1
|
Guenette JP, Qin L. Time-Saving 3D MR Imaging Protocols with Millimeter and Submillimeter Isotropic Spatial Resolution for Face and Neck Imaging as Implemented at a Single-Site Major Referral Center. AJNR Am J Neuroradiol 2024; 45:737-742. [PMID: 38296468 PMCID: PMC11288581 DOI: 10.3174/ajnr.a8184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024]
Abstract
MR imaging has become the routine technique for staging nasopharyngeal carcinoma, evaluating perineural tumor spread, and detecting cartilage invasion in laryngeal carcinoma. However, these protocols traditionally require in the range of 25 to 35 minutes of acquisition time. 3D sequences offer the potential advantage of time savings through the acquisition of 1-mm or submillimeter resolution isotropic data followed by multiplanar reformats that require no further imaging time. We have iteratively optimized vendor product 3D T1-weighted MR imaging sequences for morphologic face and neck imaging, reducing the average acquisition time of our 3T protocols by 9 minutes 57 seconds (40.9%) and of our 1.5T protocols by 9 minutes 5 seconds (37.0%), while simultaneously maintaining or improving spatial resolution. This clinical report describes our experience optimizing and implementing commercially available 3D T1-weighted MR imaging pulse sequence protocols for clinical face and neck MR imaging examinations using illustrative cases. We provide protocol details to allow others to replicate our implementations, and we report challenges we faced along with our solutions.
Collapse
Affiliation(s)
- Jeffrey P Guenette
- From the Division of Neuroradiology (J.P.G.), Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lei Qin
- Department of Imaging (L.Q.), Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Shao L, Yang X, Sun Z, Tan X, Lu Z, Hu S, Dou W, Duan S. Three-dimensional pseudo-continuous arterial spin-labelled perfusion imaging for diagnosing upper cervical lymph node metastasis in patients with nasopharyngeal carcinoma: a whole-node histogram analysis. Clin Radiol 2024; 79:e736-e743. [PMID: 38341343 DOI: 10.1016/j.crad.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
AIM To evaluate whole-node histogram parameters of blood flow (BF) maps derived from three-dimensional pseudo-continuous arterial spin-labelled (3D pCASL) imaging in discriminating metastatic from benign upper cervical lymph nodes (UCLNs) for nasopharyngeal carcinoma (NPC) patients. MATERIALS AND METHODS Eighty NPC patients with a total of 170 histologically confirmed UCLNs (67 benign and 103 metastatic) were included retrospectively. Pre-treatment 3D pCASL imaging was performed and whole-node histogram analysis was then applied. Histogram parameters and morphological features, such as minimum axis diameter (MinAD), maximum axis diameter (MaxAD), and location of UCLNs, were assessed and compared between benign and metastatic lesions. Predictors were identified and further applied to establish a combined model by multivariate logistic regression in predicting the probability of metastatic UCLNs. Receiver operating characteristic (ROC) curves were used to analyse the diagnostic performance. RESULTS Metastatic UCLNs had larger MinAD and MinAD/MaxAD ratio, greater energy and entropy values, and higher incidence of level II (upper jugular group), but lower BF10th value than benign nodes (all p<0.05). MinAD, BF10th, energy, and entropy were validated as independent predictors in diagnosing metastatic UCLNs. The combined model yielded an area under the curve (AUC) of 0.932, accuracy of 84.42 %, sensitivity of 80.6 %, and specificity of 90.29 %. CONCLUSIONS Whole-node histogram analysis on BF maps is a feasible tool to differentiate metastatic from benign UCLNs in NPC patients, and the combined model can further improve the diagnostic efficacy.
Collapse
Affiliation(s)
- L Shao
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - X Yang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - Z Sun
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China.
| | - X Tan
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - Z Lu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - S Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - W Dou
- General Electric (GE) Healthcare, MR Research China, Beijing, China
| | - S Duan
- General Electric (GE) Healthcare China, Shanghai, China
| |
Collapse
|
3
|
Liu J, Zhu J, Wang Y, Wang F, Yang H, Wang N, Chu Q, Yang Q. Arterial spin labeling of nasopharyngeal carcinoma shows early therapy response. Insights Imaging 2022; 13:114. [PMID: 35796807 PMCID: PMC9263025 DOI: 10.1186/s13244-022-01248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/04/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to determine the value of arterial spin labeling (ASL) perfusion imaging in assessing the early efficacy of chemoradiotherapy for nasopharyngeal carcinoma (NPC). METHODS Fifty-five patients with locoregionally advanced NPC underwent conventional 3.0-T magnetic resonance imaging (MRI) and ASL before and after chemoradiotherapy (prescribed dose reached 40 Gy). Based on the response evaluation criteria for solid tumors (RECIST 1.1), the patients were divided into the partial response and stable disease groups. MRI re-examination was performed one month after chemoradiotherapy completion, and patients were divided into residual and non-residual groups. We investigated inter-group differences in ASL-based tumor blood flow (TBF) parameters (pre-treatment tumor blood flow, post-treatment tumor blood flow, and changes in tumor blood flow, i.e., Pre-TBF, Post-TBF, ΔTBF), correlation between TBF parameters and tumor atrophy rate, and value of TBF parameters in predicting sensitivity to chemoradiotherapy. RESULTS There were differences in Pre-TBF, Post-TBF, and ΔTBF between the partial response and stable disease groups (p < 0.01). There were also differences in Pre-TBF and ΔTBF between the residual and non-residual groups (p < 0.01). Pre-TBF and ΔTBF were significantly correlated with the tumor atrophy rate; the correlation coefficients were 0.677 and 0.567, respectively (p < 0.01). Pre-TBF had high diagnostic efficacies in predicting sensitivity to chemoradiotherapy and residual tumors, with areas under the curve of 0.845 and 0.831, respectively. CONCLUSION ASL permits a noninvasive approach to predicting the early efficacy of chemoradiotherapy for NPC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, No352, Renmin Road, Yingjiang District, Anqing, 246003, Anhui, China
| | - Juan Zhu
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, No352, Renmin Road, Yingjiang District, Anqing, 246003, Anhui, China
| | - Yaxian Wang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, No352, Renmin Road, Yingjiang District, Anqing, 246003, Anhui, China
| | - Fei Wang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, No352, Renmin Road, Yingjiang District, Anqing, 246003, Anhui, China
| | - Hualin Yang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, No352, Renmin Road, Yingjiang District, Anqing, 246003, Anhui, China
| | - Nan Wang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, No352, Renmin Road, Yingjiang District, Anqing, 246003, Anhui, China
| | - Qingyun Chu
- Department of Medical Oncology, Anqing Hospital Affiliated to Anhui Medical University, No352, Renmin Road, Yingjiang District, Anqing, 246003, Anhui, China
| | - Qing Yang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, No352, Renmin Road, Yingjiang District, Anqing, 246003, Anhui, China.
| |
Collapse
|
4
|
Hu H, Chen L, Zhu LN, Chen W, Su GY, Dou W, Bu SS, Wu FY, Xu XQ. Influence of post-label delay time on the performance of 3D pseudo-continuous arterial spin labeling magnetic resonance imaging in the characterization of parotid gland tumors. Eur Radiol 2021; 32:1087-1094. [PMID: 34347158 DOI: 10.1007/s00330-021-08220-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To evaluate the influence of post-label delay times (PLDs) on the performance of 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging for characterizing parotid gland tumors and to explore the optimal PLDs for the differential diagnosis. MATERIALS AND METHOD Fifty-eight consecutive patients with parotid gland tumors were enrolled, including 33 patients with pleomorphic adenomas (PAs), 16 patients with Warthin's tumors (WTs), and 9 patients with malignant tumors (MTs). 3D pCASL was scanned for each patient five times, with PLDs of 1025 ms, 1525 ms, 2025 ms, 2525 ms, and 3025 ms. Tumor blood flow (TBF) was calculated, and compared among different PLDs and tumor groups. Performance of TBF at different PLDs was evaluated using receiver operating characteristic analysis. RESULTS With an increasing PLD, TBF tended to gradually increase in PAs (p < 0.001), while TBF tended to slightly increase and then gradually decrease in WTs (p = 0.001), and PAs showed significantly lower TBF than WTs at all 5 PLDs (p < 0.05). PAs showed significantly lower TBF than MTs at 4 PLDs (p < 0.05), except at 3025 ms (p = 0.062). WTs showed higher TBF than MTs at all 5 PLDs; however, differences did not reach significance (p > 0.05). Setting a TBF of 64.350 mL/100g/min at a PLD of 1525 ms, or a TBF of 23.700 mL/100g/min at a PLD of 1025 ms as the cutoff values, optimal performance could be obtained for differentiating PAs from WTs (AUC = 0.905) or from MTs (AUC = 0.872). CONCLUSIONS Short PLDs (1025 ms or 1525 ms) are suggested to be used in 3D pCASL for characterizing parotid gland tumors in clinical practice. KEY POINTS • With 5 different PLDs, 3D pCASL can reflect the variation of blood flow in parotid gland tumors. • 3D pCASL is useful for characterizing PAs from WTs or MTs. • Short PLDs (1025 ms or 1525 ms) are suggested to be used in 3D pCASL for characterizing parotid gland tumors in clinical practice.
Collapse
Affiliation(s)
- Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, People's Republic of China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, People's Republic of China
| | - Liu-Ning Zhu
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, People's Republic of China
| | - Guo-Yi Su
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, People's Republic of China
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Beijing, People's Republic of China
| | - Shou-Shan Bu
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, People's Republic of China.
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, People's Republic of China.
| |
Collapse
|
5
|
Can 3D pseudo-continuous arterial spin labeling perfusion imaging be applied to predict early response to chemoradiotherapy in patients with advanced nasopharyngeal carcinoma? Radiother Oncol 2021; 160:97-106. [PMID: 33951492 DOI: 10.1016/j.radonc.2021.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/09/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Chemoradiotherapy (CRT) has been widely applied in patients with advanced nasopharyngeal carcinoma (ANPC). However, limited imaging modality exists on the evaluation of early response to CRT. The purpose of this study was therefore to investigate whether 3D pseudo-continuous arterial spin labeling (3D pCASL) perfusion imaging could predict early response to CRT in ANPC patients. MATERIALS AND METHODS Seventy ANPC patients who received CRT underwent pre-treatment MRI including 3D pCASL perfusion measurements, and were categorized into response group (RG) and no-response group (NRG) according to RECIST 1.1. Pre-treatment 3D pCASL derived cerebral blood flow (CBF) values in tumors were compared between RG and NRG patients. Receiver-operating characteristic (ROC) analysis was performed to determine the optimal diagnostic cutoff value for CBF in predicting tumor response to CRT. Clinicopathological variables were also analyzed by using univariate and binary logistic regression. The corresponding obtained variables with statistical significance were further applied to create a nomogram in which the bootstrap resampling method was used for calibration. RESULTS Forty-eight patients in RG had significantly higher pre-treatment CBF values in tumors compared with 22 patients in NRG (P < 0.001). CBF showed the high area under the ROC curve (AUC = 0.843) in distinguishing RG from NRG patients. The corresponding cutoff value for CBF was 103.68 ml/100 g/min, with respective accuracy, sensitivity and specificity of 82.86%, 87.50% and 72.73%. The nomogram was generated by binary logistic regression results, incorporating three variables: CBF value, clinical stage and pathological type. The AUC, accuracy, sensitivity and specificity of the nomogram was respectively 0.893, 84.28%, 81.25% and 90.91% in predicting tumor response to CRT. Moreover, as shown in the calibration curve, a strong agreement was observed between nomogram prediction probability and actual clinical findings (P = 0.309). CONCLUSIONS 3D pCASL derived CBF in tumor could act as a noninvasive effective biomarker to predict tumor response to CRT in ANPC patients before clinical treatment. Furthermore, the nomogram combining CBF and clinicopathological variables could serve as a novel clinical analysis tool for treatment response prediction.
Collapse
|