1
|
Klauser A, Strasser B, Bogner W, Hingerl L, Courvoisier S, Schirda C, Rosen BR, Lazeyras F, Andronesi OC. ECCENTRIC: A fast and unrestrained approach for high-resolution in vivo metabolic imaging at ultra-high field MR. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-20. [PMID: 39679200 PMCID: PMC11638761 DOI: 10.1162/imag_a_00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 12/17/2024]
Abstract
A novel method for fast and high-resolution metabolic imaging, called ECcentric Circle ENcoding TRajectorIes for Compressed sensing (ECCENTRIC), has been developed at 7 Tesla MRI. ECCENTRIC is a non-Cartesian spatial-spectral encoding method designed to accelerate magnetic resonance spectroscopic imaging (MRSI) with high signal-to-noise at ultra-high field. The approach provides flexible and random sampling of the Fourier space without temporal interleaving to improve spatial response function and spectral quality. ECCENTRIC enables the implementation of spatial-spectral MRSI with reduced gradient amplitudes and slew-rates, thereby mitigating electrical, mechanical, and thermal stress of the scanner hardware. Moreover, it exhibits robustness against timing imperfections and eddy-current delay. Combined with a model-based low-rank reconstruction, this approach enables simultaneous imaging of up to 14 metabolites over the whole brain at 2-3 mm isotropic resolution in 4-10 min. MRSI ECCENTRIC was performed on four healthy volunteers, yielding high-resolution spatial mappings of neurochemical profiles within the human brain. This innovative tool introduces a novel approach to neuroscience, providing new insights into the exploration of brain activity and physiology.
Collapse
Affiliation(s)
- Antoine Klauser
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Hingerl
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sebastien Courvoisier
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Claudiu Schirda
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bruce R. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Ovidiu C. Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Bozymski B, Emir U, Dydak U, Shen X, Thomas MA, Özen A, Chiew M, Clarke W, Sawiak S. 3D ultra-short echo time 31P-MRSI with rosette k-space pattern: Feasibility and comparison with conventional weighted CSI. RESEARCH SQUARE 2024:rs.3.rs-4223790. [PMID: 38659806 PMCID: PMC11042414 DOI: 10.21203/rs.3.rs-4223790/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI) provides valuable non-invasive in vivo information on tissue metabolism but is burdened by poor sensitivity and prolonged scan duration. Ultra-short echo time (UTE) acquisitions minimize signal loss when probing signals with relatively short spin-spin relaxation time (T2), while also preventing first-order dephasing. Here, a three-dimensional (3D) UTE sequence with a rosette k-space trajectory is applied to 31P-MRSI at 3T. Conventional chemical shift imaging (CSI) employs highly regular Cartesian k-space sampling, susceptible to substantial artifacts when accelerated via undersampling. In contrast, this novel sequence's "petal-like" pattern offers incoherent sampling more suitable for compressed sensing (CS). These results showcase the competitive performance of UTE rosette 31P-MRSI against conventional weighted CSI with simulation, phantom, and in vivo leg muscle comparisons.
Collapse
Affiliation(s)
| | - Uzay Emir
- School of Health Sciences, Purdue University
| | | | - Xin Shen
- Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Ali Özen
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences
| | - William Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences
| | - Stephen Sawiak
- Department of Clinical Neuroscience, University of Cambridge
| |
Collapse
|
3
|
Ziegs T, Wright AM, Henning A. Test-retest reproducibility of human brain multi-slice 1 H FID-MRSI data at 9.4T after optimization of lipid regularization, macromolecular model, and spline baseline stiffness. Magn Reson Med 2022; 89:11-28. [PMID: 36128885 DOI: 10.1002/mrm.29423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE This study analyzes the effects of retrospective lipid suppression, a simulated macromolecular prior knowledge and different spline baseline stiffness values on 9.4T multi-slice proton FID-MRSI data spanning the whole cerebrum of human brain and the reproducibility of respective metabolite ratio to total creatine (/tCr) maps for 10 brain metabolites. METHODS Measurements were performed twice on 5 volunteers using a short TR and TE FID MRSI 2D sequence at 9.4T. The effects of retrospective lipid L2-regularization, macromolecular spectrum and different LCModel baseline flexibilities on SNR, FWHM, fitting residual, Cramér-Rao lower bound, and metabolite ratio maps were investigated. Intra-subject, inter-session coefficient of variation and the test-retest reproducibility of the mean metabolite ratios (/tCr) of each slice was calculated. RESULTS Transversal, sagittal, and coronal slices of many metabolite ratio maps correspond to the anatomically expected concentration relations in gray and white matter for the majority of the cerebrum when using a flexible baseline in LCModel fit. Results from the second measurements of the same subjects show that slice positioning and data quality correlate significantly to the first measurement. L2-regularization provided effective suppression of lipid-artifacts, but should be avoided if no artifacts are detected. CONCLUSION Reproducible concentration ratio maps (/tCr) for 4 metabolites (total choline, N-acetylaspartate, glutamate, and myoinositol) spanning the majority of the cerebrum and 6 metabolites (N-acetylaspartylglutamate, γ-aminobutyric acid, glutathione, taurine, glutamine, and aspartate) covering 32 mm in the upper part of the brain were acquired at 9.4T using multi-slice FID MRSI with retrospective lipid suppression, a macromolecular spectrum and a flexible LCModel baseline.
Collapse
Affiliation(s)
- Theresia Ziegs
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - Andrew Martin Wright
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
5
|
Hangel G, Spurny‐Dworak B, Lazen P, Cadrien C, Sharma S, Hingerl L, Hečková E, Strasser B, Motyka S, Lipka A, Gruber S, Brandner C, Lanzenberger R, Rössler K, Trattnig S, Bogner W. Inter-subject stability and regional concentration estimates of 3D-FID-MRSI in the human brain at 7 T. NMR IN BIOMEDICINE 2021; 34:e4596. [PMID: 34382280 PMCID: PMC11475238 DOI: 10.1002/nbm.4596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 05/13/2023]
Abstract
PURPOSE Recently, a 3D-concentric ring trajectory (CRT)-based free induction decay (FID)-MRSI sequence was introduced for fast high-resolution metabolic imaging at 7 T. This technique provides metabolic ratio maps of almost the entire brain within clinically feasible scan times, but its robustness has not yet been thoroughly investigated. Therefore, we have assessed quantitative concentration estimates and their variability in healthy volunteers using this approach. METHODS We acquired whole-brain 3D-CRT-FID-MRSI at 7 T in 15 min with 3.4 mm nominal isometric resolution in 24 volunteers (12 male, 12 female, mean age 27 ± 6 years). Concentration estimate maps were calculated for 15 metabolites using internal water referencing and evaluated in 55 different regions of interest (ROIs) in the brain. Data quality, mean metabolite concentrations, and their inter-subject coefficients of variation (CVs) were compared for all ROIs. RESULTS Of 24 datasets, one was excluded due to motion artifacts. The concentrations of total choline, total creatine, glutamate, myo-inositol, and N-acetylaspartate in 44 regions were estimated within quality thresholds. Inter-subject CVs (mean over 44 ROIs/minimum/maximum) were 9%/5%/19% for total choline, 10%/6%/20% for total creatine, 11%/7%/24% for glutamate, 10%/6%/19% for myo-inositol, and 9%/6%/19% for N-acetylaspartate. DISCUSSION We defined the performance of 3D-CRT-based FID-MRSI for metabolite concentration estimate mapping, showing which metabolites could be robustly quantified in which ROIs with which inter-subject CVs expected. However, the basal brain regions and lesser-signal metabolites in particular remain as a challenge due susceptibility effects from the proximity to nasal and auditory cavities. Further improvement in quantification and the mitigation of B0 /B1 -field inhomogeneities will be necessary to achieve reliable whole-brain coverage.
Collapse
Affiliation(s)
- Gilbert Hangel
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Benjamin Spurny‐Dworak
- Division of General Psychiatry, Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Philipp Lazen
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Cornelius Cadrien
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Sukrit Sharma
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Lukas Hingerl
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Eva Hečková
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Bernhard Strasser
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Stanislav Motyka
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Alexandra Lipka
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Institute for Clinical Molecular MRIKarl Landsteiner SocietySt. PöltenAustria
| | - Stephan Gruber
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Christoph Brandner
- High‐field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Rupert Lanzenberger
- Division of General Psychiatry, Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Karl Rössler
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Institute for Clinical Molecular MRIKarl Landsteiner SocietySt. PöltenAustria
| | - Wolfgang Bogner
- High‐field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| |
Collapse
|
6
|
Lee DH. Editorial for "Whole-Slab 3D MR Spectroscopic Imaging of the Human Brain With Spiral-Out-In Sampling at 7T". J Magn Reson Imaging 2021; 53:1251-1252. [PMID: 33190358 DOI: 10.1002/jmri.27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dong-Hoon Lee
- Department of Radiation Convergence Engineering, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|