1
|
Paik JJ, Christopher-Stine L, Boesen M, Carrino JA, Eggleton SP, Denis D, Kubassova O. The utility of muscle magnetic resonance imaging in idiopathic inflammatory myopathies: a scoping review. Front Immunol 2025; 16:1455867. [PMID: 39931069 PMCID: PMC11808160 DOI: 10.3389/fimmu.2025.1455867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are muscle disorders characterized by proximal weakness of the skeletal muscles, inflammation in muscle, and autoimmunity. The classic subgroups in IIMs include dermatomyositis, inclusion body myositis, immune-mediated necrotizing myopathy, and polymyositis (PM). PM is increasingly recognized as a rare subtype and often included in overlap myositis, the antisynthetase syndrome when no rash is present, or misdiagnosed inclusion body myositis. Magnetic resonance imaging (MRI) has played an increasingly important role in IIM diagnosis and assessment. Although conventional MRI provides qualitative information that is helpful for diagnosis, its application for the quantitative assessment of disease activity is challenging. Therefore, advanced quantitative MRI techniques have been implemented in the past 10 years to highlight potential new applications of disease monitoring in IIM. The aim of this review is to examine the role of quantitative MRI techniques in evaluating the key imaging features of IIM, mainly muscle edema and muscle damage (fatty replacement and/or muscle atrophy).
Collapse
Affiliation(s)
- Julie J. Paik
- Department of Myositis, Johns Hopkins University, Baltimore, MD, United States
| | | | - Mikael Boesen
- IAG, Image Analysis Group, London, United Kingdom
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - John A. Carrino
- Department of Radiology and Imaging, Weill Cornell Medicine, Hospital for Special Surgery, New York, NY, United States
| | - S. Peter Eggleton
- Global Clinical Development, Merck Serono Ltd.,
Feltham, United Kingdom, an affiliate of the healthcare business of Merck KGaA
| | - Deborah Denis
- Global Clinical Development, EMD Serono Research & Development Institute,
Inc., Billerica, MA, United States, an affiliate of the healthcare business of Merck KGaA
| | | |
Collapse
|
2
|
Lopez Kolkovsky AL, Matot B, Baudin PY, Caldas de Almeida Araujo E, Reyngoudt H, Marty B, Fromes Y. Multiparametric Aging Study Across Adulthood in the Leg Through Quantitative MR Imaging, 1H Spectroscopy, and 31P Spectroscopy at 3T. J Magn Reson Imaging 2025; 61:347-361. [PMID: 38593265 DOI: 10.1002/jmri.29368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Improved characterization of healthy muscle aging is needed to establish early biomarkers in age-related diseases. PURPOSE To quantify age-related changes on multiple MRI and clinical variables evaluated in the same cohort and identify correlations among them. STUDY TYPE Prospective. POPULATION 70 healthy subjects (30 men) from 20 to 81 years old. FIELD STRENGTH/SEQUENCE 3T/water T2 (multiecho SE, multi-TE STEAM), water T1 (GRE MR Fingerprinting), fat-fraction (multiecho GRE, multi-TE STEAM), carnosine (PRESS), multicomponent water T2 (ISIS-CPMG SE train), and 31P pulse-acquire spectroscopy. ASSESSMENT Age- and sex-related changes on: Imaging: fat-fraction (FFMRI), water T1 (T1-H2O), and T2 (T2-H2O-MRI) and their heterogeneities ΔT1-H2O and ΔT2-H2O-MRI in the posterior compartment (PC) and anterior compartment (AC) of the leg. 1H spectroscopy: Carnosine concentration, pH, water T2 components (T2-H2O-CPMG), fat-fraction (FFMRS), and water T2 (T2-H2O-MRS) in the gastrocnemius medialis. 31P spectroscopy: Phosphodiesters (PDE), phosphomonoesters, inorganic phosphates (Pi), and phosphocreatine (PCr) normalized to adenosine triphosphate (ATP) and pH in the calf. Clinical evaluation: Body-mass index (BMI), gait speed (GS), plantar flexion strength, handgrip strength (HS), HS normalized to wrist circumference (HSnorm), physical activity assessment. STATISTICAL TESTS Multilinear regressions with sex and age as fixed factors. Spearman correlations calculated between variables. Benjamini-Hochberg procedure for false positives reduction (5% rate). A P < 0.05 significance level was used. RESULTS Significant age-related increases were found for BMI (ρAge = 0.04), HSnorm (ρAge = -0.01), PDE/ATP (ρAge = 2.8 × 10-3), Pi/ATP (ρAge = 2.0 × 10-3), Pi/PCr (ρAge = 0.3 × 10-3), T2-H2O-MRS (ρAge = 0.051 msec), FFMRS (ρAge = 0.036) the intermediate T2-H2O-CPMG component time (ρAge = 0.112 msec), and fraction (ρAge = -0.3 × 10-3); and in both compartments for FFMRI (ρAge = 0.06, PC; ρAge = 0.06, AC), T2-H2O-MRI (ρAge = 0.05, PC; ρAge = 0.05, AC; msec), ΔT2-H2O-MRI (ρAge = 0.02, PC; ρAge = 0.02, AC; msec), T1-H2O (ρAge = 1.08, PC; ρAge = 1.06, AC; msec), and ΔT1-H2O (ρAge = 0.22, PC; ρAge = 0.37, AC; msec). The best age predictors, accounting for sex-related differences, were HSnorm (R2 = 0.52) and PDE/ATP (R2 = 0.44). In both leg compartments, the imaging measures and HSnorm were intercorrelated. In PC, T2-H2O-MRS and FFMRS also showed numerous correlations to the imaging measures. PDE/ATP correlated to T1-H2O, T2-H2O-MRI, ΔT2-H2O-MRI, FFMRI, FFMRS, the intermediate T2-H2O-CPMG, BMI, Pi/PCr, and HSnorm. DATA CONCLUSION Our multiparametric MRI approach provided an integrative view of age-related changes in the leg and revealed multiple correlations between these parameters and the normalized HS. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
| | - Beatrice Matot
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre-Yves Baudin
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | | | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Yves Fromes
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| |
Collapse
|
3
|
Caldas de Almeida Araujo E, Barthélémy I, Fromes Y, Baudin P, Blot S, Reyngoudt H, Marty B. Comprehensive quantitative magnetic resonance imaging assessment of skeletal muscle pathophysiology in golden retriever muscular dystrophy: Insights from multicomponent water T2 and extracellular volume fraction. NMR IN BIOMEDICINE 2025; 38:e5278. [PMID: 39434514 PMCID: PMC11602680 DOI: 10.1002/nbm.5278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Quantitative MRI and MRS have become important tools for the assessment and management of patients with neuromuscular disorders (NMDs). Despite significant progress, there is a need for new objective measures with improved specificity to the underlying pathophysiological alteration. This would enhance our ability to characterize disease evolution and improve therapeutic development. In this study, qMRI methods that are commonly used in clinical studies involving NMDs, like water T2 (T2H2O) and T1 and fat-fraction (FF) mapping, were employed to evaluate disease activity and progression in the skeletal muscle of golden retriever muscular dystrophy (GRMD) dogs. Additionally, extracellular volume (ECV) fraction and single-voxel bicomponent water T2 relaxometry were included as potential markers of specific histopathological changes within the tissue. Apart from FF, which was not significantly different between GRMD and control dogs and showed no trend with age, T2H2O, T1, ECV, and the relative fraction of the long-T2 component, A2, were significantly elevated in GRMD dogs across all age ranges. Moreover, longitudinal assessment starting at 2 months of age revealed significant decreases in T2H2O, T1, ECV, A2, and the T2 of the shorter-T2 component, T21, in both control and GRMD dogs during their first year of life. Notably, insights from ECV and bicomponent water T2 indicate that (I) the elevated T2H2O and T1 values observed in dystrophic muscle are primarily driven by an expansion of the extracellular space, likely driven by the edematous component of inflammatory responses to tissue injury and (II) the significant decrease of T2H2O and T1 with age in control and GRMD dogs reflects primarily the progressive increase in fiber diameter and protein content during tissue development. Our study underscores the potential of multicomponent water T2 relaxometry and ECV to provide valuable insights into muscle pathology in NMDs.
Collapse
Affiliation(s)
| | - Inès Barthélémy
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France; EnvA, IMRBMaisons‐AlfortFrance
| | - Yves Fromes
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | - Pierre‐Yves Baudin
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | - Stéphane Blot
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France; EnvA, IMRBMaisons‐AlfortFrance
| | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| |
Collapse
|
4
|
Sherman SE, Zammit AS, Heo WS, Rosen MS, Cima MJ. Single-sided magnetic resonance-based sensor for point-of-care evaluation of muscle. Nat Commun 2024; 15:440. [PMID: 38199994 PMCID: PMC10782019 DOI: 10.1038/s41467-023-44561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Magnetic resonance imaging is a widespread clinical tool for the detection of soft tissue morphology and pathology. However, the clinical deployment of magnetic resonance imaging scanners is ultimately limited by size, cost, and space constraints. Here, we discuss the design and performance of a low-field single-sided magnetic resonance sensor intended for point-of-care evaluation of skeletal muscle in vivo. The 11 kg sensor has a penetration depth of >8 mm, which allows for an accurate analysis of muscle tissue and can avoid signal from more proximal layers, including subcutaneous adipose tissue. Low operational power and shielding requirements are achieved through the design of a permanent magnet array and surface transceiver coil. The sensor can acquire high signal-to-noise measurements in minutes, making it practical as a point-of-care tool for many quantitative diagnostic measurements, including T2 relaxometry. In this work, we present the in vitro and human in vivo performance of the device for muscle tissue evaluation.
Collapse
Affiliation(s)
- Sydney E Sherman
- Harvard-MIT Program in Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexa S Zammit
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Won-Seok Heo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matthew S Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
5
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
6
|
Reyngoudt H, Baudin PY, Carlier PG, Lopez Kolkovsky AL, de Almeida Araujo EC, Marty B. New Insights into the Spread of MRS-Based Water T2 Values Observed in Highly Fatty Replaced Muscles. J Magn Reson Imaging 2023; 58:1557-1568. [PMID: 36877200 DOI: 10.1002/jmri.28669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND The reference standard for assessing water T2 (T2,H2O ) at high fat fraction (FF) is 1 H MRS. T2,H2O (T2,H2O,MRS ) dependence on FF (FFMRS ) has recently been demonstrated in muscle at high FF (i.e. ≥60%). PURPOSE To investigate the relationship between T2,H2O,MRS and FFMRS in the thigh/leg muscles of patients with neuromuscular diseases and to compare with quantitative MRI. STUDY TYPE Retrospective case-control study. POPULATION A total of 151 patients with neuromuscular disorders (mean age ± standard deviation = 52.5 ± 22.6 years, 54% male), 44 healthy volunteers (26.5 ± 13.0 years, 57% male). FIELD STRENGTH/SEQUENCE A 3-T; single-voxel stimulated echo acquisition mode (STEAM) MRS, multispin echo (MSE) imaging (for T2 mapping, T2,H2O,MRI ), three-point Dixon imaging (for FFMRI andR 2 * mapping). ASSESSMENT Mono-exponential and bi-exponential models were fitted to water T2 decay curves to extract T2,H2O,MRS and FFMRS . Water resonance full-width-at-half-maximum (FWHM) and B0 spread (∆B0 ) values were calculated. T2,H2O,MRI (mean), FFMRI (mean, kurtosis, and skewness), andR 2 * (mean) values were estimated in the MRS voxel. STATISTICAL TESTS Mann-Whitney U tests, Kruskal-Wallis tests. A P-value <0.05 was considered statistically significant. RESULTS Normal T2,H2O,MRS threshold was defined as the 90th percentile in healthy controls: 30.3 msec. T2,H2O,MRS was significantly higher in all patients with FFMRS < 60% compared to healthy controls. We discovered two subgroups in patients with FFMRS ≥ 60%: one with T2,H2O,MRS ≥ 30.3 msec and one with T2,H2O,MRS < 30.3 msec including abnormally low T2,H2O,MRS . The latter subgroup had significantly higher water resonance FWHM, ∆B0 , FFMRI kurtosis, and skewness values but nonsignificantly differentR 2 * (P = 1.00) and long T2,H2O,MRS component and its fraction (P > 0.11) based on the bi-exponential analysis. DATA CONCLUSION The findings suggest that the cause for (abnormally) T2,H2O,MRS at high FFMRS is biophysical, due to differences in susceptibility between muscle and fat (increased FWHM and ∆B0 ), rather than pathophysiological such as compartmentation changes, which would be reflected by the bi-exponential analysis. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre-Yves Baudin
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre G Carlier
- Université Paris Saclay, CEA, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| |
Collapse
|
7
|
Suslov VM, Lieberman LN, Carlier PG, Ponomarenko GN, Ivanov DO, Rudenko DI, Suslova GA, Adulas EI. Efficacy and safety of hydrokinesitherapy in patients with dystrophinopathy. Front Neurol 2023; 14:1230770. [PMID: 37564736 PMCID: PMC10410449 DOI: 10.3389/fneur.2023.1230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common forms of hereditary muscular dystrophies in childhood and is characterized by steady progression and early disability. It is known that physical therapy can slow down the rate of progression of the disease. According to global recommendations, pool exercises, along with stretching, are preferable for children with DMD, as these types of activities have a balanced effect on skeletal muscles and allow simultaneous breathing exercises. The present study aimed to evaluate the effectiveness of regular pool exercises in patients with Duchenne muscular dystrophy who are capable of independent movement during 4 months of training. 28 patients with genetically confirmed Duchenne muscular dystrophy, who were aged 6.9 ± 0.2 years, were examined. A 6-min distance walking test and timed tests, namely, rising from the floor, 10-meter running, and stair climbing and descending, muscle strength of the upper and lower extremities were assessed on the baseline and during dynamic observation at 2 and 4 months. Hydrorehabilitation course lasted 4 months and was divided into two stages: preparatory and training (depend on individual functional heart reserve (IFHR)). Set of exercises included pool dynamic aerobic exercises. Quantitative muscle MRI of the pelvic girdle and thigh was performed six times: before training (further BT) and after training (further AT) during all course. According to the results of the study, a statistically significant improvement was identified in a 6-min walking test, with 462.7 ± 6.2 m on the baseline and 492.0 ± 6.4 m after 4 months (p < 0.001). The results from the timed functional tests were as follows: rising from the floor test, 4.5 ± 0.3 s on the baseline and 3.8 ± 0.2 s after 4 months (p < 0.001); 10 meter distance running test, 4.9 ± 0.1 s on the baseline and 4.3 ± 0.1 s after 4 months (p < 0.001); 4-stair climbing test, 3.7 ± 0.2 s on the baseline and 3.2 ± 0.2 s after 4 months (p < 0.001); and 4-stair descent test, 3.9 ± 0.1 s on the baseline and 3.2 ± 0.1 s after 4 months (p < 0.001). Skeletal muscle quantitative MRI was performed in the pelvis and the thighs in order to assess the impact of the procedures on the muscle structure. Muscle water T2, a biomarker of disease activity, did not show any change during the training period, suggesting the absence of deleterious effects and negative impact on disease activity. Thus, a set of dynamic aerobic exercises in water can be regarded as effective and safe for patients with DMD.
Collapse
Affiliation(s)
- V. M. Suslov
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - L. N. Lieberman
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - P. G. Carlier
- University Paris-Saclay, CEA, Frédéric Joliot Institute for Life Sciences, SHFJ, Orsay, France
| | - G. N. Ponomarenko
- Federal State Budgetary Institution Federal Scientific Center of the Rehabilitation of the Disabled Named After G. A.Albrecht of the Ministry of Labour and Social Protection of the Russian Federation, Saint Petersburg, Russia
| | - D. O. Ivanov
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - D. I. Rudenko
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - G. A. Suslova
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - E. I. Adulas
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| |
Collapse
|
8
|
Peng F, Xu H, Song Y, Xu K, Li S, Cai X, Guo Y, Gong L. Longitudinal study of multi-parameter quantitative magnetic resonance imaging in Duchenne muscular dystrophy: hyperresponsiveness of gluteus maximus and detection of subclinical disease progression in functionally stable patients. J Neurol 2023; 270:1439-1451. [PMID: 36385201 DOI: 10.1007/s00415-022-11470-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To describe the disease progression of Duchenne muscular dystrophy (DMD) in the pelvic and thigh muscles over 1-year using multiple-parameter quantitative magnetic resonance imaging (qMRI), and to determine the most responsive muscle and predict subclinical disease progression in functionally stable patients. METHODS Fifty-four DMD patients (mean age 8.9 ± 2.5, range 5-15 years) completed baseline and 1-year follow-up qMRI examinations/biomarkers [3-point Dixon/fat fraction (FF); T1 mapping/T1; T2 mapping/T2]. Meanwhile, clinical assessments [NorthStar ambulatory assessment (NSAA) score] and timed function tests were performed in DMD patients. Twenty-four healthy male controls (range 5-15 years) accomplished baseline qMRI examinations. Group differences were compared using the Wilcoxon test. The standardized response mean (SRM) was taken as the responsiveness to the disease progression index. RESULTS FF, T1, and T2 in all DMD age subgroups changed significantly over 1-year (P < 0.05). Even in functionally stable patients (NSAA score increased, unchanged, or decreased by 1-point) over 1-year, significant increases in FF and T2 and decreases in T1 were observed in gluteus maximus (GMa), gluteus medius, vastus lateralis, and adductor magnus (P < 0.05). Overall, the SRM of FF, T1, and T2 was all the highest in GMa, which were 1.25, - 0.92, and 0.93, respectively. CONCLUSIONS qMRI biomarkers are responsive to disease progression and can also detect subclinical disease progression in functionally stable DMD patients over 1-year. GMa is the most responsive to disease progression of all the muscles analyzed. TRIAL REGISTRATION Chinese Clinical Trial Registry ( http://www.chictr.org.cn/index.aspx ) ChiCTR1800018340, 09/12/2018, prospectively registered.
Collapse
Affiliation(s)
- Fei Peng
- Department of Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Shuhao Li
- Department of Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
| | - Xiaotang Cai
- Department of Pediatrics Neurology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Lianggeng Gong
- Department of Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
9
|
Moore U, Caldas de Almeida Araújo E, Reyngoudt H, Gordish‐Dressman H, Smith FE, Wilson I, James M, Mayhew A, Rufibach L, Day JW, Jones KJ, Bharucha‐Goebel DX, Salort‐Campana E, Pestronk A, Walter MC, Paradas C, Stojkovic T, Mori‐Yoshimura M, Bravver E, Pegoraro E, Mendell JR, Bushby K, Blamire AM, Straub V, Carlier PG, Diaz‐Manera J. Water T2 could predict functional decline in patients with dysferlinopathy. J Cachexia Sarcopenia Muscle 2022; 13:2888-2897. [PMID: 36058852 PMCID: PMC9745487 DOI: 10.1002/jcsm.13063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Water T2 (T2H2O ) mapping is increasingly being used in muscular dystrophies to assess active muscle damage. It has been suggested as a surrogate outcome measure for clinical trials. Here, we investigated the prognostic utility of T2H2O to identify changes in muscle function over time in limb girdle muscular dystrophies. METHODS Patients with genetically confirmed dysferlinopathy were assessed as part of the Jain Foundation Clinical Outcomes Study in dysferlinopathy. The cohort included 18 patients from two sites, both equipped with 3-tesla magnetic resonance imaging (MRI) systems from the same vendor. T2H2O value was defined as higher or lower than the median in each muscle bilaterally. The degree of deterioration on four functional tests over 3 years was assessed in a linear model against covariates of high or low T2H2O at baseline, age, disease duration, and baseline function. RESULTS A higher T2H2O at baseline significantly correlated with a greater decline on functional tests in 21 out of 35 muscles and was never associated with slower decline. Higher baseline T2H2O in adductor magnus, vastus intermedius, vastus lateralis, and vastus medialis were the most sensitive, being associated bilaterally with greater decline in multiple timed tests. Patients with a higher than median baseline T2H2O (>40.6 ms) in the right vastus medialis deteriorated 11 points more on the North Star Ambulatory Assessment for Dysferlinopathy and lost an additional 86 m on the 6-min walk than those with a lower T2H2O (<40.6 ms). Optimum sensitivity and specificity thresholds for predicting decline were 39.0 ms in adductor magnus and vastus intermedius, 40.0 ms in vastus medialis, and 40.5 ms in vastus lateralis from different sites equipped with different MRI systems. CONCLUSIONS In dysferlinopathy, T2H2O did not correlate with current functional ability. However, T2H2O at baseline was higher in patients who worsened more rapidly on functional tests. This suggests that inter-patient differences in functional decline over time may be, in part, explained by different severities of the active muscle damage, assessed by T2H2O measure at baseline. Significant challenges remain in standardizing T2H2O values across sites to allow determining globally applicable thresholds. The results from the present work are encouraging and suggest that T2H2O could be used to improve prognostication, patient selection, and disease modelling for clinical trials.
Collapse
Affiliation(s)
- Ursula Moore
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Ericky Caldas de Almeida Araújo
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR LaboratoryCEA/DRF/IBFJ/MIRCenParisFrance
| | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR LaboratoryCEA/DRF/IBFJ/MIRCenParisFrance
| | - Heather Gordish‐Dressman
- Center for Translational Science, Division of Biostatistics and Study MethodologyChildren's National Health SystemWashingtonDCUSA
- Pediatrics, Epidemiology and BiostatisticsGeorge Washington UniversityWashingtonDCUSA
| | - Fiona E. Smith
- Magnetic Resonance Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Ian Wilson
- Magnetic Resonance Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Meredith James
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Anna Mayhew
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - John W. Day
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCAUSA
| | - Kristi J. Jones
- The Children's Hospital at Westmead and The University of SydneySydneyNSWAustralia
| | - Diana X. Bharucha‐Goebel
- Department of NeurologyChildren's National Health SystemWashingtonDCUSA
- National Institutes of Health (NINDS)BethesdaMDUSA
| | | | - Alan Pestronk
- Department of NeurologyWashington University School of MedicineSt. LouisMOUSA
| | - Maggie C. Walter
- Friedrich‐Baur‐Institute, Department of NeurologyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Carmen Paradas
- Neuromuscular Unit, Department of NeurologyHospital U. Virgen del Rocío/Instituto de Biomedicina de SevillaSevillaSpain
| | - Tanya Stojkovic
- Centre de référence des maladies neuromusculairesInstitut de Myologie, AP‐HP, Sorbonne Université, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Madoka Mori‐Yoshimura
- Department of NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Elena Bravver
- Neuroscience InstituteCarolinas Neuromuscular/ALS‐MDA Center, Carolinas HealthCare SystemCharlotteNCUSA
| | - Elena Pegoraro
- Department of NeuroscienceUniversity of PadovaPaduaItaly
| | - Jerry R. Mendell
- The Abigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
| | | | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Andrew M. Blamire
- Magnetic Resonance Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Pierre G. Carlier
- Université Paris‐Saclay, CEA, DRF, Service Hospitalier Frederic JoliotOrsayFrance
| | - Jordi Diaz‐Manera
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research InstituteNewcastle University and Newcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)MadridSpain
| |
Collapse
|
10
|
Albayda J, Demonceau G, Carlier PG. Muscle imaging in myositis: MRI, US, and PET. Best Pract Res Clin Rheumatol 2022; 36:101765. [PMID: 35760742 DOI: 10.1016/j.berh.2022.101765] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Imaging is an important tool in the evaluation of idiopathic inflammatory myopathies. It plays a role in diagnosis, assessment of disease activity and follow-up, and as a non-invasive biomarker. Among the different modalities, nuclear magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography (PET) may have the most clinical utility in myositis. MRI is currently the best modality to evaluate skeletal muscle and provides excellent characterization of muscle edema and fat replacement through the use of T1-weighted and T2-weighted fat suppressed/STIR sequences. Although MRI can be read qualitatively for the presence of abnormalities, a more quantitative approach using Dixon sequences and the generation of water T2 parametric maps would be preferable for follow-up. Newer protocols such as diffusion-weighted imaging, functional imaging measures, and spectroscopy may be of interest to provide further insights into myositis. Despite the advantages of MRI, image acquisition is relatively time-consuming, expensive, and not accessible to all patients. The use of US to evaluate skeletal muscle in myositis is gaining interest, especially in chronic disease, where fat replacement and fibrosis are detected readily by this modality. Although easily deployed at the bedside, it is heavily dependent on operator experience to recognize disease states. Further, systematic characterization of muscle edema by US is still needed. PET provides valuable information on muscle function at a cellular level. Fluorodeoxyglucose (FDG-PET) has been the most common application in myositis to detect pathologic uptake indicative of inflammation. The use of neurodegenerative markers is now also being utilized for inclusion body myositis. These different modalities may prove to be complementary methods for myositis evaluation.
Collapse
Affiliation(s)
- Jemima Albayda
- Division of Rheumatology, Johns Hopkins University, Baltimore, USA.
| | | | - Pierre G Carlier
- Université Paris-Saclay, CEA, DRF, Service Hospitalier Frederic Joliot, Orsay, France
| |
Collapse
|
11
|
Marty B, Reyngoudt H, Boisserie JM, Le Louër J, C A Araujo E, Fromes Y, Carlier PG. Water-Fat Separation in MR Fingerprinting for Quantitative Monitoring of the Skeletal Muscle in Neuromuscular Disorders. Radiology 2021; 300:652-660. [PMID: 34254855 DOI: 10.1148/radiol.2021204028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Quantitative MRI is increasingly proposed in clinical trials related to neuromuscular disorders (NMDs). Purpose To investigate the potential of an MR fingerprinting sequence for water and fat fraction (FF) quantification (MRF T1-FF) for providing markers of fatty replacement and disease activity in patients with NMDs and to establish the sensitivity of water T1 as a marker of disease activity compared with water T2 mapping. Materials and Methods Data acquired between March 2018 and March 2020 from the legs of patients with NMDs were retrospectively analyzed. The MRI examination comprised fat-suppressed T2-weighted imaging, mapping of the FF measured with the three-point Dixon technique (FFDixon), water T2 mapping, and MRF T1-FF, from which the FF measured with MRF T1-FF (FFMRF) and water T1 were derived. Data from the legs of healthy volunteers were prospectively acquired between January and July 2020 to derive abnormality thresholds for FF, water T2, and water T1 values. Kruskal-Wallis tests and receiver operating characteristic curve analysis were performed, and linear models were used. Results A total of 73 patients (mean age ± standard deviation, 47 years ± 12; 45 women) and 15 healthy volunteers (mean age, 33 years ± 8; three women) were evaluated. A linear correlation was observed between FFMRF and FFDixon (R2 = 0.97, P < .001). Water T1 values were higher in muscles with high signal intensity at fat-suppressed T2-weighted imaging than in muscles with low signal intensity (mean value, 1281 msec [95% CI: 1165, 1604] vs 1198 msec [95% CI: 1099, 1312], respectively; P < .001), and a correlation was found between water T1 and water T2 distribution metrics (R2 = 0.66 and 0.79 for the median and 90th percentile values, respectively; P < .001). Water T1 classified the patients' muscles as abnormal based on quantitative water T2, with high sensitivity (93%; 68 of 73 patients) and specificity (80%; 53 of 73 patients) (area under the receiver operating characteristic curve, 0.92 [95% CI: 0.83, 0.97]; P < .001). Conclusion Water-fat separation in MR fingerprinting is robust for deriving quantitative imaging markers of intramuscular fatty replacement and disease activity in patients with neuromuscular disorders. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Benjamin Marty
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Harmen Reyngoudt
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Jean-Marc Boisserie
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Julien Le Louër
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Ericky C A Araujo
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Yves Fromes
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Pierre G Carlier
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| |
Collapse
|
12
|
Malartre S, Bachasson D, Mercy G, Sarkis E, Anquetil C, Benveniste O, Allenbach Y. MRI and muscle imaging for idiopathic inflammatory myopathies. Brain Pathol 2021; 31:e12954. [PMID: 34043260 PMCID: PMC8412099 DOI: 10.1111/bpa.12954] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Although idiopathic inflammatory myopathies (IIM) are a heterogeneous group of diseases nearly all patients display muscle inflammation. Originally, muscle biopsy was considered as the gold standard for IIM diagnosis. The development of muscle imaging led to revisiting not only the IIM diagnosis strategy but also the patients' follow-up. Different techniques have been tested or are in development for IIM including positron emission tomography, ultrasound imaging, ultrasound shear wave elastography, though magnetic resonance imaging (MRI) remains the most widely used technique in routine. Whereas guidelines on muscle imaging in myositis are lacking here we reviewed the relevance of muscle imaging for both diagnosis and myositis patients' follow-up. We propose recommendations about when and how to perform MRI on myositis patients, and we describe new techniques that are under development.
Collapse
Affiliation(s)
- Samuel Malartre
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Damien Bachasson
- Neuromuscular Physiology Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Guillaume Mercy
- Department of Medical Imaging, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles-Foix, Sorbonne Université, Paris, France
| | - Elissone Sarkis
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Céline Anquetil
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| |
Collapse
|