1
|
Behrendt L, Gutberlet M, Voskrebenzev A, Klimeš F, Obert AJ, Kern AL, Horstmann D, Wernz MM, Müller RA, Wacker F, Vogel-Claussen J. Influence of echo time on pulmonary ventilation and perfusion derived by phase-resolved functional lung (PREFUL) MRI using multi-echo ultrashort echo time acquisition. NMR IN BIOMEDICINE 2024; 37:e5270. [PMID: 39367655 DOI: 10.1002/nbm.5270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Non-contrast enhanced 1H magnetic resonance imaging (MRI) is promising for ventilation/perfusion (V/Q) assessment of the lung but the influence of the echo time (TE) on V/Q parameters is lacking. Therefore, the purpose of this study was to investigate the influence of different TEs on pulmonary V/Q parameters derived by phase-resolved functional lung (PREFUL) MRI using a multi-echo ultrashort TE (UTE) acquisition. A 2D multi-echo UTE sequence with radial center out readout and tiny golden angle increment was developed. Forty-eight participants were enrolled in this study: 25 healthy subjects, six patients with asthma, and 17 patients with pulmonary fibrosis. Participants underwent two acquisitions of 2D multi-echo UTE MRI with three TEs per acquisition (TE1-6: 0.07, 0.82, 1.72, 2.47, 3.37, and 4.12 ms). Regional ventilation (RVent), flow-volume loop cross-correlation metric (FVL-CM), and normalized perfusion-weighted signal (QN) maps were calculated. V/Q defect percentages (VDP/QDP) were determined. To assess repeatability, the measurement was repeated in healthy subjects. Median and interquartile range of RVent, FVL-CM, QN, VDP, and QDP were calculated. To assess significant differences between parameters obtained at different TEs, Friedman's test and Dunnett's test were performed. Pearson correlation coefficients between RVent derived at TE1 and the difference in RVent between TE2,3 and TE1 were calculated. For repeatability assessment, coefficient of variation (CoV) and intraclass correlation coefficient (ICC) were determined. Significant differences were found comparing V/Q parameters obtained at TE3-6 compared to TE1. CoV increased with TE. For ICC, values between 0.35 (QDP at TE1) and 0.83 (VDPRVent at TE2) were obtained for T1,2. Statistically significant differences for ventilation and perfusion parameters derived by PREFUL were found for TE3-6 compared to TE1. All V/Q parameters were well repeatable for TE1-2. With increasing TE and respiratory volume, RVent shows a T2*-dependency leading to biased ventilation assessment compared to TE1.
Collapse
Affiliation(s)
- Lea Behrendt
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Filip Klimeš
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Arnd J Obert
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Agilo L Kern
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Dominik Horstmann
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Marius M Wernz
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Robin A Müller
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
2
|
Ringwald FG, Wucherpfennig L, Hagen N, Mücke J, Kaletta S, Eichinger M, Stahl M, Triphan SMF, Leutz-Schmidt P, Gestewitz S, Graeber SY, Kauczor HU, Alrajab A, Schenk JP, Sommerburg O, Mall MA, Knaup P, Wielpütz MO, Eisenmann U. Automated lung segmentation on chest MRI in children with cystic fibrosis. Front Med (Lausanne) 2024; 11:1401473. [PMID: 39606627 PMCID: PMC11600534 DOI: 10.3389/fmed.2024.1401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Segmentation of lung structures in medical imaging is crucial for the application of automated post-processing steps on lung diseases like cystic fibrosis (CF). Recently, machine learning methods, particularly neural networks, have demonstrated remarkable improvements, often outperforming conventional segmentation methods. Nonetheless, challenges still remain when attempting to segment various imaging modalities and diseases, especially when the visual characteristics of pathologic findings significantly deviate from healthy tissue. Methods Our study focuses on imaging of pediatric CF patients [mean age, standard deviation (7.50 ± 4.6)], utilizing deep learning-based methods for automated lung segmentation from chest magnetic resonance imaging (MRI). A total of 165 standardized annual surveillance MRI scans from 84 patients with CF were segmented using the nnU-Net framework. Patient cases represented a range of disease severities and ages. The nnU-Net was trained and evaluated on three MRI sequences (BLADE, VIBE, and HASTE), which are highly relevant for the evaluation of CF induced lung changes. We utilized 40 cases for training per sequence, and tested with 15 cases per sequence, using the Sørensen-Dice-Score, Pearson's correlation coefficient (r), a segmentation questionnaire, and slice-based analysis. Results The results demonstrated a high level of segmentation performance across all sequences, with only minor differences observed in the mean Dice coefficient: BLADE (0.96 ± 0.05), VIBE (0.96 ± 0.04), and HASTE (0.95 ± 0.05). Additionally, the segmentation quality was consistent across different disease severities, patient ages, and sizes. Manual evaluation identified specific challenges, such as incomplete segmentations near the diaphragm and dorsal regions. Validation on a separate, external dataset of nine toddlers (2-24 months) demonstrated generalizability of the trained model achieving a Dice coefficient of 0.85 ± 0.03. Discussion and conclusion Overall, our study demonstrates the feasibility and effectiveness of using nnU-Net for automated segmentation of lung halves in pediatric CF patients, showing promising directions for advanced image analysis techniques to assist in clinical decision-making and monitoring of CF lung disease progression. Despite these achievements, further improvements are needed to address specific segmentation challenges and enhance generalizability.
Collapse
Affiliation(s)
- Friedemann G. Ringwald
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Lena Wucherpfennig
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Niclas Hagen
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jonas Mücke
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
| | - Sebastian Kaletta
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
| | - Monika Eichinger
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon M. F. Triphan
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Patricia Leutz-Schmidt
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Sonja Gestewitz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Y. Graeber
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Ulrich Kauczor
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Abdulsattar Alrajab
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens-Peter Schenk
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus A. Mall
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Knaup
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Mark O. Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Urs Eisenmann
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
3
|
Hahn JJ, Voskrebenzev A, Behrendt L, Klimeš F, Pöhler GH, Wacker F, Vogel-Claussen J. Sequence comparison of spoiled gradient echo and balanced steady-state free precession for pulmonary free-breathing proton MRI in patients and healthy volunteers: Correspondence, repeatability, and validation with dynamic contrast-enhanced MRI. NMR IN BIOMEDICINE 2024; 37:e5209. [PMID: 38994704 DOI: 10.1002/nbm.5209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Phase-resolved functional lung (PREFUL) MRI is a proton-based, contrast agent-free technique derived from the Fourier decomposition approach to measure regional ventilation and perfusion dynamics during free-breathing. Besides the necessity of extensive PREFUL postprocessing, the utilized MRI sequence must fulfill specific requirements. This study investigates the impact of sequence selection on PREFUL-MRI-derived functional parameters by comparing the standard spoiled gradient echo (SPGRE) sequence with a lung-optimized balanced steady-state free precession (bSSFP) sequence, thereby facilitating PREFULs clinical application in pulmonary disease assessment. This study comprised a prospective dataset of healthy volunteers and a retrospective dataset of patients with suspected chronic thromboembolic pulmonary hypertension. Both cohorts underwent PREFUL-MRI with both sequences to assess the correspondence of PREFUL ventilation and perfusion parameters (A). Additionally, healthy subjects were scanned a second time to evaluate repeatability (B), whereas patients received dynamic contrast-enhanced (DCE)-MRI, considered the perfusion gold standard for comparison with PREFUL-MRI (C). Signal-to-noise ratio (SNR), calculated from the unprocessed images, was compared alongside median differences of PREFUL-MRI-derived parameters using a paired Wilcoxon signed rank test. Further evaluations included calculation of the Pearson correlation, intraclass-correlation coefficient for repeatability assessment, and spatial overlap (SO) for regional comparison of PREFUL-MRI and DCE-MRI. bSSFP showed a clear SNR advantage over SPGRE (median: 23 vs. 9, p < 0.001). (A) Despite significant differences, parameter values were strongly correlated (r ≥ 0.75). After thresholding, binary maps showed high healthy overlap across both cohorts (SOHealthy > 86%) and high defect overlap in the patient cohort (SODefect ≥ 48%). (B) bSSFP demonstrated slightly higher repeatability across most parameters. (C) Both sequences demonstrated comparable correspondence to DCE-MRI, with SPGRE excelling in absolute quantification and bSSFP in spatial agreement. Although bSSFP showed superior SNR results, both sequences displayed spatial defect concordance and highly correlated PREFUL parameters with deviations regarding repeatability and alignment with DCE-MRI.
Collapse
Affiliation(s)
- Jonah J Hahn
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
| | - Andreas Voskrebenzev
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Lea Behrendt
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Filip Klimeš
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Gesa H Pöhler
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| |
Collapse
|
4
|
Ren CL, Nasr SZ, Slaven JE, Joshi A, Mahani MG, Clem C, Cooper M, Farr S, MacAskill CJ, Keshock E, Nicholas JL, Ferrebee M, McBennett K, Flask CA. Lung T1 MRI assessments in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 2024; 59:2464-2471. [PMID: 38695557 DOI: 10.1002/ppul.27039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 11/18/2024]
Abstract
RATIONALE Lung T1 MRI is a potential method to assess cystic fibrosis (CF) lung disease that is safe, quick, and widely available, but there are no data in children with mild CF lung disease. OBJECTIVE Assess the ability of lung T1 MRI to detect abnormalities in children with mild CF lung disease. METHODS We performed T1 MRI, multiple breath washout (MBW), chest computed tomography (CT), and spirometry in a cohort of 45 children with mild CF lung disease (6-11 years of age). MAIN RESULTS Despite mean normal ppFEV1 values, the majority of children with CF in this study exhibited mild lung disease evident in lung clearance index (LCI) measured by MBW, chest CT Brody scores, and percent normal lung perfusion (%NLP) measured by T1 MRI. The %NLP correlated with chest CT Brody scores, as did LCI, but %NLP and LCI did not correlate with each other. Analysis of the Brody subscores showed that %NLP and LCI largely correlated with different Brody subscores. CONCLUSIONS T1 MRI can detect mild CF lung disease in children and correlates with chest CT findings. The %NLP from T1 MRI and LCI correlate with different chest CT Brody subscores, suggesting they provide complementary information about CF lung disease.
Collapse
Affiliation(s)
- Clement L Ren
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samya Z Nasr
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - James E Slaven
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aparna Joshi
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Maryam Ghadimi Mahani
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Advanced Radiology Services, Lansing, Michigan, USA
| | - Charles Clem
- Division of Pulmonary, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Matthew Cooper
- Division of Pulmonary, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Susan Farr
- Imaging Research Core, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Elise Keshock
- Imaging Research Core, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jennifer L Nicholas
- Department of Radiology, Rainbow Babies and Children's Hospital, University Hospitals - Cleveland Medical Center, Cleveland, Ohio, USA
| | - Matthew Ferrebee
- Department of Radiology, Rainbow Babies and Children's Hospital, University Hospitals - Cleveland Medical Center, Cleveland, Ohio, USA
| | - Kimberly McBennett
- Imaging Research Core, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Rainbow Babies and Children's Hospital, University Hospitals - Cleveland Medical Center, Cleveland, Ohio, USA
| | - Chris A Flask
- Imaging Research Core, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Triphan SMF, Bauman G, Konietzke P, Konietzke M, Wielpütz MO. Magnetic Resonance Imaging of Lung Perfusion. J Magn Reson Imaging 2024; 59:784-796. [PMID: 37466278 DOI: 10.1002/jmri.28912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
"Lung perfusion" in the context of imaging conventionally refers to the delivery of blood to the pulmonary capillary bed through the pulmonary arteries originating from the right ventricle required for oxygenation. The most important physiological mechanism in the context of imaging is the so-called hypoxic pulmonary vasoconstriction (HPV, also known as "Euler-Liljestrand-Reflex"), which couples lung perfusion to lung ventilation. In obstructive airway diseases such as asthma, chronic-obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma, HPV downregulates pulmonary perfusion in order to redistribute blood flow to functional lung areas in order to conserve optimal oxygenation. Imaging of lung perfusion can be seen as a reflection of lung ventilation in obstructive airway diseases. Other conditions that primarily affect lung perfusion are pulmonary vascular diseases, pulmonary hypertension, or (chronic) pulmonary embolism, which also lead to inhomogeneity in pulmonary capillary blood distribution. Several magnetic resonance imaging (MRI) techniques either dependent on exogenous contrast materials, exploiting periodical lung signal variations with cardiac action, or relying on intrinsic lung voxel attributes have been demonstrated to visualize lung perfusion. Additional post-processing may add temporal information and provide quantitative information related to blood flow. The most widely used and robust technique, dynamic-contrast enhanced MRI, is available in clinical routine assessment of COPD, CF, and pulmonary vascular disease. Non-contrast techniques are important research tools currently requiring clinical validation and cross-correlation in the absence of a viable standard of reference. First data on many of these techniques in the context of observational studies assessing therapy effects have just become available. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Simon M F Triphan
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Philip Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Mark O Wielpütz
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Triphan SMF, Konietzke M, Biederer J, Eichinger M, Vogelmeier CF, Jörres RA, Kauczor HU, Heußel CP, Jobst BJ, Wielpütz MO. Echo time-dependent observed T1 and quantitative perfusion in chronic obstructive pulmonary disease using magnetic resonance imaging. Front Med (Lausanne) 2024; 10:1254003. [PMID: 38249975 PMCID: PMC10797117 DOI: 10.3389/fmed.2023.1254003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Due to hypoxic vasoconstriction, perfusion is interesting in the lungs. Magnetic Resonance Imaging (MRI) perfusion imaging based on Dynamic Contrast Enhancement (DCE) has been demonstrated in patients with Chronic Obstructive Pulmonary Diseases (COPD) using visual scores, and quantification methods were recently developed further. Inter-patient correlations of echo time-dependent observed T1 [T1(TE)] have been shown with perfusion scores, pulmonary function testing, and quantitative computed tomography. Here, we examined T1(TE) quantification and quantitative perfusion MRI together and investigated both inter-patient and local correlations between T1(TE) and quantitative perfusion. Methods 22 patients (age 68.0 ± 6.2) with COPD were examined using morphological MRI, inversion recovery multi-echo 2D ultra-short TE (UTE) in 1-2 slices for T1(TE) mapping, and 4D Time-resolved angiography With Stochastic Trajectories (TWIST) for DCE. T1(TE) maps were calculated from 2D UTE at five TEs from 70 to 2,300 μs. Pulmonary Blood Flow (PBF) and perfusion defect (QDP) maps were produced from DCE measurements. Lungs were automatically segmented on UTE images and morphological MRI and these segmentations registered to DCE images. DCE images were separately registered to UTE in corresponding slices and divided into corresponding subdivisions. Spearman's correlation coefficients were calculated for inter-patient correlations using the entire segmented slices and for local correlations separately using registered images and subdivisions for each TE. Median T1(TE) in normal and defect areas according to QDP maps were compared. Results Inter-patient correlations were strongest on average at TE2 = 500 μs, reaching up to |ρ| = 0.64 for T1 with PBF and |ρ| = 0.76 with QDP. Generally, local correlations of T1 with PBF were weaker at TE2 than at TE1 or TE3 and with maximum values of |ρ| = 0.66 (from registration) and |ρ| = 0.69 (from subdivision). In 18 patients, T1 was shorter in defect areas than in normal areas, with the relative difference smallest at TE2. Discussion The inter-patient correlations of T1 with PBF and QDP found show similar strength and TE-dependence as those previously reported for visual perfusion scores and quantitative computed tomography. The local correlations and median T1 suggest that not only base T1 but also the TE-dependence of observed T1 in normal areas is closer to that found previously in healthy volunteers than in defect areas.
Collapse
Affiliation(s)
- Simon M. F. Triphan
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps-University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Rudolf A. Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Claus P. Heußel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Bertram J. Jobst
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
7
|
Wucherpfennig L, Triphan SMF, Wege S, Kauczor HU, Heussel CP, Sommerburg O, Stahl M, Mall MA, Eichinger M, Wielpütz MO. Elexacaftor/Tezacaftor/Ivacaftor Improves Bronchial Artery Dilatation Detected by Magnetic Resonance Imaging in Patients with Cystic Fibrosis. Ann Am Thorac Soc 2023; 20:1595-1604. [PMID: 37579262 DOI: 10.1513/annalsats.202302-168oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Rationale: Magnetic resonance imaging (MRI) detects improvements in mucus plugging and bronchial wall thickening, but not in lung perfusion in patients with cystic fibrosis (CF) treated with elexacaftor/tezacaftor/ivacaftor (ETI). Objectives: To determine whether bronchial artery dilatation (BAD), a key feature of advanced lung disease, indicates irreversibility of perfusion abnormalities and whether BAD could be reversed in CF patients treated with ETI. Methods: A total of 59 adults with CF underwent longitudinal chest MRI, including magnetic resonance angiography twice, comprising 35 patients with CF (mean age, 31 ± 7 yr) before (MRI1) and after (MRI2) at least 1 month (mean duration, 8 ± 4 mo) on ETI therapy and 24 control patients with CF (mean age, 31 ± 7 yr) without ETI. MRI was assessed using the validated chest MRI score, and the presence and total lumen area of BAD were assessed with commercial software. Results: The MRI global score was stable in the control group from MRI1 to MRI2 (mean difference, 1.1 [-0.3, 2.4]; P = 0.054), but it was reduced in the ETI group (-10.1 [-0.3, 2.4]; P < 0.001). In the control and ETI groups, BAD was present in almost all patients at baseline (95% and 94%, respectively), which did not change at MRI2. The BAD total lumen area did not change in the control group from MRI1 to MRI2 (1.0 mm2 [-0.2, 2.2]; P = 0.099) but decreased in the ETI group (-7.0 mm2 [-8.9, -5.0]; P < 0.001). This decrease correlated with improvements in the MRI global score (r = 0.540; P < 0.001). Conclusions: Our data show that BAD may be partially reversible under ETI therapy in adult patients with CF who have established disease.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Sabine Wege
- Department of Pulmonology and Respiratory Medicine, Cystic Fibrosis Center, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Claus P Heussel
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Translational Pulmonology and
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Translational Pulmonology and
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Berlin, Germany; and
- Berlin Institute of Health at Charité - University Medicine Berlin, Berlin, Germany
| | - Marcus A Mall
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Translational Pulmonology and
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Berlin, Germany; and
- Berlin Institute of Health at Charité - University Medicine Berlin, Berlin, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
8
|
Wucherpfennig L, Kauczor HU, Eichinger M, Wielpütz MO. [Magnetic resonance imaging of the lung : State of the art]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:849-862. [PMID: 37851088 DOI: 10.1007/s00117-023-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Due to the low proton density of the lung parenchyma and the rapid signal decay at the air-tissue interfaces, for a long time the lungs were difficult to access using magnetic resonance imaging (MRI); however, technical advances could address most of these obstacles. Pulmonary alterations associated with tissue proliferation ("plus pathologies"), can now be detected with high diagnostic accuracy because of the locally increased proton density. Compared to computed tomography (CT), MRI provides a comprehensive range of functional imaging procedures (respiratory mechanics, perfusion and ventilation). In addition, as a radiation-free noninvasive examination modality, it enables repeated examinations for assessment of the course or monitoring of the effects of treatment, even in children. This article discusses the technical aspects, gives suggestions for protocols and explains the role of MRI of the lungs in the routine assessment of various diseases.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Hans-Ulrich Kauczor
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Mark O Wielpütz
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland.
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland.
| |
Collapse
|
9
|
Abstract
The need for airway imaging is defined by the limited sensitivity of common clinical tests like spirometry, lung diffusion (DLCO) and blood gas analysis to early changes of peripheral airways and to inhomogeneous regional distribution of lung function deficits. Therefore, X-ray and computed tomography (CT) are frequently used to complement the standard tests.As an alternative, magnetic resonance imaging (MRI) offers radiation-free lung imaging, but at lower spatial resolution. Non-contrast enhanced MRI shows healthy airways down to the first subsegmental level/4th order (CT: eighth). Bronchiectasis can be identified by wall thickening and fluid accumulation. Smaller airways become visible, when altered by peribronchiolar inflammation or mucus retention (tree-in-bud sign).The strength of MRI is functional imaging. Dynamic, time-resolved MRI directly visualizes expiratory airway collapse down to the lobar level (CT: segmental level). Obstruction of even smaller airways becomes visible as air trapping on the expiratory scans. MRI with hyperpolarized noble gases (3He, 129Xe) directly shows the large airways and peripheral lung ventilation. Dynamic contrast-enhanced MRI (DCE MRI) indirectly shows airway dysfunction as perfusion deficits resulting from hypoxic vasoconstriction of the dependent lung volumes. Further promising scientific approaches such as non-contrast enhanced, ventilation-/perfusion-weighted MRI from periodic signal changes of respiration and blood flow are in development.In summary, MRI of the lungs and airways excels with its unique combination of morphologic and functional imaging capacities for research (e.g., in chronic obstructive lung disease or asthma) as well as for clinical imaging (e.g., in cystic fibrosis).
Collapse
Affiliation(s)
- Juergen Biederer
- Christian-Albrechts-Universität zu Kiel, Faculty of Medicine, Kiel, Germany.,University of Latvia, Faculty of Medicine, Raina bulvaris, Riga, Latvia.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Im Neuenheimer Feld, Heidelberg, Germany.,Department of Diagnostic and interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Steinke E, Sommerburg O, Graeber SY, Joachim C, Labitzke C, Nissen G, Ricklefs I, Rudolf I, Kopp MV, Dittrich AM, Mall MA, Stahl M. TRACK-CF prospective cohort study: Understanding early cystic fibrosis lung disease. Front Med (Lausanne) 2023; 9:1034290. [PMID: 36687447 PMCID: PMC9853074 DOI: 10.3389/fmed.2022.1034290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Background Lung disease as major cause for morbidity in patients with cystic fibrosis (CF) starts early in life. Its large phenotypic heterogeneity is partially explained by the genotype but other contributing factors are not well delineated. The close relationship between mucus, inflammation and infection, drives morpho-functional alterations already early in pediatric CF disease, The TRACK-CF cohort has been established to gain insight to disease onset and progression, assessed by lung function testing and imaging to capture morpho-functional changes and to associate these with risk and protective factors, which contribute to the variation of the CF lung disease progression. Methods and design TRACK-CF is a prospective, longitudinal, observational cohort study following patients with CF from newborn screening or clinical diagnosis throughout childhood. The study protocol includes monthly telephone interviews, quarterly visits with microbiological sampling and multiple-breath washout and as well as a yearly chest magnetic resonance imaging. A parallel biobank has been set up to enable the translation from the deeply phenotyped cohort to the validation of relevant biomarkers. The main goal is to determine influencing factors by the combined analysis of clinical information and biomaterials. Primary endpoints are the lung clearance index by multiple breath washout and semi-quantitative magnetic resonance imaging scores. The frequency of pulmonary exacerbations, infection with pro-inflammatory pathogens and anthropometric data are defined as secondary endpoints. Discussion This extensive cohort includes children after diagnosis with comprehensive monitoring throughout childhood. The unique composition and the use of validated, sensitive methods with the attached biobank bears the potential to decisively advance the understanding of early CF lung disease. Ethics and trial registration The study protocol was approved by the Ethics Committees of the University of Heidelberg (approval S-211/2011) and each participating site and is registered at clinicaltrials.gov (NCT02270476).
Collapse
Affiliation(s)
- Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany,*Correspondence: Eva Steinke ✉
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Cornelia Joachim
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Labitzke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Gyde Nissen
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Isabell Ricklefs
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Isa Rudolf
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias V. Kopp
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany,Division of Respiratory Medicine, Department of Pediatrics, University Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| |
Collapse
|
11
|
Tibiletti M, Eaden JA, Naish JH, Hughes PJC, Waterton JC, Heaton MJ, Chaudhuri N, Skeoch S, Bruce IN, Bianchi S, Wild JM, Parker GJM. Imaging biomarkers of lung ventilation in interstitial lung disease from 129Xe and oxygen enhanced 1H MRI. Magn Reson Imaging 2023; 95:39-49. [PMID: 36252693 DOI: 10.1016/j.mri.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE To compare imaging biomarkers from hyperpolarised 129Xe ventilation MRI and dynamic oxygen-enhanced MRI (OE-MRI) with standard pulmonary function tests (PFT) in interstitial lung disease (ILD) patients. To evaluate if biomarkers can separate ILD subtypes and detect early signs of disease resolution or progression. STUDY TYPE Prospective longitudinal. POPULATION Forty-one ILD (fourteen idiopathic pulmonary fibrosis (IPF), eleven hypersensitivity pneumonitis (HP), eleven drug-induced ILD (DI-ILD), five connective tissue disease related-ILD (CTD-ILD)) patients and ten healthy volunteers imaged at visit 1. Thirty-four ILD patients completed visit 2 (eleven IPF, eight HP, ten DIILD, five CTD-ILD) after 6 or 26 weeks. FIELD STRENGTH/SEQUENCE MRI was performed at 1.5 T, including inversion recovery T1 mapping, dynamic MRI acquisition with varying oxygen levels, and hyperpolarised 129Xe ventilation MRI. Subjects underwent standard spirometry and gas transfer testing. ASSESSMENT Five 1H MRI and two 129Xe MRI ventilation metrics were compared with spirometry and gas transfer measurements. STATISTICAL TEST To evaluate differences at visit 1 among subgroups: ANOVA or Kruskal-Wallis rank tests with correction for multiple comparisons. To assess the relationships between imaging biomarkers, PFT, age and gender, at visit 1 and for the change between visit 1 and 2: Pearson correlations and multilinear regression models. RESULTS The global PFT tests could not distinguish ILD subtypes. Percentage ventilated volumes were lower in ILD patients than in HVs when measured with 129Xe MRI (HV 97.4 ± 2.6, CTD-ILD: 91.0 ± 4.8 p = 0.017, DI-ILD 90.1 ± 7.4 p = 0.003, HP 92.6 ± 4.0 p = 0.013, IPF 88.1 ± 6.5 p < 0.001), but not with OE-MRI. 129Xe reported more heterogeneous ventilation in DI-ILD and IPF than in HV, and OE-MRI reported more heterogeneous ventilation in DI-ILD and IPF than in HP or CTD-ILD. The longitudinal changes reported by the imaging biomarkers did not correlate with the PFT changes between visits. DATA CONCLUSION Neither 129Xe ventilation nor OE-MRI biomarkers investigated in this study were able to differentiate between ILD subtypes, suggesting that ventilation-only biomarkers are not indicated for this task. Limited but progressive loss of ventilated volume as measured by 129Xe-MRI may be present as the biomarker of focal disease progresses. OE-MRI biomarkers are feasible in ILD patients and do not correlate strongly with PFT. Both OE-MRI and 129Xe MRI revealed more spatially heterogeneous ventilation in DI-ILD and IPF.
Collapse
Affiliation(s)
- Marta Tibiletti
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom
| | - James A Eaden
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; MCMR, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, UK
| | - Paul J C Hughes
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - John C Waterton
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Matthew J Heaton
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom
| | - Nazia Chaudhuri
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sarah Skeoch
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Ian N Bruce
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK; Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim M Wild
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK; Insigneo Insititute for in silico medicine, Sheffield, UK
| | - Geoff J M Parker
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| |
Collapse
|
12
|
Konietzke M, Triphan SMF, Eichinger M, Bossert S, Heller H, Wege S, Eberhardt R, Puderbach MU, Kauczor HU, Heußel G, Heußel CP, Risse F, Wielpütz MO. Unsupervised clustering algorithms improve the reproducibility of dynamic contrast-enhanced magnetic resonance imaging pulmonary perfusion quantification in muco-obstructive lung diseases. Front Med (Lausanne) 2022; 9:1022981. [PMID: 36353218 PMCID: PMC9637664 DOI: 10.3389/fmed.2022.1022981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows the assessment of pulmonary perfusion, which may play a key role in the development of muco-obstructive lung disease. One problem with quantifying pulmonary perfusion is the high variability of metrics. Quantifying the extent of abnormalities using unsupervised clustering algorithms in residue function maps leads to intrinsic normalization and could reduce variability. Purpose We investigated the reproducibility of perfusion defects in percent (QDP) in clinically stable patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Methods 15 CF (29.3 ± 9.3y, FEV1%predicted = 66.6 ± 15.8%) and 20 COPD (66.5 ± 8.9y, FEV1%predicted = 42.0 ± 13.3%) patients underwent DCE-MRI twice 1 month apart. QDP, pulmonary blood flow (PBF), and pulmonary blood volume (PBV) were computed from residue function maps using an in-house quantification pipeline. A previously validated MRI perfusion score was visually assessed by an expert reader. Results Overall, mean QDP, PBF, and PBV did not change within 1 month, except for QDP in COPD (p < 0.05). We observed smaller limits of agreement (± 1.96 SD) related to the median for QDP (CF: ± 38%, COPD: ± 37%) compared to PBF (CF: ± 89%, COPD: ± 55%) and PBV (CF: ± 55%, COPD: ± 51%). QDP correlated moderately with the MRI perfusion score in CF (r = 0.46, p < 0.05) and COPD (r = 0.66, p < 0.001). PBF and PBV correlated poorly with the MRI perfusion score in CF (r =-0.29, p = 0.132 and r =-0.35, p = 0.067, respectively) and moderately in COPD (r =-0.57 and r =-0.57, p < 0.001, respectively). Conclusion In patients with muco-obstructive lung diseases, QDP was more robust and showed a higher correlation with the MRI perfusion score compared to the traditionally used perfusion metrics PBF and PBV.
Collapse
Affiliation(s)
- Marilisa Konietzke
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simon M. F. Triphan
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Sebastian Bossert
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Hartmut Heller
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Sabine Wege
- Department of Pulmonology and Respiratory Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Ralf Eberhardt
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pulmonology and Respiratory Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael U. Puderbach
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Hufeland Hospital, Bad Langensalza, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Gudula Heußel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Claus P. Heußel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Frank Risse
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Wucherpfennig L, Triphan SM, Wege S, Kauczor HU, Heussel CP, Schmitt N, Wuennemann F, Mayer VL, Sommerburg O, Mall MA, Eichinger M, Wielpütz MO. Magnetic resonance imaging detects improvements of pulmonary and paranasal sinus abnormalities in response to elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. J Cyst Fibros 2022; 21:1053-1060. [DOI: 10.1016/j.jcf.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
14
|
Ciet P, Bertolo S, Ros M, Casciaro R, Cipolli M, Colagrande S, Costa S, Galici V, Gramegna A, Lanza C, Lucca F, Macconi L, Majo F, Paciaroni A, Parisi GF, Rizzo F, Salamone I, Santangelo T, Scudeller L, Saba L, Tomà P, Morana G. State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the "iMAging managEment of cySTic fibROsis" (MAESTRO) consortium. Eur Respir Rev 2022; 31:31/163/210173. [PMID: 35321929 DOI: 10.1183/16000617.0173-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Imaging represents an important noninvasive means to assess cystic fibrosis (CF) lung disease, which remains the main cause of morbidity and mortality in CF patients. While the development of new imaging techniques has revolutionised clinical practice, advances have posed diagnostic and monitoring challenges. The authors aim to summarise these challenges and make evidence-based recommendations regarding imaging assessment for both clinicians and radiologists. STUDY DESIGN A committee of 21 experts in CF from the 10 largest specialist centres in Italy was convened, including a radiologist and a pulmonologist from each centre, with the overall aim of developing clear and actionable recommendations for lung imaging in CF. An a priori threshold of at least 80% of the votes was required for acceptance of each statement of recommendation. RESULTS After a systematic review of the relevant literature, the committee convened to evaluate 167 articles. Following five RAND conferences, consensus statements were developed by an executive subcommittee. The entire consensus committee voted and approved 28 main statements. CONCLUSIONS There is a need for international guidelines regarding the appropriate timing and selection of imaging modality for patients with CF lung disease; timing and selection depends upon the clinical scenario, the patient's age, lung function and type of treatment. Despite its ubiquity, the use of the chest radiograph remains controversial. Both computed tomography and magnetic resonance imaging should be routinely used to monitor CF lung disease. Future studies should focus on imaging protocol harmonisation both for computed tomography and for magnetic resonance imaging. The introduction of artificial intelligence imaging analysis may further revolutionise clinical practice by providing fast and reliable quantitative outcomes to assess disease status. To date, there is no evidence supporting the use of lung ultrasound to monitor CF lung disease.
Collapse
Affiliation(s)
- Pierluigi Ciet
- Radiology and Nuclear Medicine Dept, Erasmus MC, Rotterdam, The Netherlands .,Pediatric Pulmonology and Allergology Dept, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands.,Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Silvia Bertolo
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Mirco Ros
- Dept of Pediatrics, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Rosaria Casciaro
- Dept of Pediatrics, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Centre, Genoa, Italy
| | - Marco Cipolli
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Stefano Colagrande
- Dept of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence- Careggi Hospital, Florence, Italy
| | - Stefano Costa
- Dept of Pediatrics, Gaetano Martino Hospital, Messina, Italy
| | - Valeria Galici
- Cystic Fibrosis Centre, Dept of Paediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Andrea Gramegna
- Respiratory Disease and Adult Cystic Fibrosis Centre, Internal Medicine Dept, IRCCS Ca' Granda, Milan, Italy.,Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Lanza
- Radiology Dept, University Hospital Ospedali Riuniti, Ancona, Italy
| | - Francesca Lucca
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Letizia Macconi
- Radiology Dept, Tuscany Reference Cystic Fibrosis Centre, Meyer Children's Hospital, Florence, Italy
| | - Fabio Majo
- Dept of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Rizzo
- Radiology Dept, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Center, Genoa, Italy
| | | | - Teresa Santangelo
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigia Scudeller
- Clinical Epidemiology, IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, Italy
| | - Luca Saba
- Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Paolo Tomà
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanni Morana
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| |
Collapse
|
15
|
Practical protocol for lung magnetic resonance imaging and common clinical indications. Pediatr Radiol 2022; 52:295-311. [PMID: 34037828 PMCID: PMC8150155 DOI: 10.1007/s00247-021-05090-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022]
Abstract
Imaging speed, spatial resolution and availability have made CT the favored cross-sectional imaging modality for evaluating various respiratory diseases of children - but only for the price of a radiation exposure. MRI is increasingly being appreciated as an alternative to CT, not only for offering three-dimensional (3-D) imaging without radiation exposure at only slightly inferior spatial resolution, but also for its superior soft-tissue contrast and exclusive morpho-functional imaging capacities beyond the scope of CT. Continuing technical improvements and experience with this so far under-utilized modality contribute to a growing acceptance of MRI for an increasing number of indications, in particular for pediatric patients. This review article provides the reader with practical easy-to-use protocols for common clinical indications in children. This is intended to encourage pediatric radiologists to appreciate the new horizons for applications of this rapidly evolving technique in the field of pediatric respiratory diseases.
Collapse
|
16
|
Wielpütz MO. Commentary: Expert Opinion to "Imaging Bronchopulmonary Dysplasia-A Multimodality Update". Front Med (Lausanne) 2021; 8:737724. [PMID: 34746176 PMCID: PMC8566914 DOI: 10.3389/fmed.2021.737724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Mark O Wielpütz
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Triphan SMF, Weinheimer O, Gutberlet M, Heußel CP, Vogel-Claussen J, Herth F, Vogelmeier CF, Jörres RA, Kauczor HU, Wielpütz MO, Biederer J, Jobst BJ. Echo Time-Dependent Observed Lung T 1 in Patients With Chronic Obstructive Pulmonary Disease in Correlation With Quantitative Imaging and Clinical Indices. J Magn Reson Imaging 2021; 54:1562-1571. [PMID: 34050576 DOI: 10.1002/jmri.27746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND There is a clinical need for imaging-derived biomarkers for the management of chronic obstructive pulmonary disease (COPD). Observed pulmonary T1 (T1 (TE)) depends on the echo-time (TE) and reflects regional pulmonary function. PURPOSE To investigate the potential diagnostic value of T1 (TE) for the assessment of lung disease in COPD patients by determining correlations with clinical parameters and quantitative CT. STUDY TYPE Prospective non-randomized diagnostic study. POPULATION Thirty COPD patients (67.7 ± 6.6 years). Data from a previous study (15 healthy volunteers [26.2 ± 3.9 years) were used as reference. FIELD STRENGTH/SEQUENCE Study participants were examined at 1.5 T using dynamic contrast-enhanced three-dimensional gradient echo keyhole perfusion sequence and a multi-echo inversion recovery two-dimensional UTE (ultra-short TE) sequence for T1 (TE) mapping at TE1-5 = 70 μsec, 500 μsec, 1200 μsec, 1650 μsec, and 2300 μsec. ASSESSMENT Perfusion images were scored by three radiologists. T1 (TE) was automatically quantified. Computed tomography (CT) images were quantified in software (qCT). Clinical parameters including pulmonary function testing were also acquired. STATISTICAL TESTS Spearman rank correlation coefficients (ρ) were calculated between T1 (TE) and perfusion scores, clinical parameters and qCT. A P-value <0.05 was considered statistically significant. RESULTS Median values were T1 (TE1-5 ) = 644 ± 78 msec, 835 ± 92 msec, 835 ± 87 msec, 831 ± 131 msec, 893 ± 220 msec, all significantly shorter than previously reported in healthy subjects. A significant increase of T1 was observed from TE1 to TE2 , with no changes from TE2 to TE3 (P = 0.48), TE3 to TE4 (P = 0.94) or TE4 to TE5 (P = 0.02) which demonstrates an increase at shorter TEs than in healthy subjects. Moderate to strong Spearman's correlations between T1 and parameters including the predicted diffusing capacity for carbon monoxide (DLCO, ρ < 0.70), mean lung density (MLD, ρ < 0.72) and the perfusion score (ρ > -0.69) were found. Overall, correlations were strongest at TE2 , weaker at TE1 and rarely significant at TE4 -TE5 . DATA CONCLUSION In COPD patients, the increase of T1 (TE) with TE occurred at shorter TEs than previously found in healthy subjects. Together with the lack of correlation between T1 and clinical parameters of disease at longer TEs, this suggests that T1 (TE) quantification in COPD patients requires shorter TEs. The TE-dependence of correlations implies that T1 (TE) mapping might be developed further to provide diagnostic information beyond T1 at a single TE. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Claus P Heußel
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Felix Herth
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany.,Department of Pneumology and Critical Care Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Bertram J Jobst
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
18
|
Quantification of Phenotypic Variability of Lung Disease in Children with Cystic Fibrosis. Genes (Basel) 2021; 12:genes12060803. [PMID: 34070354 PMCID: PMC8229033 DOI: 10.3390/genes12060803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Cystic fibrosis (CF) lung disease has the greatest impact on the morbidity and mortality of patients suffering from this autosomal-recessive multiorgan disorder. Although CF is a monogenic disorder, considerable phenotypic variability of lung disease is observed in patients with CF, even in those carrying the same mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene or CFTR mutations with comparable functional consequences. In most patients with CF, lung disease progresses from childhood to adulthood, but is already present in infants soon after birth. In addition to the CFTR genotype, the variability of early CF lung disease can be influenced by several factors, including modifier genes, age at diagnosis (following newborn screening vs. clinical symptoms) and environmental factors. The early onset of CF lung disease requires sensitive, noninvasive measures to detect and monitor changes in lung structure and function. In this context, we review recent progress with using multiple-breath washout (MBW) and lung magnetic resonance imaging (MRI) to detect and quantify CF lung disease from infancy to adulthood. Further, we discuss emerging data on the impact of variability of lung disease severity in the first years of life on long-term outcomes and the potential use of this information to improve personalized medicine for patients with CF.
Collapse
|
19
|
Spano J, Milla CE. Defining the Clinical Utility of the Lung Clearance Index. Are We There Yet? Am J Respir Crit Care Med 2021; 203:937-939. [PMID: 33181036 PMCID: PMC8048751 DOI: 10.1164/rccm.202010-3899ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jacquelyn Spano
- Center for Excellence in Pulmonary Biology Stanford University Palo Alto, California
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology Stanford University Palo Alto, California
| |
Collapse
|