ARDS from COVID-19. Literature evidences different possible approaches going from the conventional CXR and CT to the LUS, MRI, and PET/CT. SUMMARY CT is the technique with higher sensitivity and definition for studying chest in COVID-19 patients. LUS or bedside CXR are critical in patients requiring close and repeated monitoring. Moreover, LUS and CXR reduce the radiation burden and the risk of infection compared with CT. PET/CT and MRI, especially in ARDS patients, are not usually used for diagnostic or follow-up purposes.
Collapse
Affiliation(s)
- Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano
| | - Serena Carriero
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano
| | - Pierpaolo Biondetti
- Operative Unit of Radiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bradford J. Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center and National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Gianpaolo Carrafiello
- Operative Unit of Radiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Inter-Observer Agreement between Low-Dose and Standard-Dose CT with Soft and Sharp Convolution Kernels in COVID-19 Pneumonia. J Clin Med 2022; 11:jcm11030669. [PMID: 35160121 PMCID: PMC8836391 DOI: 10.3390/jcm11030669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Computed tomography (CT) has been an essential diagnostic tool during the COVID-19 pandemic. The study aimed to develop an optimal CT protocol in terms of safety and reliability. For this, we assessed the inter-observer agreement between CT and low-dose CT (LDCT) with soft and sharp kernels using a semi-quantitative severity scale in a prospective study (Moscow, Russia). Two consecutive scans with CT and LDCT were performed in a single visit. Reading was performed by ten radiologists with 3–25 years’ experience. The study included 230 patients, and statistical analysis showed LDCT with a sharp kernel as the most reliable protocol (percentage agreement 74.35 ± 43.77%), but its advantage was marginal. There was no significant correlation between radiologists’ experience and average percentage agreement for all four evaluated protocols. Regarding the radiation exposure, CTDIvol was 3.6 ± 0.64 times lower for LDCT. In conclusion, CT and LDCT with soft and sharp reconstructions are equally reliable for COVID-19 reporting using the “CT 0-4” scale. The LDCT protocol allows for a significant decrease in radiation exposure but may be restricted by body mass index.
Collapse
|
18
|
Zhang M, Li Z, Wang H, Chen T, Lu Y, Yan F, Zhang Y, Wei H. Simultaneous Quantitative Susceptibility Mapping of Articular Cartilage and Cortical Bone of Human Knee Joint Using Ultrashort Echo Time Sequences. Front Endocrinol (Lausanne) 2022; 13:844351. [PMID: 35273576 PMCID: PMC8901574 DOI: 10.3389/fendo.2022.844351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It is of great clinical importance to assess the microstructure of the articular cartilage and cortical bone of the human knee joint. While quantitative susceptibility mapping (QSM) is a promising tool for investigating the knee joint, however, previous QSM studies using conventional gradient recalled echo sequences or ultrashort echo time (UTE) sequences only focused on mapping the magnetic susceptibility of the articular cartilage or cortical bone, respectively. Simultaneously mapping the underlying susceptibilities of the articular cartilage and cortical bone of human in vivo has not been explored and reported. METHOD Three-dimensional multi-echo radial UTE sequences with the shortest TE of 0.07 msec and computed tomography (CT) were performed on the bilateral knee joints of five healthy volunteers for this prospective study. UTE-QSM was reconstructed from the local field map after water-fat separation and background field removal. Spearman's correlation analysis was used to explore the relationship between the magnetic susceptibility and CT values in 158 representative regions of interest of cortical bone. RESULT The susceptibility properties of the articular cartilage and cortical bone were successfully quantified by UTE-QSM. The laminar structure of articular cartilage was characterized by the difference of susceptibility value in each layer. Susceptibility was mostly diamagnetic in cortical bone. A significant negative correlation (r=-0.43, p<0.001) between the susceptibility value and CT value in cortical bone was observed. CONCLUSION UTE-QSM enables simultaneous susceptibility mapping of the articular cartilage and cortical bone of human in vivo. Good association between susceptibility and CT values in cortical bone suggests the potential of UTE-QSM for bone mapping for further clinical application.
Collapse
Affiliation(s)
- Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihui Li
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanqi Wang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tongtong Chen
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyao Zhang
- School of Information and Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hongjiang Wei,
| |
Collapse
|
19
|
Rabiee B, Eibschutz LS, Asadollahi S, Gupta A, Akhlaghpoor S, Gholamrezanezhad A. The role of imaging techniques in understanding and evaluating the long-term pulmonary effects of COVID-19. Expert Rev Respir Med 2021; 15:1525-1537. [PMID: 34730039 DOI: 10.1080/17476348.2021.2001330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Limited data exist regarding the long-term pulmonary sequelae of COVID-19. Identifying features utilizing multiple imaging modalities engenders a clearer picture of the illness's long-term consequences. AREAS COVERED This review encompasses the common pulmonary findings associated with different imaging modalities during acute and late remission stages of COVID-19 pneumonia. EXPERT OPINION Chest x-ray, a common preliminary diagnostic imaging technique, is not optimal for extended care due to limited tissue contrast resolution providing suboptimal assessment of pulmonary pathology and subtle interval changes. Ultrasound may be utilized on a case-by-case basis in certain patient populations, or in countries with limited resources. Chest CT's accessibility, high tissue contrast and spatial resolution make it the foremost modality for long-term COVID-19 follow-up. While MRI can viably monitor extrapulmonary disease due to its lack of radiation and high inherent soft-tissue contrast, it has limited pulmonary utility due to motion artifact and alveolar gas decreasing lung signal. Although 18F-FDG-PET/CT is costly and has limited specificity, it can provide molecular level data and inflammation quantification. Lung perfusion scintigraphy may also explain COVID-19 induced thromboembolic events and persistent dyspnea despite normal structural imaging and testing results. Correlating the long-term pulmonary findings of COVID-19 with each imaging modality is essential in elucidating the post-recovery course.
Collapse
Affiliation(s)
- Behnam Rabiee
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA.,Trinity Health Mid-Atlantic Nazareth Hospital, Philadelphia, PA, USA
| | - Liesl S Eibschutz
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Shadi Asadollahi
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Shahram Akhlaghpoor
- Department of Interventional Radiology, Pardis Noor Medical Center, Tehran, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| |
Collapse
|
20
|
Alhasan M, Hasaneen M. The Role and Challenges of Clinical Imaging During COVID-19 Outbreak. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2021. [DOI: 10.1177/87564793211056903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: The Radiology department played a crucial role in detecting and following up with the COVID-19 disease during the pandemic. The purpose of this review was to highlight and discuss the role of each imaging modality, in the radiology department, that can help in the current pandemic and to determine the challenges faced by staff and how to overcome them. Materials and Methods: A literature search was performed using different databases, including PubMed, Google scholar, and the college electronic library to access 2020 published related articles. Results: A chest computed tomogram (CT) was found to be superior to a chest radiograph, with regards to the early detection of COVID-19. Utilizing lung point of care ultrasound (POCUS) with pediatric patients, demonstrated excellent sensitivity and specificity, compared to a chest radiography. In addition, lung ultrasound (LUS) showed a high correlation with the disease severity assessed with CT. However, magnetic resonance imaging (MRI) has some limiting factors with regard to its clinical utilization, due to signal loss. The reported challenges that the radiology department faced were mainly related to infection control, staff workload, and the training of students. Conclusion: The choice of an imaging modality to provide a COVID-19 diagnosis is debatable. It depends on several factors that should be carefully considered, such as disease stage, mobility of the patient, and ease of applying infection control procedures. The pros and cons of each imaging modality were highlighted, as part of this review. To control the spread of the infection, precautionary measures such as the use of portable radiographic equipment and the use of personal protective equipment (PPE) must be implemented.
Collapse
Affiliation(s)
- Mustafa Alhasan
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi, United Arab Emirates
- Radiologic Technology Program, Applied Medical Sciences College, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohamed Hasaneen
- Department of Radiography and Medical Imaging, Fatima College of Health Sciences, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Liu X, Wu Y, Yang M, Li Y, Hahne J, Khoshnood K, Coleman L, Wang X. Cross-cultural validation of the IRB Researcher Assessment Tool: Chinese Version. BMC Med Ethics 2021; 22:133. [PMID: 34583718 PMCID: PMC8479956 DOI: 10.1186/s12910-021-00699-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Using an effective method for evaluating Institutional Review Board (IRB) performance is essential for ensuring an IRB's effectiveness, efficiency, and compliance with applicable human research standards and organizational policies. Currently, no empirical research has yet been published in China evaluating IRB performance measures by the use of a standardized tool. This study was therefore conducted to develop a Chinese version of the IRB Researcher Assessment Tool (IRB-RAT), assess the psychometric properties of the Chinese version (IRB-RAT-CV), and validate the tool for use in China. METHODS In this cultural adaptation, cross-sectional validation study, the IRB-RAT-CV was developed through a back-translation process and then distributed to 587 IRB staff members and researchers in medical institutions and schools in Hunan Province that review biomedical and social-behavioral research. Data from the 470 valid questionnaires collected from participants was used to evaluate the reliability, content validity, and construct validity of the IRB-RAT-CV. RESULTS Participants' ratings of their ideal and actual IRB as measured by the IRB-RAT-CV achieved Cronbach's alpha 0.989 and 0.992, Spearman-Brown coefficient 0.964 and 0.968, and item-total correlation values ranging from 0.631 to 0.886 and 0.743 to 0.910, respectively. CONCLUSION The IRB-RAT-CV is a linguistically and culturally applicable tool for assessing the quality of IRBs in China.
Collapse
Affiliation(s)
- Xing Liu
- Medical Ethics Committee, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ying Wu
- School of Public Administration, Central South University, Changsha, 410075, Hunan, China
| | - Min Yang
- Xiangya School of Nursing, Central South University, Changsha, 410013, Hunan, China
| | - Yang Li
- School of Public Administration, Central South University, Changsha, 410075, Hunan, China
| | - Jessica Hahne
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, 06510, USA
| | - Kaveh Khoshnood
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, 06510, USA
| | - Linda Coleman
- Human Research Protection Program, Yale University, 150 Munson Street, New Haven, CT, 06511, USA
| | - Xiaomin Wang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
22
|
Rivera-Sotelo N, Vargas-Del-Angel RG, Ternovoy SK, Roldan-Valadez E. Global research trends in COVID-19 with MRI and PET/CT: a scoping review with bibliometric and network analyses. Clin Transl Imaging 2021; 9:625-639. [PMID: 34414137 PMCID: PMC8364406 DOI: 10.1007/s40336-021-00460-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To identify and evaluate the indexed studies that allow us to understand the implications of imaging studies in MRI and PET/CT related to COVID-19 research. METHODS Scoping review. Articles in PubMed, Scopus, and Web of Science (WoS) were scanned from 2019 to 2021 with COVID-19, MRI, and PET-CT as keywords. EndNote software and manual checking removed the duplicated references. Our assessment includes citation, bibliometric, keyword network, and statistical analyses using descriptive statistics and correlations. Highlighted variables were publication year, country, journals, and authorship. RESULTS Only 326 papers were included. The most cited article reached 669 cites; this number represented 21.71% of 3081 citations. The top-15 cited authors received 1787 citations, which represented 58% of the total cites. These authors had affiliations from ten countries (Belgium, China, France, Italy, Japan, Spain, Sweden, Turkey, United Kingdom (UK), and the USA). The top-30 journals were cited 2762 times, representing 89.65% of the total cites. Only five journals were cited more than 100 times; Int J Infect Dis had the most significant number of citations (674). Some of the unexpected keywords were encephalitis, stroke, microbleeds, myocarditis. CONCLUSION COVID-19 pandemic is still spreading worldwide, and the knowledge about its different facets continues advancing. MRI and PET/CT are being used in more than 50% of the selected studies; research trends span seven categories, no only the diagnostic but others like socio-economic impact and pathogenesis Developed countries had an advantage by having hospitals with more resources, including MRI and PET/CT facilities in the same institution to supplement basic assessment in patients with COVID-19. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40336-021-00460-x.
Collapse
Affiliation(s)
- Nathaly Rivera-Sotelo
- Directorate of Research, Hospital General de Mexico “Dr Eduardo Liceaga”, 06720 Mexico City, Mexico
| | | | - Sergey K. Ternovoy
- Department of Radiology, A.L. Myasnikov Research Institute of Clinical Cardiology of National Medical Research Center, Moscow, Russia
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Ernesto Roldan-Valadez
- Directorate of Research, Hospital General de Mexico “Dr Eduardo Liceaga”, 06720 Mexico City, Mexico
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
23
|
Spiro JE, Curta A, Mansournia S, Marschner CA, Maurus S, Weckbach LT, Hedderich DM, Dinkel J. Appearance of COVID-19 pneumonia on 1.5 T TrueFISP MRI. Radiol Bras 2021; 54:211-218. [PMID: 34393286 PMCID: PMC8354185 DOI: 10.1590/0100-3984.2021.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Objective To evaluate the performance of 1.5 T true fast imaging with steady state precession (TrueFISP) magnetic resonance imaging (MRI) sequences for the detection and characterization of pulmonary abnormalities caused by coronavirus disease 2019 (COVID-19). Materials and Methods In this retrospective single-center study, computed tomography (CT) and MRI scans of 20 patients with COVID-19 pneumonia were evaluated with regard to the distribution, opacity, and appearance of pulmonary lesions, as well as bronchial changes, pleural effusion, and thoracic lymphadenopathy. McNemar’s test was used in order to compare the COVID-19-associated alterations seen on CT with those seen on MRI. Results Ground-glass opacities were better visualized on CT than on MRI (p = 0.031). We found no statistically significant differences between CT and MRI regarding the visualization/characterization of the following: consolidations; interlobular/intralobular septal thickening; the distribution or appearance of pulmonary abnormalities; bronchial pathologies; pleural effusion; and thoracic lymphadenopathy. Conclusion Pulmonary abnormalities caused by COVID-19 pneumonia can be detected on TrueFISP MRI sequences and correspond to the patterns known from CT. Especially during the current pandemic, the portions of the lungs imaged on cardiac or abdominal MRI should be carefully evaluated to promote the identification and isolation of unexpected cases of COVID-19, thereby curbing further spread of the disease.
Collapse
Affiliation(s)
- Judith Eva Spiro
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Curta
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Shiwa Mansournia
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Stefan Maurus
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Dennis Martin Hedderich
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Radiology, Asklepios Lung Center Munich-Gauting, Gauting, Germany
| |
Collapse
|
24
|
Zhou Q, Rao Q, Li H, Zhang M, Zhao X, Shi L, Ye C, Zhou X. Evaluation of injuries caused by coronavirus disease 2019 using multi-nuclei magnetic resonance imaging. MAGNETIC RESONANCE LETTERS 2021; 1:2-10. [PMID: 35673615 PMCID: PMC8349427 DOI: 10.1016/j.mrl.2021.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 01/08/2023]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has been a great burden for the healthcare system in many countries because of its high transmissibility, severity, and fatality. Chest radiography and computed tomography (CT) play a vital role in the diagnosis, detection of complications, and prognostication of COVID-19. Additionally, magnetic resonance imaging (MRI), especially multi-nuclei MRI, is another important imaging technique for disease diagnosis because of its good soft tissue contrast and the ability to conduct structural and functional imaging, which has also been used to evaluate COVID-19-related organ injuries in previous studies. Herein, we briefly reviewed the recent research on multi-nuclei MRI for evaluating injuries caused by COVID-19 and the clinical 1H MRI techniques and their applications for assessing injuries in lungs, brain, and heart. Moreover, the emerging hyperpolarized 129Xe gas MRI and its applications in the evaluation of pulmonary structures and functional abnormalities caused by COVID-19 were also reviewed.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuchen Rao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Shi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Fang L, Wang X. COVID-19 deep classification network based on convolution and deconvolution local enhancement. Comput Biol Med 2021; 135:104588. [PMID: 34182330 PMCID: PMC8216864 DOI: 10.1016/j.compbiomed.2021.104588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Computer Tomography (CT) detection can effectively overcome the problems of traditional detection of Corona Virus Disease 2019 (COVID-19), such as lagging detection results and wrong diagnosis results, which lead to the increase of disease infection rate and prevalence rate. The novel coronavirus pneumonia is a significant difference between the positive and negative patients with asymptomatic infections. To effectively improve the accuracy of doctors' manual judgment of positive and negative COVID-19, this paper proposes a deep classification network model of the novel coronavirus pneumonia based on convolution and deconvolution local enhancement. Through convolution and deconvolution operation, the contrast between the local lesion region and the abdominal cavity of COVID-19 is enhanced. Besides, the middle-level features that can effectively distinguish the image types are obtained. By transforming the novel coronavirus detection problem into the region of interest (ROI) feature classification problem, it can effectively determine whether the feature vector in each feature channel contains the image features of COVID-19. This paper uses an open-source COVID-CT dataset provided by Petuum researchers from the University of California, San Diego, which is collected from 143 novel coronavirus pneumonia patients and the corresponding features are preserved. The complete dataset (including original image and enhanced image) contains 1460 images. Among them, 1022 (70%) and 438 (30%) are used to train and test the performance of the proposed model, respectively. The proposed model verifies the classification precision in different convolution layers and learning rates. Besides, it is compared with most state-of-the-art models. It is found that the proposed algorithm has good classification performance. The corresponding sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and precision are 0.98, 0.96, 0.98, and 0.97, respectively.
Collapse
Affiliation(s)
- Lingling Fang
- Department of Computing and Information Technology, Liaoning Normal University, Dalian City, Liaoning Province, China.
| | - Xin Wang
- Department of Computing and Information Technology, Liaoning Normal University, Dalian City, Liaoning Province, China
| |
Collapse
|
26
|
Chaudhari AS, Sandino CM, Cole EK, Larson DB, Gold GE, Vasanawala SS, Lungren MP, Hargreaves BA, Langlotz CP. Prospective Deployment of Deep Learning in MRI: A Framework for Important Considerations, Challenges, and Recommendations for Best Practices. J Magn Reson Imaging 2021; 54:357-371. [PMID: 32830874 PMCID: PMC8639049 DOI: 10.1002/jmri.27331] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Artificial intelligence algorithms based on principles of deep learning (DL) have made a large impact on the acquisition, reconstruction, and interpretation of MRI data. Despite the large number of retrospective studies using DL, there are fewer applications of DL in the clinic on a routine basis. To address this large translational gap, we review the recent publications to determine three major use cases that DL can have in MRI, namely, that of model-free image synthesis, model-based image reconstruction, and image or pixel-level classification. For each of these three areas, we provide a framework for important considerations that consist of appropriate model training paradigms, evaluation of model robustness, downstream clinical utility, opportunities for future advances, as well recommendations for best current practices. We draw inspiration for this framework from advances in computer vision in natural imaging as well as additional healthcare fields. We further emphasize the need for reproducibility of research studies through the sharing of datasets and software. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
| | - Christopher M Sandino
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Elizabeth K Cole
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - David B Larson
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | | | - Matthew P Lungren
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Brian A Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Department of Biomedical Informatics, Stanford University, Stanford, California, USA
| | - Curtis P Langlotz
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Biomedical Informatics, Stanford University, Stanford, California, USA
| |
Collapse
|
27
|
Abstract
Soon after reports of a novel coronavirus capable of causing severe pneumonia surfaced in late 2019, expeditious global spread of the Severe Acute Respiratory Distress Syndrome Coronavirus 2 (SARS-CoV-2) forced the World Health Organization to declare an international state of emergency. Although best known for causing symptoms of upper respiratory tract infection in mild cases and fulminant pneumonia in severe disease, Coronavirus Disease 2019 (COVID-19) has also been associated with gastrointestinal, neurologic, cardiac, and hematologic presentations. Despite concerns over poor specificity and undue radiation exposure, chest imaging nonetheless remains central to the initial diagnosis and monitoring of COVID-19 progression, as well as to the evaluation of complications. Classic features on chest CT include ground-glass and reticular opacities with or without superimposed consolidations, frequently presenting in a bilateral, peripheral, and posterior distribution. More recently, studies conducted with MRI have shown excellent concordance with chest CT in visualizing typical features of COVID-19 pneumonia. For patients in whom exposure to ionizing radiation should be avoided, particularly pregnant patients and children, pulmonary MRI may represent a suitable alternative to chest CT. Although PET imaging is not typically considered among first-line investigative modalities for the diagnosis of lower respiratory tract infections, numerous reports have noted incidental localization of radiotracer in parenchymal regions of COVID-19-associated pulmonary lesions. These findings are consistent with data from Middle East Respiratory Syndrome-CoV cohorts which suggested an ability for 18F-FDG PET to detect subclinical infection and lymphadenitis in subjects without overt clinical signs of infection. Though highly sensitive, use of PET/CT for primary detection of COVID-19 is constrained by poor specificity, as well as considerations of cost, radiation burden, and prolonged exposure times for imaging staff. Even still, decontamination of scanner bays is a time-consuming process, and proper ventilation of scanner suites may additionally require up to an hour of downtime to allow for sufficient air exchange. Yet, in patients who require nuclear medicine investigations for other clinical indications, PET imaging may yield the earliest detection of nascent infection in otherwise asymptomatic individuals. Especially for patients with concomitant malignancies and other states of immunocompromise, prompt recognition of infection and early initiation of supportive care is crucial to maximizing outcomes and improving survivability.
Collapse
Key Words
- sars-cov, severe acute respiratory syndrome coronavirus
- covid-19, coronavirus disease 2019
- ct, computed tomography
- mri, magnetic resonance imaging
- pet, positron emission tomography
- ggo, ground-glass opacity
- rt-pcr, reverse transcription polymerase chain reaction
- 18f-fdg, 18f-labelled fluorodeoxyglucose
- suvmax, maximum standardized uptake
- mip, maximum intensity projection
- 68ga-psma, 68ga-labelled prostate-specific membrane antigen
- 18f-choline, 18f-labelled choline
Collapse
Affiliation(s)
- Brandon K K Fields
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Natalie L Demirjian
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America; Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Habibollah Dadgar
- Razavi Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Ali Gholamrezanezhad
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America; Department of Radiology, University of Southern California, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
28
|
Pezzutti DL, Wadhwa V, Makary MS. COVID-19 imaging: Diagnostic approaches, challenges, and evolving advances. World J Radiol 2021. [DOI: 10.4329/wjr.v13.i6.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Sideris GA, Nikolakea M, Karanikola AE, Konstantinopoulou S, Giannis D, Modahl L. Imaging in the COVID-19 era: Lessons learned during a pandemic. World J Radiol 2021; 13:192-222. [PMID: 34249239 PMCID: PMC8245753 DOI: 10.4329/wjr.v13.i6.192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
The first year of the coronavirus disease 2019 (COVID-19) pandemic has been a year of unprecedented changes, scientific breakthroughs, and controversies. The radiology community has not been spared from the challenges imposed on global healthcare systems. Radiology has played a crucial part in tackling this pandemic, either by demonstrating the manifestations of the virus and guiding patient management, or by safely handling the patients and mitigating transmission within the hospital. Major modifications involving all aspects of daily radiology practice have occurred as a result of the pandemic, including workflow alterations, volume reductions, and strict infection control strategies. Despite the ongoing challenges, considerable knowledge has been gained that will guide future innovations. The aim of this review is to provide the latest evidence on the role of imaging in the diagnosis of the multifaceted manifestations of COVID-19, and to discuss the implications of the pandemic on radiology departments globally, including infection control strategies and delays in cancer screening. Lastly, the promising contribution of artificial intelligence in the COVID-19 pandemic is explored.
Collapse
Affiliation(s)
- Georgios Antonios Sideris
- Department of Radiology, University of Massachusetts Medical School, Baystate Medical Center, Springfield, MA 01199, United States
- Radiology Working Group, Society of Junior Doctors, Athens 11527, Greece
| | - Melina Nikolakea
- Radiology Working Group, Society of Junior Doctors, Athens 11527, Greece
| | | | - Sofia Konstantinopoulou
- Division of Pulmonary Medicine, Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi W13-01, United Arab Emirates
| | - Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, United States
| | - Lucy Modahl
- Department of Radiology, University of Massachusetts Medical School, Baystate Medical Center, Springfield, MA 01199, United States
| |
Collapse
|
30
|
Sideris GA, Nikolakea M, Karanikola AE, Konstantinopoulou S, Giannis D, Modahl L. Imaging in the COVID-19 era: Lessons learned during a pandemic. World J Radiol 2021. [DOI: 10.4329/wjr.v13.i6.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
31
|
Pezzutti DL, Wadhwa V, Makary MS. COVID-19 imaging: Diagnostic approaches, challenges, and evolving advances. World J Radiol 2021; 13:171-191. [PMID: 34249238 PMCID: PMC8245752 DOI: 10.4329/wjr.v13.i6.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/15/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
The role of radiology and the radiologist have evolved throughout the coronavirus disease-2019 (COVID-19) pandemic. Early on, chest computed tomography was used for screening and diagnosis of COVID-19; however, it is now indicated for high-risk patients, those with severe disease, or in areas where polymerase chain reaction testing is sparsely available. Chest radiography is now utilized mainly for monitoring disease progression in hospitalized patients showing signs of worsening clinical status. Additionally, many challenges at the operational level have been overcome within the field of radiology throughout the COVID-19 pandemic. The use of teleradiology and virtual care clinics greatly enhanced our ability to socially distance and both are likely to remain important mediums for diagnostic imaging delivery and patient care. Opportunities to better utilize of imaging for detection of extrapulmonary manifestations and complications of COVID-19 disease will continue to arise as a more detailed understanding of the pathophysiology of the virus continues to be uncovered and identification of predisposing risk factors for complication development continue to be better understood. Furthermore, unidentified advancements in areas such as standardized imaging reporting, point-of-care ultrasound, and artificial intelligence offer exciting discovery pathways that will inevitably lead to improved care for patients with COVID-19.
Collapse
Affiliation(s)
- Dante L Pezzutti
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Vibhor Wadhwa
- Department of Radiology, Weill Cornell Medical Center, New York City, NY 10065, United States
| | - Mina S Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
32
|
Ramdani H, Allali N, Chat L, El Haddad S. Covid-19 imaging: A narrative review. Ann Med Surg (Lond) 2021; 69:102489. [PMID: 34178312 PMCID: PMC8214462 DOI: 10.1016/j.amsu.2021.102489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023] Open
Abstract
Background The 2019 novel coronavirus disease (COVID-19) imaging data is dispersed in numerous publications. A cohesive literature review is to be assembled. Objective To summarize the existing literature on Covid-19 pneumonia imaging including precautionary measures for radiology departments, Chest CT's role in diagnosis and management, imaging findings of Covid-19 patients including children and pregnant women, artificial intelligence applications and practical recommendations. Methods A systematic literature search of PubMed/med line electronic databases. Results The radiology department's staff is on the front line of the novel coronavirus outbreak. Strict adherence to precautionary measures is the main defense against infection's spread. Although nucleic acid testing is Covid-19's pneumonia diagnosis gold standard; kits shortage and low sensitivity led to the implementation of the highly sensitive chest computed tomography amidst initial diagnostic tools. Initial Covid-19 CT features comprise bilateral, peripheral or posterior, multilobar ground-glass opacities, predominantly in the lower lobes. Consolidations superimposed on ground-glass opacifications are found in few cases, preponderantly in the elderly. In later disease stages, GGO transformation into multifocal consolidations, thickened interlobular and intralobular lines, crazy paving, traction bronchiectasis, pleural thickening, and subpleural bands are reported. Standardized CT reporting is recommended to guide radiologists. While lung ultrasound, pulmonary MRI, and PET CT are not Covid-19 pneumonia's first-line investigative diagnostic modalities, their characteristic findings and clinical value are outlined. Artificial intelligence's role in strengthening available imaging tools is discussed. Conclusion This review offers an exhaustive analysis of the current literature on imaging role and findings in COVID-19 pneumonia.
Chest computed tomography is a highly sensitive Covid −19 pneumonia's diagnostic tool. Initial Covid-19 CT features are bilateral, multifocal, peripheral or posterior ground-glass opacities, mainly in the lower lobes. Multifocal consolidations, bronchiectasis, pleural thickening, and subpleural bands are late disease stages features. Standardized CT reporting is recommended to guide radiologists. Artificial intelligence could strengthen available imaging tools.
Collapse
Affiliation(s)
- Hanae Ramdani
- Radiology Department, Childrens' Hospital - Ibn Sina University Hospital-Rabat, Lamfadel Cherkaoui Street, 10010, Rabat, Morocco
| | - Nazik Allali
- Radiology Department, Childrens' Hospital - Ibn Sina University Hospital-Rabat, Lamfadel Cherkaoui Street, 10010, Rabat, Morocco
| | - Latifa Chat
- Radiology Department, Childrens' Hospital - Ibn Sina University Hospital-Rabat, Lamfadel Cherkaoui Street, 10010, Rabat, Morocco
| | - Siham El Haddad
- Radiology Department, Childrens' Hospital - Ibn Sina University Hospital-Rabat, Lamfadel Cherkaoui Street, 10010, Rabat, Morocco
| |
Collapse
|
33
|
Gao A, Murphy RR, Chen W, Dagnino G, Fischer P, Gutierrez MG, Kundrat D, Nelson BJ, Shamsudhin N, Su H, Xia J, Zemmar A, Zhang D, Wang C, Yang GZ. Progress in robotics for combating infectious diseases. Sci Robot 2021; 6:6/52/eabf1462. [PMID: 34043552 DOI: 10.1126/scirobotics.abf1462] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022]
Abstract
The world was unprepared for the COVID-19 pandemic, and recovery is likely to be a long process. Robots have long been heralded to take on dangerous, dull, and dirty jobs, often in environments that are unsuitable for humans. Could robots be used to fight future pandemics? We review the fundamental requirements for robotics for infectious disease management and outline how robotic technologies can be used in different scenarios, including disease prevention and monitoring, clinical care, laboratory automation, logistics, and maintenance of socioeconomic activities. We also address some of the open challenges for developing advanced robots that are application oriented, reliable, safe, and rapidly deployable when needed. Last, we look at the ethical use of robots and call for globally sustained efforts in order for robots to be ready for future outbreaks.
Collapse
Affiliation(s)
- Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, 200240 Shanghai, China.,Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Robin R Murphy
- Humanitarian Robotics and AI Laboratory, Texas A&M University, College Station, TX, USA
| | - Weidong Chen
- Institute of Medical Robotics, Shanghai Jiao Tong University, 200240 Shanghai, China.,Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Giulio Dagnino
- Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK.,University of Twente, Enschede, Netherlands
| | - Peer Fischer
- Institute of Physical Chemistry, University of Stuttgart, Stuttgart, Germany.,Micro, Nano, and Molecular Systems Laboratory, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | | | - Dennis Kundrat
- Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
| | | | | | - Hao Su
- Biomechatronics and Intelligent Robotics Lab, Department of Mechanical Engineering, City University of New York, City College, New York, NY 10031, USA
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China.,National Center for Respiratory Medicine, 100029 Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, 100029 Beijing, China.,National Clinical Research Center for Respiratory Diseases, 100029 Beijing, China
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Henan University School of Medicine, 7 Weiwu Road, 450000 Zhengzhou, China.,Department of Neurosurgery, University of Louisville, School of Medicine, 200 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Dandan Zhang
- Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China.,National Center for Respiratory Medicine, 100029 Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, 100029 Beijing, China.,National Clinical Research Center for Respiratory Diseases, 100029 Beijing, China.,Chinese Academy of Medical Sciences, Peking Union Medical College, 100730 Beijing, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, 200240 Shanghai, China.
| |
Collapse
|
34
|
Finance J, Zieleskewicz L, Habert P, Jacquier A, Parola P, Boussuges A, Bregeon F, Eldin C. Low Dose Chest CT and Lung Ultrasound for the Diagnosis and Management of COVID-19. J Clin Med 2021; 10:jcm10102196. [PMID: 34069557 PMCID: PMC8160936 DOI: 10.3390/jcm10102196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has provided an opportunity to use low- and non-radiating chest imaging techniques on a large scale in the context of an infectious disease, which has never been done before. Previously, low-dose techniques were rarely used for infectious diseases, despite the recognised danger of ionising radiation. METHOD To evaluate the role of low-dose computed tomography (LDCT) and lung ultrasound (LUS) in managing COVID-19 pneumonia, we performed a review of the literature including our cases. RESULTS Chest LDCT is now performed routinely when diagnosing and assessing the severity of COVID-19, allowing patients to be rapidly triaged. The extent of lung involvement assessed by LDCT is accurate in terms of predicting poor clinical outcomes in COVID-19-infected patients. Infectious disease specialists are less familiar with LUS, but this technique is also of great interest for a rapid diagnosis of patients with COVID-19 and is effective at assessing patient prognosis. CONCLUSIONS COVID-19 is currently accelerating the transition to low-dose and "no-dose" imaging techniques to explore infectious pneumonia and their long-term consequences.
Collapse
Affiliation(s)
- Julie Finance
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (J.F.); (F.B.)
- Service des Explorations Fonctionnelles Respiratoires, APHM, 13005 Marseille, France
| | - Laurent Zieleskewicz
- Department of Anaesthesiology and Intensive Care Medicine, Hôpital Nord, APHM, Aix Marseille Université, 13005 Marseille, France;
- INRA, INSERM, Centre for Cardiovascular and Nutrition Research (C2VN), Aix Marseille Université, 13005 Marseille, France;
| | - Paul Habert
- Service de Radiologie Cardio-Thoracique, Hôpital La Timone, APHM, 13005 Marseille, France; (P.H.); (A.J.)
- LIIE, Aix Marseille University, 13005 Marseille, France
| | - Alexis Jacquier
- Service de Radiologie Cardio-Thoracique, Hôpital La Timone, APHM, 13005 Marseille, France; (P.H.); (A.J.)
- CNRS, CRMBM-CEMEREM (Centre de Résonance Magnétique Biologique et Médicale—Centre d’Exploration Métaboliques par Résonance Magnétique), APHM, Aix-Marseille University, UMR 7339, 13005 Marseille, France
| | - Philippe Parola
- IRD, APHM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France;
- IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Alain Boussuges
- INRA, INSERM, Centre for Cardiovascular and Nutrition Research (C2VN), Aix Marseille Université, 13005 Marseille, France;
| | - Fabienne Bregeon
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (J.F.); (F.B.)
- Service des Explorations Fonctionnelles Respiratoires, APHM, 13005 Marseille, France
| | - Carole Eldin
- IRD, APHM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France;
- IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
35
|
Kumar H, Fernandez CJ, Kolpattil S, Munavvar M, Pappachan JM. Discrepancies in the clinical and radiological profiles of COVID-19: A case-based discussion and review of literature. World J Radiol 2021; 13:75-93. [PMID: 33968311 PMCID: PMC8069347 DOI: 10.4329/wjr.v13.i4.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
The current gold standard for the diagnosis of coronavirus disease-19 (COVID-19) is a positive reverse transcriptase polymerase chain reaction (RT-PCR) test, on the background of clinical suspicion. However, RT-PCR has its limitations; this includes issues of low sensitivity, sampling errors and appropriate timing of specimen collection. As pulmonary involvement is the most common manifestation of severe COVID-19, early and appropriate lung imaging is important to aid diagnosis. However, gross discrepancies can occur between the clinical and imaging findings in patients with COVID-19, which can mislead clinicians in their decision making. Although chest X-ray (CXR) has a low sensitivity for the diagnosis of COVID-19 associated lung disease, especially in the earlier stages, a positive CXR increases the pre-test probability of COVID-19. CXR scoring systems have shown to be useful, such as the COVID-19 opacification rating score which helps to predict the need of tracheal intubation. Furthermore, artificial intelligence-based algorithms have also shown promise in differentiating COVID-19 pneumonia on CXR from other lung diseases. Although costlier than CXR, unenhanced computed tomographic (CT) chest scans have a higher sensitivity, but lesser specificity compared to RT-PCR for the diagnosis of COVID-19 pneumonia. A semi-quantitative CT scoring system has been shown to predict short-term mortality. The routine use of CT pulmonary angiography as a first-line imaging modality in patients with suspected COVID-19 is not justifiable due to the risk of contrast nephropathy. Scoring systems similar to those pioneered in CXR and CT can be used to effectively plan and manage hospital resources such as ventilators. Lung ultrasound is useful in the assessment of critically ill COVID-19 patients in the hands of an experienced operator. Moreover, it is a convenient tool to monitor disease progression, as it is cheap, non-invasive, easily accessible and easy to sterilise. Newer lung imaging modalities such as magnetic resonance imaging (MRI) for safe imaging among children, adolescents and pregnant women are rapidly evolving. Imaging modalities are also essential for evaluating the extra-pulmonary manifestations of COVID-19: these include cranial imaging with CT or MRI; cardiac imaging with ultrasonography (US), CT and MRI; and abdominal imaging with US or CT. This review critically analyses the utility of each imaging modality to empower clinicians to use them appropriately in the management of patients with COVID-19 infection.
Collapse
Affiliation(s)
- Hemant Kumar
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | | | - Sangeetha Kolpattil
- Department of Radiology, University Hospitals of Morecambe Bay NHS Trust, Lancaster LA1 4RP, United Kingdom
| | - Mohamed Munavvar
- Department of Pulmonology & Chest Diseases, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
| | - Joseph M Pappachan
- Department of Medicine & Endocrinology, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
36
|
Zhao F, Zheng L, Shan F, Dai Y, Shen J, Yang S, Shi Y, Xue K, Zhang Z. Evaluation of pulmonary ventilation in COVID-19 patients using oxygen-enhanced three-dimensional ultrashort echo time MRI: a preliminary study. Clin Radiol 2021; 76:391.e33-391.e41. [PMID: 33712292 PMCID: PMC7906509 DOI: 10.1016/j.crad.2021.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/17/2021] [Indexed: 01/15/2023]
Abstract
AIM To evaluate the lung function of coronavirus disease 2019 (COVID-19) patients using oxygen-enhanced (OE) ultrashort echo time (UTE) MRI. MATERIALS AND METHODS Forty-nine patients with COVID-19 were included in the study. The OE-MRI was based on a respiratory-gated three-dimensional (3D) radial UTE sequence. For each patient, the percent signal enhancement (PSE) map was calculated using the expression PSE = (S100% – S21%)/S21%, where S21% and S100% are signals acquired during room air and 100% oxygen inhalation, respectively. Agreement of lesion detectability between UTE-MRI and computed tomography (CT) was performed using the kappa test. The Mann–Whitney U-test was used to evaluate the difference in the mean PSE between mild-type COVID-19 and common-type COVID-19. Spearman's test was used to assess the relationship between lesion mean PSE and lesion size. Furthermore, the Mann–Whitney U-test was used to evaluate the difference in region of interest (ROI) mean PSE between normal pulmonary parenchyma and lesions. The Kruskal–Wallis test was applied to test the difference in the mean PSE between different lesion types. RESULTS CT and UTE-MRI reached good agreement in lesion detectability. Ventilation measures in mild-type patients (5.3 ± 5.5%) were significantly different from those in common-type patients (3 ± 3.9%). Besides, there was no significant correlation between lesion mean PSE and lesion size. The mean PSE of COVID-19 lesions (3.2 ± 4.9%) was significantly lower than that of the pulmonary parenchyma (5.4 ± 3.9%). No significant difference was found among different lesion types. CONCLUSION OE-UTE-MRI could serve as a promising method for the assessment of lung function or treatment management of COVID-19 patients.
Collapse
Affiliation(s)
- F Zhao
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Department of Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - L Zheng
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai 201800, China
| | - F Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Y Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai 201800, China
| | - J Shen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - S Yang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Y Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - K Xue
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai 201800, China
| | - Z Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Department of the Principal's Office, Fudan University, Shanghai 200433, China.
| |
Collapse
|
37
|
Campbell-Washburn AE, Suffredini AF, Chen MY. High-Performance 0.55-T Lung MRI in Patient with COVID-19 Infection. Radiology 2021; 299:E246-E247. [PMID: 33529138 PMCID: PMC7856701 DOI: 10.1148/radiol.2021204155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Adrienne E Campbell-Washburn
- From the Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D47, Bethesda, MD 20892 (A.E.C.W., M.Y.C.); and Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Md (A.F.S.)
| | - Anthony F Suffredini
- From the Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D47, Bethesda, MD 20892 (A.E.C.W., M.Y.C.); and Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Md (A.F.S.)
| | - Marcus Y Chen
- From the Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D47, Bethesda, MD 20892 (A.E.C.W., M.Y.C.); and Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Md (A.F.S.)
| |
Collapse
|
38
|
Di Girolamo M, Muscogiuri E, Zucchelli A, Laghi A. An Incidental Diagnosis of SARS-CoV-2 Pneumonia With Magnetic Resonance Imaging. Cureus 2020; 12:e12115. [PMID: 33489530 PMCID: PMC7810172 DOI: 10.7759/cureus.12115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19) is caused by the human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. The most common clinical findings related to COVID-19 are fever and cough, with the proportion of patients developing interstitial pneumonia. Other symptoms include dyspnea, expectoration, headache, anosmia, ageusia, myalgia and malaise. To date, the diagnostic criteria for COVID-19 include nasopharyngeal and oropharyngeal swabs. Computed tomography (CT) scans of the thorax showing signs of interstitial pneumonia are important in the management of respiratory disease and in the evaluation of lung involvement. In the literature, there are few cases of COVID-19 pneumonia diagnosis made using magnetic resonance imaging (MRI). In our report, we describe a case of accidental detection of findings related to interstitial pneumonia in a patient who underwent abdominal MRI for other clinical reasons. A 71-year-old woman was referred to our department for an MRI scan of the abdomen as her oncological follow-up. She was asymptomatic at the time of the examination and had passed the triage carried out on all the patients prior to diagnostic tests during the COVID-19 pandemic. The images acquired in the upper abdomen showed the presence of areas of altered signal intensity involving asymmetrically both pulmonary lower lobes, with a patchy appearance and a preferential peripheral subpleural distribution. We considered these features as highly suspicious for COVID-19 pneumonia. The nasopharyngeal swab later confirmed the diagnosis of SARS-CoV-2 infection. There are limited reports about MRI features of COVID-19 pneumonia, considering that high-resolution chest CT is the imaging technique of choice to diagnose pneumonia. Nevertheless, this clinical case confirmed that it is possible to detect MRI signs suggestive of COVID-19 pneumonia. The imaging features described could help in the evaluation of the lung parenchyma to assess the presence of signs suggestive of COVID-19 pneumonia, especially in asymptomatic patients during the pandemic phase of the disease.
Collapse
Affiliation(s)
- Marco Di Girolamo
- Department of Radiology, Sant'Andrea Hospital - Sapienza University of Rome, Roma, ITA
| | - Emanuele Muscogiuri
- Department of Radiology, Sant'Andrea Hospital - Sapienza University of Rome, Roma, ITA
| | - Alberto Zucchelli
- Department of Radiology, Sant'Andrea Hospital - Sapienza University of Rome, Roma, ITA
| | - Andrea Laghi
- Department of Radiology, Sant'Andrea Hospital - Sapienza University of Rome, Roma, ITA
| |
Collapse
|
39
|
Li J, Long X, Wang X, Fang F, Lv X, Zhang D, Sun Y, Hu S, Lin Z, Xiong N. Radiology indispensable for tracking COVID-19. Diagn Interv Imaging 2020; 102:69-75. [PMID: 33281082 PMCID: PMC7685040 DOI: 10.1016/j.diii.2020.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
Currently, chest computed tomography is recommended as the first-line imaging test for detecting COVID-19 pneumonia. The most typical CT imaging finding of COVID-19 patients is ground-glass opacity, combined with reticular and/or interlobular septal thickening and consolidation. CT is useful for monitoring patients with COVID-19, identifying associated vascular abnormalities and making differential diagnosis. With the rapid spread of COVID-19 worldwide, early detection and efficient isolation of suspected patients are especially important to prevent the transmission. Although nucleic acid testing of SARS-CoV-2 is still the gold standard for diagnosis, there are well-recognized early-detection problems including time-consuming in the diagnosis process, noticeable false-negative rate in the early stage and lacking nucleic acid testing kits in some areas. Therefore, effective and rational applications of imaging technologies are critical in aiding the screen and helping the diagnosis of suspected patients. Currently, chest computed tomography is recommended as the first-line imaging test for detecting COVID-19 pneumonia, which could allow not only early detection of the typical chest manifestations, but also timely estimation of the disease severity and therapeutic effects. In addition, other radiological methods including chest X-ray, magnetic resonance imaging, and positron emission computed tomography also show significant advantages in the detection of COVID-19 pneumonia. This review summarizes the applications of radiology and nuclear medicine in detecting and diagnosing COVID-19. It highlights the importance for these technologies to curb the rapid transmission during the pandemic, considering findings from special groups such as children and pregnant women.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan, Hubei, China
| | - Xi Long
- Department of Radiology, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan, Hubei, China
| | - Xinyi Wang
- Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan, Hubei, China
| | - Fang Fang
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Xuefei Lv
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Dandan Zhang
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Yu Sun
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Shaoping Hu
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Zhicheng Lin
- Harvard Medical School, Mclean Hospital, 02478 Belmont, MA, USA
| | - Nian Xiong
- Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan, Hubei, China; Wuhan Red Cross Hospital, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Heiss R, Grodzki DM, Horger W, Uder M, Nagel AM, Bickelhaupt S. High-performance low field MRI enables visualization of persistent pulmonary damage after COVID-19. Magn Reson Imaging 2020; 76:49-51. [PMID: 33220447 PMCID: PMC7673210 DOI: 10.1016/j.mri.2020.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 11/14/2020] [Indexed: 01/07/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) with the origin of the spread assumed to be located in Wuhan, China, began in December 2019, and is continuing until now. With the COVID-19 pandemic showing a progressive spread throughout the countries of the world, there is emerging interest for the potential long-term consequences of suffering from a COVID-19 pneumonia. Imaging plays a central role in the diagnosis and management of COVID-19 pneumonia, with chest X-ray examinations and computed tomography (CT) being undoubtedly the modalities most widely used, allowing for a fast and sensitive detection of infiltration patterns associated with COVID-19 pneumonia. For a better understanding of underlying pathomechanisms of pulmonary damage, longitudinal imaging series are warranted, for which CT is of limited usability due to repeated exposure of X-rays. Recent advances in MRI suggested that high-performance low-field MRI might represent a valuable method for pulmonary imaging without the need of radiation exposure. However, so far, low-field MRI has not been applied to study pulmonary damage after COVID-19 pneumonia. We present a case report of a patient who suffered from COVID-19 pneumonia using 0.55 T MRI for follow-up examinations three months after initial infection. Low-field MRI enables a precise visualization of persistent pulmonary changes including ground-glass opacities, which are consistent with CT performed on the same day. Low-field MRI seems to be feasible in the detection of pulmonary involvement in patients with COVID-19 pneumonia and may have the potential for repetitive lung examinations in monitoring the reconvalescence after pulmonary infections.
Collapse
Affiliation(s)
- Rafael Heiss
- Institute of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| | - David M Grodzki
- Siemens Healthcare GmbH, Magnetic Resonance, Allee am Röthelheimpark 2, 91052 Erlangen, Germany.
| | - Wilhelm Horger
- Siemens Healthcare GmbH, Magnetic Resonance, Allee am Röthelheimpark 2, 91052 Erlangen, Germany.
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| | - Sebastian Bickelhaupt
- Institute of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054 Erlangen, Germany.
| |
Collapse
|
41
|
Imaging Evaluation of Coronavirus Disease (COVID-19) Pneumonia in Pregnant Women. AJR Am J Roentgenol 2020; 215:W66. [PMID: 33052734 DOI: 10.2214/ajr.20.24626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Thorax Magnetic Resonance Imaging Findings in Patients with Coronavirus Disease (COVID-19). Acad Radiol 2020; 27:1373-1378. [PMID: 32830031 PMCID: PMC7428769 DOI: 10.1016/j.acra.2020.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Rationale and Objectives The aim of this study was to compare the findings found in thorax computed tomography (CT), which is increasingly used in the diagnosis of the important public health problem of coronavirus disease (COVID-19), and the findings of magnetic resonance imaging (MRI) as an important diagnostic alternative. Materials and Methods Thirty-two patients diagnosed with COVID-19 who underwent thorax CT for COVID pneumonia and MRI for any reason within 24 hours after CT were included in the study. The number of lobes affected, number of lobes containing ground-glass opacities and consolidation, number of nodules, distribution of lesions (central, peripheral, or diffuse), lobes with centrilobular nodular pattern, and the presence of pleural effusion were recorded separately for both imaging methods. Results Seventeen of the patients were female (53%) and 15 were male (47%). The mean age of the patients was 60.5 (range, 20–85) years. A total of 31 patients (96%) had signs of pneumonia on CT. The most common finding in CT was ground-glass opacities in 29 patients (90.6%), followed by consolidation in 14 patients (43.75%). Both consolidation and ground-glass opacities were also observed in MRI in all of these patients. Nodules were detected in 12 patients (37.5%) on CT and 11 patients (34.4%) on MRI. The sensitivity and specificity of MRI in nodule detection were calculated as 91.67% and 100%, respectively. Conclusion Although thorax CT is widely used in the imaging of COVID-19 infection, due to its advantages, MRI can also be used as an alternative diagnostic tool.
Collapse
|
43
|
Kamishima T, An Y, Fang W, Lu Y. Editorial for "Clinical Potential of UTE-MRI for Assessing the COVID-19: Patient- and Lesion-Based Comparative Analysis". J Magn Reson Imaging 2020; 52:956-957. [PMID: 32652680 PMCID: PMC7404580 DOI: 10.1002/jmri.27291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Yujie An
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Wanxuan Fang
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yutong Lu
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|