1
|
Nong HY, Cen YY, Lu SJ, Huang RS, Chen Q, Huang LF, Huang JN, Wei X, Liu MR, Li L, Ding K. Predictive value of a constructed artificial neural network model for microvascular invasion in hepatocellular carcinoma: A retrospective study. World J Gastrointest Oncol 2025; 17:96439. [PMID: 39817122 PMCID: PMC11664629 DOI: 10.4251/wjgo.v17.i1.96439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is a significant risk factor for recurrence and metastasis following hepatocellular carcinoma (HCC) surgery. Currently, there is a paucity of preoperative evaluation approaches for MVI. AIM To investigate the predictive value of texture features and radiological signs based on multiparametric magnetic resonance imaging in the non-invasive preoperative prediction of MVI in HCC. METHODS Clinical data from 97 HCC patients were retrospectively collected from January 2019 to July 2022 at our hospital. Patients were classified into two groups: MVI-positive (n = 57) and MVI-negative (n = 40), based on postoperative pathological results. The correlation between relevant radiological signs and MVI status was analyzed. MaZda4.6 software and the mutual information method were employed to identify the top 10 dominant texture features, which were combined with radiological signs to construct artificial neural network (ANN) models for MVI prediction. The predictive performance of the ANN models was evaluated using area under the curve, sensitivity, and specificity. ANN models with relatively high predictive performance were screened using the DeLong test, and the regression model of multilayer feedforward ANN with backpropagation and error backpropagation learning method was used to evaluate the models' stability. RESULTS The absence of a pseudocapsule, an incomplete pseudocapsule, and the presence of tumor blood vessels were identified as independent predictors of HCC MVI. The ANN model constructed using the dominant features of the combined group (pseudocapsule status + tumor blood vessels + arterial phase + venous phase) demonstrated the best predictive performance for MVI status and was found to be automated, highly operable, and very stable. CONCLUSION The ANN model constructed using the dominant features of the combined group can be recommended as a non-invasive method for preoperative prediction of HCC MVI status.
Collapse
Affiliation(s)
- Hai-Yang Nong
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Affiliated Hospital of Youiiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yong-Yi Cen
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Affiliated Hospital of Youiiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Shan-Jin Lu
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
| | - Rui-Sui Huang
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
| | - Qiong Chen
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
| | - Li-Feng Huang
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
| | - Jian-Ning Huang
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
| | - Xue Wei
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
| | - Man-Rong Liu
- Department of Ultrasound, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
| | - Lin Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
| | - Ke Ding
- Department of Radiology, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Meng A, Zhuang Y, Huang Q, Tang L, Yang J, Gong P. Development and validation of a cross-modality tensor fusion model using multi-modality MRI radiomics features and clinical radiological characteristics for the prediction of microvascular invasion in hepatocellular carcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:109364. [PMID: 39536525 DOI: 10.1016/j.ejso.2024.109364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES To develop and validate a cross-modality tensor fusion (CMTF) model using multi-modality MRI radiomics features and clinical radiological characteristics for the prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). MATERIALS AND METHODS This study included 174 HCC patients (47 MVI-positive and 127 MVI-negative) confirmed by postoperative pathology. The synthetic minority over-sampling technique was used to augment MVI-positive samples. The amplified dataset of 254 samples (127 MVI-positive and 127 MVI-negative) was randomly divided into training and test cohorts in a 7:3 ratio. Radiomics features were respectively extracted from arterial phase, delayed phase, diffusion-weighted imaging, and fat-suppressed T2-weighted imaging. The least absolute shrinkage and selection operator was used for feature selection. Univariate and multivariate logistic regression analyses were employed to identify clinical and radiological independent predictors. The selected multi-modality MRI radiomics features, clinical and radiological characteristics were used to construct the CMTF model, single modality (SM) model, early fusion (EF) model. RESULTS The CMTF model demonstrated superior performance in predicting MVI compared to the SM and EF models. When integrating four MRI modalities, the CMTF model achieved a high area under the curve (AUC) with 95 % confidence interval (95 % CI) of 0.894 (0.820-0.968). Additionally, incorporating clinical and radiological characteristics further enhanced the predictive performance of CMTF model, the AUC (95 % CI) value increased to 0.945 (0.892-0.998). CONCLUSION The CMTF model showed promising performance in preoperative MVI prediction, providing a more effective non-invasive detection tool for HCC patients.
Collapse
Affiliation(s)
- Ao Meng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinping Zhuang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qian Huang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Tang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jing Yang
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Ping Gong
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Xu ZL, Qian GX, Li YH, Lu JL, Wei MT, Bu XY, Ge YS, Cheng Y, Jia WD. Evaluating microvascular invasion in hepatitis B virus-related hepatocellular carcinoma based on contrast-enhanced computed tomography radiomics and clinicoradiological factors. World J Gastroenterol 2024; 30:4801-4816. [PMID: 39649551 PMCID: PMC11606376 DOI: 10.3748/wjg.v30.i45.4801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 11/13/2024] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is a significant indicator of the aggressive behavior of hepatocellular carcinoma (HCC). Expanding the surgical resection margin and performing anatomical liver resection may improve outcomes in patients with MVI. However, no reliable preoperative method currently exists to predict MVI status or to identify patients at high-risk group (M2). AIM To develop and validate models based on contrast-enhanced computed tomography (CECT) radiomics and clinicoradiological factors to predict MVI and identify M2 among patients with hepatitis B virus-related HCC (HBV-HCC). The ultimate goal of the study was to guide surgical decision-making. METHODS A total of 270 patients who underwent surgical resection were retrospectively analyzed. The cohort was divided into a training dataset (189 patients) and a validation dataset (81) with a 7:3 ratio. Radiomics features were selected using intra-class correlation coefficient analysis, Pearson or Spearman's correlation analysis, and the least absolute shrinkage and selection operator algorithm, leading to the construction of radscores from CECT images. Univariate and multivariate analyses identified significant clinicoradiological factors and radscores associated with MVI and M2, which were subsequently incorporated into predictive models. The models' performance was evaluated using calibration, discrimination, and clinical utility analysis. RESULTS Independent risk factors for MVI included non-smooth tumor margins, absence of a peritumoral hypointensity ring, and a high radscore based on delayed-phase CECT images. The MVI prediction model incorporating these factors achieved an area under the curve (AUC) of 0.841 in the training dataset and 0.768 in the validation dataset. The M2 prediction model, which integrated the radscore from the 5 mm peritumoral area in the CECT arterial phase, α-fetoprotein level, enhancing capsule, and aspartate aminotransferase level achieved an AUC of 0.865 in the training dataset and 0.798 in the validation dataset. Calibration and decision curve analyses confirmed the models' good fit and clinical utility. CONCLUSION Multivariable models were constructed by combining clinicoradiological risk factors and radscores to preoperatively predict MVI and identify M2 among patients with HBV-HCC. Further studies are needed to evaluate the practical application of these models in clinical settings.
Collapse
Affiliation(s)
- Zi-Ling Xu
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Gui-Xiang Qian
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Yong-Hai Li
- Department of Anorectal Surgery, The First People's Hospital of Hefei, Hefei 230001, Anhui Province, China
| | - Jian-Lin Lu
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Ming-Tong Wei
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Xiang-Yi Bu
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Yong-Sheng Ge
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Yuan Cheng
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Wei-Dong Jia
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| |
Collapse
|
4
|
Wang S, Zhao Y, Li J, Yi Z, Li J, Zuo C, Yao Y, Liu A. Self-supervised multi-modal feature fusion for predicting early recurrence of hepatocellular carcinoma. Comput Med Imaging Graph 2024; 118:102457. [PMID: 39571452 DOI: 10.1016/j.compmedimag.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024]
Abstract
Surgical resection stands as the primary treatment option for early-stage hepatocellular carcinoma (HCC) patients. Postoperative early recurrence (ER) is a significant factor contributing to the mortality of HCC patients. Therefore, accurately predicting the risk of ER after curative resection is crucial for clinical decision-making and improving patient prognosis. This study leverages a self-supervised multi-modal feature fusion approach, combining multi-phase MRI and clinical features, to predict ER of HCC. Specifically, we utilized attention mechanisms to suppress redundant features, enabling efficient extraction and fusion of multi-phase features. Through self-supervised learning (SSL), we pretrained an encoder on our dataset to extract more generalizable feature representations. Finally, we achieved effective multi-modal information fusion via attention modules. To enhance explainability, we employed Score-CAM to visualize the key regions influencing the model's predictions. We evaluated the effectiveness of the proposed method on our dataset and found that predictions based on multi-phase feature fusion outperformed those based on single-phase features. Additionally, predictions based on multi-modal feature fusion were superior to those based on single-modal features.
Collapse
Affiliation(s)
- Sen Wang
- Chengdu Computer Application Institute Chinese Academy of Sciences, China; University of the Chinese Academy of Sciences, China.
| | - Ying Zhao
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, China.
| | - Jiayi Li
- College of Medical Imaging, Dalian Medical University, China.
| | - Zongmin Yi
- Johns Hopkins Whiting School of Engineering, China.
| | - Jun Li
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, China.
| | - Can Zuo
- College of Medical Imaging, Dalian Medical University, China.
| | - Yu Yao
- Chengdu Computer Application Institute Chinese Academy of Sciences, China; University of the Chinese Academy of Sciences, China.
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, China; Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, China.
| |
Collapse
|
5
|
Hashimoto K, Haraguchi T, Nawata S, Wada S, Hamaguchi S, Nishio M, Mimura H. Creation of a Prediction Model of Local Tumor Recurrence After a Successful Conventional Transcatheter Arterial Chemoembolization Using Cone-Beam Computed Tomography Based-Radiomics. Cardiovasc Intervent Radiol 2024; 47:1495-1505. [PMID: 39370462 DOI: 10.1007/s00270-024-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE To create and evaluate prediction models of local tumor recurrence after successful conventional transcatheter arterial chemoembolization (c-TACE) via radiomics analysis of lipiodol deposition using cone-beam computed tomography (CBCT) images obtained at the completion of TACE. MATERIALS AND METHODS A total of 103 hepatocellular carcinoma nodules in 71 patients, who achieved a complete response (CR) based on the modified Response Evaluation Criteria in Solid Tumors 1 month after TACE, were categorized into two groups: prolonged CR and recurrence groups. Three types of areas were segmented on CBCT: whole segment (WS), tumor segment (TS), and peritumor segment (PS). From each segment, 105 radiomic features were extracted. The nodules were randomly divided into training and test datasets at a ratio of 7:3. Following feature reduction for each segment, three models (clinical, radiomics, and clinical-radiomics models) were developed to predict recurrence based on logistic regression. RESULTS The clinical-radiomics model of WS showed the best performance, with the area under the curve values of 0.853 (95% confidence interval: 0.765-0.941) in training and 0.752 (0.580-0.924) in test dataset. In the analysis of radiomic feature importance of all models, among all radiomic features, glcm_MaximumProbability, shape_MeshVolume and shape_MajorAxisLength had negative coefficients. In contrast, shape_SurfaceVolumeRatio, shape_Elongation, glszm_SizeZoneNonUniformityNormalized, and gldm_GrayLevelNonUniformity had positive coefficients. CONCLUSION In this study, a machine-learning model based on cone-beam CT images obtained at the completion of c-TACE was able to predict local tumor recurrence after successful c-TACE. Nonuniform lipiodol deposition and irregular shapes may increase the likelihood of recurrence.
Collapse
Affiliation(s)
- Kazuki Hashimoto
- Department of Diagnostic Radiology and Interventional Radiology, St. Marianna, University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Takafumi Haraguchi
- Department of Advanced Biomedical Imaging and Informatics, St. Marianna, University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Shintaro Nawata
- Department of Diagnostic Radiology and Interventional Radiology, St. Marianna, University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Shinji Wada
- Department of Diagnostic Radiology and Interventional Radiology, St. Marianna, University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Shingo Hamaguchi
- Department of Diagnostic Radiology and Interventional Radiology, St. Marianna, University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Misako Nishio
- Department of Diagnostic Radiology and Interventional Radiology, St. Marianna, University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Hidefumi Mimura
- Department of Diagnostic Radiology and Interventional Radiology, St. Marianna, University School of Medicine, 2-16-1, Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
6
|
Li H, Zhang D, Pei J, Hu J, Li X, Liu B, Wang L. Dual-energy computed tomography iodine quantification combined with laboratory data for predicting microvascular invasion in hepatocellular carcinoma: a two-centre study. Br J Radiol 2024; 97:1467-1475. [PMID: 38870535 PMCID: PMC11256957 DOI: 10.1093/bjr/tqae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVES Microvascular invasion (MVI) is a recognized biomarker associated with poorer prognosis in patients with hepatocellular carcinoma. Dual-energy computed tomography (DECT) is a highly sensitive technique that can determine the iodine concentration (IC) in tumour and provide an indirect evaluation of internal microcirculatory perfusion. This study aimed to assess whether the combination of DECT with laboratory data can improve preoperative MVI prediction. METHODS This retrospective study enrolled 119 patients who underwent DECT liver angiography at 2 medical centres preoperatively. To compare DECT parameters and laboratory findings between MVI-negative and MVI-positive groups, Mann-Whitney U test was used. Additionally, principal component analysis (PCA) was conducted to determine fundamental components. Mann-Whitney U test was applied to determine whether the principal component (PC) scores varied across MVI groups. Finally, a general linear classifier was used to assess the classification ability of each PC score. RESULTS Significant differences were noted (P < .05) in alpha-fetoprotein (AFP) level, normalized arterial phase IC, and normalized portal phase IC between the MVI groups in the primary and validation datasets. The PC1-PC4 accounted for 67.9% of the variance in the primary dataset, with loadings of 24.1%, 16%, 15.4%, and 12.4%, respectively. In both primary and validation datasets, PC3 and PC4 were significantly different across MVI groups, with area under the curve values of 0.8410 and 0.8373, respectively. CONCLUSIONS The recombination of DECT IC and laboratory features based on varying factor loadings can well predict MVI preoperatively. ADVANCES IN KNOWLEDGE Utilizing PCA, the amalgamation of DECT IC and laboratory features, considering diverse factor loadings, showed substantial promise in accurately classifying MVI. There have been limited endeavours to establish such a combination, offering a novel paradigm for comprehending data in related research endeavours.
Collapse
Affiliation(s)
- Huan Li
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| | - Dai Zhang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| | - Jinxia Pei
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| | - Jingmei Hu
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Bin Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Longsheng Wang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| |
Collapse
|
7
|
Wu L, Li S, Wu C, Wu S, Lin Y, Wei D. Ultrasound-based deep learning radiomics nomogram for differentiating mass mastitis from invasive breast cancer. BMC Med Imaging 2024; 24:189. [PMID: 39060962 PMCID: PMC11282842 DOI: 10.1186/s12880-024-01353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The purpose of this study is to develop and validate the potential value of the deep learning radiomics nomogram (DLRN) based on ultrasound to differentiate mass mastitis (MM) and invasive breast cancer (IBC). METHODS 50 cases of MM and 180 cases of IBC with ultrasound Breast Imaging Reporting and Data System 4 category were recruited (training cohort, n = 161, validation cohort, n = 69). Based on PyRadiomics and ResNet50 extractors, radiomics and deep learning features were extracted, respectively. Based on supervised machine learning methods such as logistic regression, random forest, and support vector machine, as well as unsupervised machine learning methods using K-means clustering analysis, the differences in features between MM and IBC were analyzed to develop DLRN. The performance of DLRN had been evaluated by receiver operating characteristic curve, calibration, and clinical practicality. RESULTS Supervised machine learning results showed that compared with radiomics models, especially random forest models, deep learning models were better at recognizing MM and IBC. The area under the curve (AUC) of the validation cohort was 0.84, the accuracy was 0.83, the sensitivity was 0.73, and the specificity was 0.83. Compared to radiomics or deep learning models, DLRN even further improved discrimination ability (AUC of 0.90 and 0.90, accuracy of 0.83 and 0.88 for training and validation cohorts), which had better clinical benefits and good calibratability. In addition, the information heterogeneity of deep learning features in MM and IBC was validated again through unsupervised machine learning clustering analysis, indicating that MM had a unique features phenotype. CONCLUSION The DLRN developed based on radiomics and deep learning features of ultrasound images has potential clinical value in effectively distinguishing between MM and IBC. DLRN breaks through visual limitations and quantifies more image information related to MM based on computers, further utilizing machine learning to effectively utilize this information for clinical decision-making. As DLRN becomes an autonomous screening system, it will improve the recognition rate of MM in grassroots hospitals and reduce the possibility of incorrect treatment and overtreatment.
Collapse
Affiliation(s)
- Linyong Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, 525011, Guangdong, P. R. China
| | - Songhua Li
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, 525011, Guangdong, P. R. China
| | - Chaojun Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, 525011, Guangdong, P. R. China
| | - Shaofeng Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, 525011, Guangdong, P. R. China
| | - Yan Lin
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, 525011, Guangdong, P. R. China
| | - Dayou Wei
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, 525011, Guangdong, P. R. China.
| |
Collapse
|
8
|
Xi Z, Ye Y, Yang Y, He Y, Song Z, Ma Q, Zeng H, Shao G. Radiomics analysis based on contrast-enhanced MRI for predicting short-term efficacy of drug-eluting beads transarterial chemoembolization in hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:2387-2400. [PMID: 39030402 DOI: 10.1007/s00261-024-04319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE We developed and validated a clinical-radiomics model for preoperative prediction of the short-term efficacy of initial drug-eluting beads transarterial chemoembolization (D-TACE) treatment in patients with hepatocellular carcinoma (HCC). METHODS In this retrospective cohort study of 113 patients with intermediate and advanced HCC, 5343 features were extracted based on three sequences of the arterial phase (AP), diffusion-weighted imaging, and T2-weighted images based on contrast-enhanced magnetic resonance imaging, and minimum redundancy maximum correlation and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection and model construction. Multifactor logistic regression was used to build a clinical-imaging model based on clinical factors and a clinical-radiomics model. The area under the curve (AUC) and calibration curves were used to assess model performance, and the clinical value of the model was analyzed using decision curve analysis. The relationship between the actual and predicted short-term efficacy of the combined model and progression-free survival (PFS) was evaluated using Kaplan-Meier survival curves and log-rank tests. RESULTS A total of 34 radiomics features were selected by LASSO, and the clinical-radiomics model had the best predictive performance (AUC = 0.902 and AUC = 0.845 for the training and testing sets, respectively), and the model based on AP had the best predictive performance among the four radiomics models (AUC = 0.89 for the training set and AUC = 0.85 for the testing set); the multifactorial logistic regression results showed that microsphere type (p = 0.042) and AP Rad-score (p = 0.01) were associated with short-term efficacy. In addition, a difference in PFS was observed in patients with HCC with different short-term efficacies predicted by the combined model. Moreover, prognosis was better in the objective versus non-objective response group. CONCLUSIONS The combined clinical-radiomics model is an effective predictor of the short-term efficacy of initial D-TACE in patients with HCC, contributing to clinical and economic benefits for patients.
Collapse
Affiliation(s)
- Zihan Xi
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yuanxin Ye
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yongbo Yang
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yiwei He
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ziyang Song
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qian Ma
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, 325035, China
| | - Hui Zeng
- Department of Intervention, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Guoliang Shao
- Department of Intervention, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
9
|
Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30:381-417. [PMID: 38313230 PMCID: PMC10835534 DOI: 10.3748/wjg.v30.i4.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) for different tasks related to the management of patients with hepatocellular carcinoma (HCC). However, its implementation in clinical practice is still far, with many issues related to the methodological quality of radiomic studies. AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score (RQS). METHODS A systematic literature search of PubMed, Google Scholar, and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023. The methodological quality of radiomic studies was assessed using the RQS tool. Spearman's correlation (ρ) analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies. The level of statistical signi-ficance was set at P < 0.05. RESULTS One hundred and twenty-seven articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P < 0.0072). CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
Collapse
Affiliation(s)
- Valentina Brancato
- Department of Information Technology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Cerrone
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Nunzia Garbino
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Salvatore
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| |
Collapse
|
10
|
Yuan Z, Shu Z, Peng J, Wang W, Hou J, Han L, Zheng G, Wei Y, Zhong J. Prediction of postoperative liver metastasis in pancreatic ductal adenocarcinoma based on multiparametric magnetic resonance radiomics combined with serological markers: a cohort study of machine learning. Abdom Radiol (NY) 2024; 49:117-130. [PMID: 37819438 DOI: 10.1007/s00261-023-04047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE To construct and validate a multi-dimensional model based on multiple machine leaning algorithms to predict PCLM using multi-parameter magnetic resonance (MRI) sequences with clinical and imaging parameters. METHODS A total of 148 PDAC retrospectively examined patients were classified as metastatic or non-metastatic based on results at 3 months after surgery. The radiomics features of the primary tumor were extracted from T2WI images, followed by dimension reduction. Then, multiple machine learning methods were used to construct models. Independent predictors were also screened using multifactor logistic regression and a nomogram was constructed in combination with the radiomics model. Area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to assess the accuracy and reliability of the nomogram. RESULTS The diagnostic efficacy of the radiomics model in the training and test set was 0.822 and 0.803, sensitivity was 0.742 and 0.692, and specificity was 0.792 and 0.875, respectively. The diagnostic efficacy of the nomogram in the training and test set was 0.866 and 0.832. CONCLUSION A radiomics nomogram based on machine learning improved the accuracy of predicting PCLM and may be useful for early preoperative diagnosis.
Collapse
Affiliation(s)
- Zhongyu Yuan
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhenyu Shu
- Cancer Center, Department of Radiology, Zhejiang Provincial Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hanzhou, Zhejiang, China
| | - Jiaxuan Peng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Wei Wang
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jie Hou
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lu Han
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Guangying Zheng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuguo Wei
- Advanced Analytics, Global Medical Service, GE Healthcare, China, Xihu District, Hangzhou, 310000, China
| | - Jianguo Zhong
- Cancer Center, Department of Radiology, Zhejiang Provincial Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hanzhou, Zhejiang, China.
| |
Collapse
|
11
|
Wang Q, Sheng Y, Jiang Z, Liu H, Lu H, Xing W. What Imaging Modality Is More Effective in Predicting Early Recurrence of Hepatocellular Carcinoma after Hepatectomy Using Radiomics Analysis: CT or MRI or Both? Diagnostics (Basel) 2023; 13:2012. [PMID: 37370907 DOI: 10.3390/diagnostics13122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND It is of great importance to predict the early recurrence (ER) of hepatocellular carcinoma (HCC) after hepatectomy using preoperative imaging modalities. Nevertheless, no comparative studies have been conducted to determine which modality, CT or MRI with radiomics analysis, is more effective. METHODS We retrospectively enrolled 119 HCC patients who underwent preoperative CT and MRI. A total of 3776 CT features and 4720 MRI features were extracted from the whole tumor. The minimum redundancy and maximum relevance algorithm (MRMR) and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection, then support vector machines (SVMs) were applied for model construction. Multivariable logistic regression analysis was employed to construct combined models that integrate clinical-radiological-pathological (CRP) traits and radscore. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to compare the efficacy of CT, MRI, and CT and MRI models in the test cohort. RESULTS The CT model and MRI model showed no significant difference in the prediction of ER in HCC patients (p = 0.911). RadiomicsCT&MRI demonstrated a superior predictive performance than either RadiomicsCT or RadiomicsMRI alone (p = 0.032, 0.039). The combined CT and MRI model can significantly stratify patients at high risk of ER (area under the curve (AUC) of 0.951 in the training set and 0.955 in the test set) than the CT model (AUC of 0.894 and 0.784) and the MRI model (AUC of 0.856 and 0.787). DCA demonstrated that the CT and MRI model provided a greater net benefit than the models without radiomics analysis. CONCLUSIONS No significant difference was found in predicting the ER of HCC between CT models and MRI models. However, the multimodal radiomics model derived from CT and MRI can significantly improve the prediction of ER in HCC patients after resection.
Collapse
Affiliation(s)
- Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Ye Sheng
- Department of Interventional Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Zhenxing Jiang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haifeng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haitao Lu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| |
Collapse
|
12
|
Xiao Q, Zhu W, Tang H, Zhou L. Ultrasound radiomics in the prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis. Heliyon 2023; 9:e16997. [PMID: 37332935 PMCID: PMC10272484 DOI: 10.1016/j.heliyon.2023.e16997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose To systematically assess the clinical value of ultrasound radiomics in the prediction of microvascular invasion in hepatocellular carcinoma (HCC). Methods Relevant articles were searched in PubMed, Web of Science, Cochrane Library, Embase and Medline and screened according to the eligibility criteria. The quality of the included articles was assessed based on the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. After article assessment and data extraction, the diagnostic performance of ultrasound radiomics was evaluated based on pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR), and the area under the curve (AUC) was calculated by generating the ROC curve. Meta-analysis was performed using Stata 15.1, and subgroup analysis was conducted to identify the sources of heterogeneity. A Fagan nomogram was generated to assess the clinical utility of ultrasound radiomics. Results Five studies involving 1260 patients were included. Meta-analysis showed that ultrasound radiomics had a pooled sensitivity of 79% (95% CI: 75-83%), specificity of 70% (95% CI: 59-79%), PLR of 2.6 (95% CI: 1.9-3.7), NLR of 0.30 (95% CI: 0.23-0.39), DOR of 9 (95% CI: 5-16), and AUC of 0.81 (95% CI: 0.78-0.85). Sensitivity analysis indicated that the results were statistically reliable and stable, and no significant difference was identified during subgroup analysis. Conclusion Ultrasound radiomics has favorable predictive performance in the microvascular invasion of HCC and may serve as an auxiliary tool for guiding clinical decision-making.
Collapse
Affiliation(s)
- Qinyu Xiao
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Wenjun Zhu
- Department of Ultrasound, Affiliated Hospital of Jiaxing University (Jiaxing First Hospital), Jiaxing, Zhejiang 314000, China
| | - Huanliang Tang
- Department of Administrative, Affiliated Hospital of Jiaxing University (Jiaxing First Hospital), Jiaxing, Zhejiang 314000, China
| | - Lijie Zhou
- Department of Ultrasound, Affiliated Hospital of Jiaxing University (Jiaxing First Hospital), Jiaxing, Zhejiang 314000, China
| |
Collapse
|
13
|
Quality of radiomics for predicting microvascular invasion in hepatocellular carcinoma: a systematic review. Eur Radiol 2023; 33:3467-3477. [PMID: 36749371 DOI: 10.1007/s00330-023-09414-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/06/2022] [Accepted: 01/01/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To comprehensively evaluate the reporting quality, risk of bias, and radiomics methodology quality of radiomics models for predicting microvascular invasion in hepatocellular carcinoma. METHODS A systematic search of available literature was performed in PubMed, Embase, Web of Science, Scopus, and the Cochrane Library up to January 21, 2022. Studies that developed and/or validated machine learning models based on radiomics data to predict microvascular invasion in hepatocellular carcinoma were included. These studies were reviewed by two investigators and the consensus data were used for analyzing. The reporting quality, risk of bias, and radiomics methodological quality were evaluated by Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD), Prediction model Risk of Bias Assessment Tool, and Radiomics Quality Score (RQS), respectively. RESULTS A total of 30 studies met eligibility criteria with 24 model developing studies and 6 model developing and external validation studies. The median overall TRIPOD adherence was 75.4% (range 56.7-94.3%). All studies were at high risk of bias with at least 2 of 20 sources of bias. Furthermore, 28 studies showed unclear risks of bias in up to 5 signaling questions because of the lack of specified reports. The median RQS score was 37.5% (range 25-61.1%). CONCLUSION Current radiomic models for MVI-status prediction have moderate to good reporting quality, moderate radiomics methodology quality, and high risk of bias in model development and validation. KEY POINTS • Current microvascular invasion prediction radiomics studies have moderate to good reporting quality, moderate radiomics methodology quality, and high risk of bias in model development and validation. • Data representativeness, feature robustness, events-per-variable ratio, evaluation metrics, and appropriate validation are five main aspects futures studies should focus more on to improve the quality of radiomics. • Both Radiomics Quality Score and Prediction model Risk of Bias Assessment Tool are needed to comprehensively evaluate a radiomics study.
Collapse
|
14
|
Liang G, Yu W, Liu S, Zhang M, Xie M, Liu M, Liu W. The diagnostic performance of radiomics-based MRI in predicting microvascular invasion in hepatocellular carcinoma: A meta-analysis. Front Oncol 2023; 12:960944. [PMID: 36798691 PMCID: PMC9928182 DOI: 10.3389/fonc.2022.960944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023] Open
Abstract
Objective The aim of this study was to assess the diagnostic performance of radiomics-based MRI in predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Method The databases of PubMed, Cochrane library, Embase, Web of Science, Ovid MEDLINE, Springer, and Science Direct were searched for original studies from their inception to 20 August 2022. The quality of each study included was assessed according to the Quality Assessment of Diagnostic Accuracy Studies 2 and the radiomics quality score. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated. The summary receiver operating characteristic (SROC) curve was plotted and the area under the curve (AUC) was calculated to evaluate the diagnostic accuracy. Sensitivity analysis and subgroup analysis were performed to explore the source of the heterogeneity. Deeks' test was used to assess publication bias. Results A total of 15 studies involving 981 patients were included. The pooled sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.79 (95%CI: 0.72-0.85), 0.81 (95%CI: 0.73-0.87), 4.1 (95%CI:2.9-5.9), 0.26 (95%CI: 0.19-0.35), 16 (95%CI: 9-28), and 0.87 (95%CI: 0.84-0.89), respectively. The results showed great heterogeneity among the included studies. Sensitivity analysis indicated that the results of this study were statistically reliable. The results of subgroup analysis showed that hepatocyte-specific contrast media (HSCM) had equivalent sensitivity and equivalent specificity compared to the other set. The least absolute shrinkage and selection operator method had high sensitivity and specificity than other methods, respectively. The investigated area of the region of interest had high specificity compared to the volume of interest. The imaging-to-surgery interval of 15 days had higher sensitivity and slightly low specificity than the others. Deeks' test indicates that there was no publication bias (P=0.71). Conclusion Radiomics-based MRI has high accuracy in predicting MVI in HCC, and it can be considered as a non-invasive method for assessing MVI in HCC.
Collapse
Affiliation(s)
- Gao Liang
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Yu
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuqin Liu
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingxing Zhang
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingguo Xie
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Mingguo Xie,
| | - Min Liu
- Toxicology Department, West China-Frontier PharmaTech Co., Ltd. (WCFP), Chengdu, Sichuan, China
| | - Wenbin Liu
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Biondi R, Renzulli M, Golfieri R, Curti N, Carlini G, Sala C, Giampieri E, Remondini D, Vara G, Cattabriga A, Cocozza MA, Pastore LV, Brandi N, Palmeri A, Scarpetti L, Tanzarella G, Cescon M, Ravaioli M, Castellani G, Coppola F. Machine Learning Pipeline for the Automated Prediction of MicrovascularInvasion in HepatocellularCarcinomas. APPLIED SCIENCES 2023; 13:1371. [DOI: 10.3390/app13031371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background: Microvascular invasion (MVI) is a necessary step in the metastatic evolution of hepatocellular carcinoma liver tumors. Predicting the onset of MVI in the initial stages of the tumors could improve patient survival and the quality of life. In this study, the possibility of using radiomic features to predict the presence/absence of MVI was evaluated. Methods: Multiphase contrast-enhanced computed tomography (CECT) images were collected from 49 patients, and the radiomic features were extracted from the tumor region and the zone of transition. The most-relevant features were selected; the dataset was balanced, and the presence/absence of MVI was classified. The dataset was split into training and test sets in three ways using cross-validation: the first applied feature selection and dataset balancing outside cross-validation; the second applied dataset balancing outside and feature selection inside; the third applied the entire pipeline inside the cross-validation procedure. Results: The features from the tumor areas on CECT showed both the portal and the arterial phases to be the most predictive. The three pipelines showed receiver operating characteristic area under the curve (ROC AUC) scores of 0.89, 0.84, and 0.61, respectively. Conclusions: The results obtained confirmed the efficiency of multiphase CECT and the ZOT in detecting MVI. The results showed a significant difference in the performance of the three pipelines, highlighting that a non-rigorous pipeline design could lead to model performance and generalization capabilities that are too optimistic.
Collapse
Affiliation(s)
- Riccardo Biondi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Nico Curti
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
- INFN Sezione Bologna, Bologna University, 40127 Bologna, Italy
| | - Gianluca Carlini
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Claudia Sala
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Enrico Giampieri
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
- INFN Sezione Bologna, Bologna University, 40127 Bologna, Italy
| | - Giulio Vara
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Arrigo Cattabriga
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Maria Adriana Cocozza
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Luigi Vincenzo Pastore
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Antonino Palmeri
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Leonardo Scarpetti
- Dipartimento Diagnostica per Immagini AUSL Romagna, UOC Radiologia Faenza, 48018 Faenza, Italy
| | - Gaia Tanzarella
- Dipartimento Diagnostica per Immagini AUSL Romagna, UOC Radiologia Faenza, 48018 Faenza, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Matteo Ravaioli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Gastone Castellani
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Francesca Coppola
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Dipartimento Diagnostica per Immagini AUSL Romagna, UOC Radiologia Faenza, 48018 Faenza, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology, 40138 Bologna, Italy
| |
Collapse
|
16
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
17
|
Wang F, Chen Q, Chen Y, Zhu Y, Zhang Y, Cao D, Zhou W, Liang X, Yang Y, Lin L, Hu H. A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:156-164. [PMID: 36333180 DOI: 10.1016/j.ejso.2022.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Accurate preoperative identification of the microvascular invasion (MVI) can relieve the pressure from personalized treatment adaptation and improve the poor prognosis for hepatocellular carcinoma (HCC). This study aimed to develop and validate a novel multimodal deep learning (DL) model for predicting MVI based on multi-parameter magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CT). METHODS A total of 397 HCC patients underwent both CT and MRI examinations before surgery. We established the radiological models (RCT, RMRI) by support vector machine (SVM), DL models (DLCT_ALL, DLMRI_ALL, DLCT + MRI) by ResNet18. The comprehensive model (CALL) involving multi-modality DL features and clinical and radiological features was constructed using SVM. Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared by net reclassification index (NRI) and integrated discrimination improvement (IDI). RESULTS The DLCT + MRI model exhibited superior predicted efficiency over single-modality models, especially over the DLCT_ALL model (AUC: 0.819 vs. 0.742, NRI > 0, IDI > 0). The DLMRI_ALL model improved the performance over the RMRI model (AUC: 0.794 vs. 0.766, NRI > 0, IDI < 0), but no such difference was found between the DLCT_ALL model and RCT model (AUC: 0.742 vs. 0.710, NRI < 0, IDI < 0). Furthermore, both the DLCT + MRI and CALL models revealed the prognostic power in recurrence-free survival stratification (P < 0.001). CONCLUSION The proposed DLCT + MRI model showed robust capability in predicting MVI and outcomes for HCC. Besides, the identification ability of the multi-modality DL model was better than any single modality, especially for CT.
Collapse
Affiliation(s)
- Fang Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China.
| | - Qingqing Chen
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China
| | - Yinan Chen
- SenseTime Research, 200030, Shanghai, PR China
| | - Yajing Zhu
- SenseTime Research, 200030, Shanghai, PR China
| | - Yuanyuan Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China; Medical College, Shaoxing University, 312000, Shaoxing, PR China
| | - Dan Cao
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China; Department of Radiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, PR China
| | - Wei Zhou
- Department of Radiology, Huzhou Central Hospital, Affiliated to Huzhou University, 313000, Huzhou, PR China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital, Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Lanfen Lin
- College of Computer Science and Technology, Zhejiang University, 310027, Hangzhou, PR China.
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, PR China.
| |
Collapse
|
18
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
19
|
Liu HF, Zhang YZZ, Wang Q, Zhu ZH, Xing W. A nomogram model integrating LI-RADS features and radiomics based on contrast-enhanced magnetic resonance imaging for predicting microvascular invasion in hepatocellular carcinoma falling the Milan criteria. Transl Oncol 2022; 27:101597. [PMID: 36502701 PMCID: PMC9758568 DOI: 10.1016/j.tranon.2022.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To establish and validate a nomogram model incorporating both liver imaging reporting and data system (LI-RADS) features and contrast enhanced magnetic resonance imaging (CEMRI)-based radiomics for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) falling the Milan criteria. METHODS In total, 161 patients with 165 HCCs diagnosed with MVI (n = 99) or without MVI (n = 66) were assigned to a training and a test group. MRI LI-RADS characteristics and radiomics features selected by the LASSO algorithm were used to establish the MRI and Rad-score models, respectively, and the independent features were integrated to develop the nomogram model. The predictive ability of the nomogram was evaluated with receiver operating characteristic (ROC) curves. RESULTS The risk factors associated with MVI (P<0.05) were related to larger tumor size, nonsmooth margin, mosaic architecture, corona enhancement and higher Rad-score. The areas under the ROC curve (AUCs) of the MRI feature model for predicting MVI were 0.85 (95% CI: 0.78-0.92) and 0.85 (95% CI: 0.74-0.95), and those for the Rad-score were 0.82 (95% CI: 0.73-0.90) and 0.80 (95% CI: 0.67-0.93) in the training and test groups, respectively. The nomogram presented improved AUC values of 0.87 (95% CI: 0.81-0.94) in the training group and 0.89 (95% CI: 0.81-0.98) in the test group (P<0.05) for predicting MVI. The calibration curve and decision curve analysis demonstrated that the nomogram model had high goodness-of-fit and clinical benefits. CONCLUSIONS The nomogram model can effectively predict MVI in patients with HCC falling within the Milan criteria and serves as a valuable imaging biomarker for facilitating individualized decision-making.
Collapse
Affiliation(s)
- Hai-Feng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Yan-Zhen-Zi Zhang
- Department of Pathology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Zu-Hui Zhu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China,Corresponding author at: No.185, Juqian ST, Tianning District, Changzhou 213003, Jiangsu, China.
| |
Collapse
|
20
|
Yang X, Shao G, Liu J, Liu B, Cai C, Zeng D, Li H. Predictive machine learning model for microvascular invasion identification in hepatocellular carcinoma based on the LI-RADS system. Front Oncol 2022; 12:1021570. [DOI: 10.3389/fonc.2022.1021570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
PurposesThis study aimed to establish a predictive model of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) by contrast-enhanced computed tomography (CT), which relied on a combination of machine learning approach and imaging features covering Liver Imaging and Reporting and Data System (LI-RADS) features.MethodsThe retrospective study included 279 patients with surgery who underwent preoperative enhanced CT. They were randomly allocated to training set, validation set, and test set (167 patients vs. 56 patients vs. 56 patients, respectively). Significant imaging findings for predicting MVI were identified through the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression method. Predictive models were performed by machine learning algorithm, support vector machine (SVM), in the training set and validation set, and evaluated in the test set. Further, a combined model adding clinical findings to the radiologic model was developed. Based on the LI-RADS category, subgroup analyses were conducted.ResultsWe included 116 patients with MVI which were diagnosed through pathological confirmation. Six imaging features were selected about MVI prediction: four LI-RADS features (corona enhancement, enhancing capsule, non-rim aterial phase hyperehancement, tumor size) and two non-LI-RADS features (internal arteries, non-smooth tumor margin). The radiological feature with the best accuracy was corona enhancement followed by internal arteries and tumor size. The accuracies of the radiological model and combined model were 0.725–0.714 and 0.802–0.732 in the training set, validation set, and test set, respectively. In the LR-4/5 subgroup, a sensitivity of 100% and an NPV of 100% were obtained by the high-sensitivity threshold. A specificity of 100% and a PPV of 100% were acquired through the high specificity threshold in the LR-M subgroup.ConclusionA combination of LI-RADS features and non-LI-RADS features and serum alpha-fetoprotein value could be applied as a preoperative biomarker for predicting MVI by the machine learning approach. Furthermore, its good performance in the subgroup by LI-RADS category may help optimize the management of HCC patients.
Collapse
|
21
|
Shi H, Duan Y, Shi J, Zhang W, Liu W, Shen B, Liu F, Mei X, Li X, Yuan Z. Role of preoperative prediction of microvascular invasion in hepatocellular carcinoma based on the texture of FDG PET image: A comparison of quantitative metabolic parameters and MRI. Front Physiol 2022; 13:928969. [PMID: 36035488 PMCID: PMC9412047 DOI: 10.3389/fphys.2022.928969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022] Open
Abstract
Objective: To investigate the role of prediction microvascular invasion (mVI) in hepatocellular carcinoma (HCC) by 18F-FDG PET image texture analysis and hybrid criteria combining PET/CT and multi-parameter MRI. Materials and methods: Ninety-seven patients with HCC who received the examinations of MRI and 18F-FDG PET/CT were retrospectively included in this study and were randomized into training and testing cohorts. The lesion image texture features of 18F-FDG PET were extracted using MaZda software. The optimal predictive texture features of mVI were selected, and the classification procedure was conducted. The predictive performance of mVI by radiomics classier in training and testing cohorts was respectively recorded. Next, the hybrid model was developed by integrating the 18F-FDG PET image texture, metabolic parameters, and MRI parameters to predict mVI through logistic regression. Furthermore, the diagnostic performance of each time was recorded. Results: The 18F-FDG PET image radiomics classier showed good predicted performance in both training and testing cohorts to discriminate HCC with/without mVI, with an AUC of 0.917 (95% CI: 0.824–0.970) and 0.771 (95% CI: 0.578, 0.905). The hybrid model, which combines radiomics classier, SUVmax, ADC, hypovascular arterial phase enhancement pattern on contrast-enhanced MRI, and non-smooth tumor margin, also yielded better predictive performance with an AUC of 0.996 (95% CI: 0.939, 1.000) and 0.953 (95% CI: 0.883, 1.000). The differences in AUCs between radiomics classier and hybrid classier were significant in both training and testing cohorts (DeLong test, both p < 0.05). Conclusion: The radiomics classier based on 18F-FDG PET image texture and the hybrid classier incorporating 18F-FDG PET/CT and MRI yielded good predictive performance, which might provide a precise prediction of HCC mVI preoperatively.
Collapse
Affiliation(s)
- Huazheng Shi
- Shanghai Universal Cloud Medical Imaging Diagnostic Center, Shanghai, China
| | - Ying Duan
- Shanghai Universal Cloud Medical Imaging Diagnostic Center, Shanghai, China
| | - Jie Shi
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Wenrui Zhang
- Shanghai Universal Cloud Medical Imaging Diagnostic Center, Shanghai, China
| | - Weiran Liu
- Shanghai Universal Cloud Medical Imaging Diagnostic Center, Shanghai, China
| | - Bixia Shen
- Shanghai Universal Cloud Medical Imaging Diagnostic Center, Shanghai, China
| | - Fufu Liu
- Shanghai Universal Cloud Medical Imaging Diagnostic Center, Shanghai, China
| | - Xin Mei
- Shanghai Universal Cloud Medical Imaging Diagnostic Center, Shanghai, China
| | - Xiaoxiao Li
- Shanghai Universal Cloud Medical Imaging Diagnostic Center, Shanghai, China
- *Correspondence: Zheng Yuan, ; Xiaoxiao Li,
| | - Zheng Yuan
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zheng Yuan, ; Xiaoxiao Li,
| |
Collapse
|
22
|
Li L, Wu C, Huang Y, Chen J, Ye D, Su Z. Radiomics for the Preoperative Evaluation of Microvascular Invasion in Hepatocellular Carcinoma: A Meta-Analysis. Front Oncol 2022; 12:831996. [PMID: 35463303 PMCID: PMC9021380 DOI: 10.3389/fonc.2022.831996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Microvascular invasion (MVI) is an independent risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). To perform a meta-analysis to investigate the diagnostic performance of radiomics for the preoperative evaluation of MVI in HCC and the effect of potential factors. Materials and Methods A systematic literature search was performed in PubMed, Embase, and the Cochrane Library for studies focusing on the preoperative evaluation of MVI in HCC with radiomics methods. Data extraction and quality assessment of the retrieved studies were performed. Statistical analysis included data pooling, heterogeneity testing and forest plot construction. Meta-regression and subgroup analyses were performed to reveal the effect of potential explanatory factors [design, combination of clinical factors, imaging modality, number of participants, and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) applicability risk] on the diagnostic performance. Results Twenty-two studies with 4,129 patients focusing on radiomics for the preoperative prediction of MVI in HCC were included. The pooled sensitivity, specificity and area under the receiver operating characteristic curve (AUC) were 84% (95% CI: 81, 87), 83% (95% CI: 78, 87) and 0.90 (95% CI: 0.87, 0.92). Substantial heterogeneity was observed among the studies (I²=94%, 95% CI: 88, 99). Meta-regression showed that all investigative covariates contributed to the heterogeneity in the sensitivity analysis (P < 0.05). Combined clinical factors, MRI, CT and number of participants contributed to the heterogeneity in the specificity analysis (P < 0.05). Subgroup analysis showed that the pooled sensitivity, specificity and AUC estimates were similar among studies with CT or MRI. Conclusion Radiomics is a promising noninvasive method that has high preoperative diagnostic performance for MVI status. Radiomics based on CT and MRI had a comparable predictive performance for MVI in HCC. Prospective, large-scale and multicenter studies with radiomics methods will improve the diagnostic power for MVI in the future. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=259363, identifier CRD42021259363.
Collapse
Affiliation(s)
- Liujun Li
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Chaoqun Wu
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongquan Huang
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiaxin Chen
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Dalin Ye
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zhongzhen Su
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
23
|
Renzulli M, Mottola M, Coppola F, Cocozza MA, Malavasi S, Cattabriga A, Vara G, Ravaioli M, Cescon M, Vasuri F, Golfieri R, Bevilacqua A. Automatically Extracted Machine Learning Features from Preoperative CT to Early Predict Microvascular Invasion in HCC: The Role of the Zone of Transition (ZOT). Cancers (Basel) 2022; 14:cancers14071816. [PMID: 35406589 PMCID: PMC8997857 DOI: 10.3390/cancers14071816] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 02/08/2023] Open
Abstract
Background: Microvascular invasion (MVI) is a consolidated predictor of hepatocellular carcinoma (HCC) recurrence after treatments. No reliable radiological imaging findings are available for preoperatively diagnosing MVI, despite some progresses of radiomic analysis. Furthermore, current MVI radiomic studies have not been designed for small HCC nodules, for which a plethora of treatments exists. This study aimed to identify radiomic MVI predictors in nodules ≤3.0 cm by analysing the zone of transition (ZOT), crossing tumour and peritumour, automatically detected to face the uncertainties of radiologist’s tumour segmentation. Methods: The study considered 117 patients imaged by contrast-enhanced computed tomography; 78 patients were finally enrolled in the radiomic analysis. Radiomic features were extracted from the tumour and the ZOT, detected using an adaptive procedure based on local image contrast variations. After data oversampling, a support vector machine classifier was developed and validated. Classifier performance was assessed using receiver operating characteristic (ROC) curve analysis and related metrics. Results: The original 89 HCC nodules (32 MVI+ and 57 MVI−) became 169 (62 MVI+ and 107 MVI−) after oversampling. Of the four features within the signature, three are ZOT heterogeneity measures regarding both arterial and venous phases. On the test set (19MVI+ and 33MVI−), the classifier predicts MVI+ with area under the curve of 0.86 (95%CI (0.70–0.93), p∼10−5), sensitivity = 79% and specificity = 82%. The classifier showed negative and positive predictive values of 87% and 71%, respectively. Conclusions: The classifier showed the highest diagnostic performance in the literature, disclosing the role of ZOT heterogeneity in predicting the MVI+ status.
Collapse
Affiliation(s)
- Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (M.R.); (M.M.); (F.C.); (M.A.C.); (A.C.); (G.V.); (R.G.)
| | - Margherita Mottola
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (M.R.); (M.M.); (F.C.); (M.A.C.); (A.C.); (G.V.); (R.G.)
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40126 Bologna, Italy;
| | - Francesca Coppola
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (M.R.); (M.M.); (F.C.); (M.A.C.); (A.C.); (G.V.); (R.G.)
| | - Maria Adriana Cocozza
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (M.R.); (M.M.); (F.C.); (M.A.C.); (A.C.); (G.V.); (R.G.)
| | - Silvia Malavasi
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40126 Bologna, Italy;
| | - Arrigo Cattabriga
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (M.R.); (M.M.); (F.C.); (M.A.C.); (A.C.); (G.V.); (R.G.)
| | - Giulio Vara
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (M.R.); (M.M.); (F.C.); (M.A.C.); (A.C.); (G.V.); (R.G.)
| | - Matteo Ravaioli
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (M.R.); (M.C.)
| | - Matteo Cescon
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (M.R.); (M.C.)
| | - Francesco Vasuri
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (M.R.); (M.M.); (F.C.); (M.A.C.); (A.C.); (G.V.); (R.G.)
| | - Alessandro Bevilacqua
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40126 Bologna, Italy;
- Department of Computer Science and Engineering (DISI), University of Bologna, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-05-1209-5409
| |
Collapse
|
24
|
Zhang J, Huang S, Xu Y, Wu J. Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:763842. [PMID: 35280776 PMCID: PMC8907853 DOI: 10.3389/fonc.2022.763842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background The presence of microvascular invasion (MVI) is considered an independent prognostic factor associated with early recurrence and poor survival in hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs), has been widely used for MVI prediction in medical imaging. Aim To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative prediction of MVI based on imaging data. Methods Original studies reporting AI algorithms for non-invasive, preoperative prediction of MVI based on quantitative imaging data were identified in the databases PubMed, Embase, and Web of Science. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model with 95% CIs. A summary receiver operating characteristic curve and the area under the curve (AUC) were generated to assess the diagnostic accuracy of the deep learning and non-deep learning models. In the non-deep learning group, we further performed meta-regression and subgroup analyses to identify the source of heterogeneity. Results Data from 16 included studies with 4,759 cases were available for meta-analysis. Four studies on deep learning models, 12 studies on non-deep learning models, and two studies compared the efficiency of the two types. For predictive performance of deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were 0.84 [0.75–0.90], 0.84 [0.77–0.89], 5.14 [3.53–7.48], 0.2 [0.12–0.31], and 0.90 [0.87–0.93]; and for non-deep learning models, they were 0.77 [0.71–0.82], 0.77 [0.73–0.80], 3.30 [2.83–3.84], 0.30 [0.24–0.38], and 0.82 [0.79–0.85], respectively. Subgroup analyses showed a significant difference between the single tumor subgroup and the multiple tumor subgroup in the pooled sensitivity, NLR, and AUC. Conclusion This meta-analysis demonstrates the high diagnostic accuracy of non-deep learning and deep learning methods for MVI status prediction and their promising potential for clinical decision-making. Deep learning models perform better than non-deep learning models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID=260891, ID:CRD42021260891.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Digestive Oncology, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
25
|
He Y, Hu B, Zhu C, Xu W, Ge Y, Hao X, Dong B, Chen X, Dong Q, Zhou X. A Novel Multimodal Radiomics Model for Predicting Prognosis of Resected Hepatocellular Carcinoma. Front Oncol 2022; 12:745258. [PMID: 35321432 PMCID: PMC8936674 DOI: 10.3389/fonc.2022.745258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
ObjectiveTo explore a new model to predict the prognosis of liver cancer based on MRI and CT imaging data.MethodsA retrospective study of 103 patients with histologically proven hepatocellular carcinoma (HCC) was conducted. Patients were randomly divided into training (n = 73) and validation (n = 30) groups. A total of 1,217 radiomics features were extracted from regions of interest on CT and MR images of each patient. Univariate Cox regression, Spearman’s correlation analysis, Pearson’s correlation analysis, and least absolute shrinkage and selection operator Cox analysis were used for feature selection in the training set, multivariate Cox proportional risk models were established to predict disease-free survival (DFS) and overall survival (OS), and the models were validated using validation cohort data. Multimodal radiomics scores, integrating CT and MRI data, were applied, together with clinical risk factors, to construct nomograms for individualized survival assessment, and calibration curves were used to evaluate model consistency. Harrell’s concordance index (C-index) values were calculated to evaluate the prediction performance of the models.ResultsThe radiomics score established using CT and MR data was an independent predictor of prognosis (DFS and OS) in patients with HCC (p < 0.05). Prediction models illustrated by nomograms for predicting prognosis in liver cancer were established. Integrated CT and MRI and clinical multimodal data had the best predictive performance in the training and validation cohorts for both DFS [(C-index (95% CI): 0.858 (0.811–0.905) and 0.704 (0.563–0.845), respectively)] and OS [C-index (95% CI): 0.893 (0.846–0.940) and 0.738 (0.575–0.901), respectively]. The calibration curve showed that the multimodal radiomics model provides greater clinical benefits.ConclusionMultimodal (MRI/CT) radiomics models can serve as effective visual tools for predicting prognosis in patients with liver cancer. This approach has great potential to improve treatment decisions when applied for preoperative prediction in patients with HCC.
Collapse
Affiliation(s)
- Ying He
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Hu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjian Xu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Xiwei Hao
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingzi Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong College Collaborative Innovation Center of Digital Medicine Clinical Treatment and Nutrition Health, Qingdao University, Qingdao, China
- *Correspondence: Xianjun Zhou, ; Qian Dong,
| | - Xianjun Zhou
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xianjun Zhou, ; Qian Dong,
| |
Collapse
|
26
|
Meng XP, Tang TY, Ding ZM, Wang J, Lu CQ, Yu Q, Xia C, Zhang T, Long X, Xiao W, Wang YC, Ju S. Preoperative Microvascular Invasion Prediction to Assist in Surgical Plan for Single Hepatocellular Carcinoma: Better Together with Radiomics. Ann Surg Oncol 2022; 29:2960-2970. [PMID: 35102453 DOI: 10.1245/s10434-022-11346-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/03/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Prediction models with or without radiomic analysis for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) have been reported, but the potential for model-predicted MVI in surgical planning is unclear. Therefore, we aimed to explore the effect of predicted MVI on early recurrence after anatomic resection (AR) and non-anatomic resection (NAR) to assist surgical strategies. METHODS Patients with a single HCC of 2-5 cm receiving curative resection were enrolled from 2 centers. Their data were used to develop (n = 230) and test (n = 219) two prediction models for MVI using clinical factors and preoperative computed tomography images. The two prediction models, clinico-radiologic model and clinico-radiologic-radiomic (CRR) model (clinico-radiologic variables + radiomic signature), were compared using the Delong test. Early recurrence based on model-predicted high-risk MVI was evaluated between AR (n = 118) and NAR (n = 85) via propensity score matching using patient data from another 2 centers for external validation. RESULTS The CRR model showed higher area under the curve values (0.835-0.864 across development, test, and external validation) but no statistically significant improvement over the clinico-radiologic model (0.796-0.828). After propensity score matching, difference in 2-year recurrence between AR and NAR was found in the CRR model predicted high-risk MVI group (P = 0.005) but not in the clinico-radiologic model predicted high-risk MVI group (P = 0.31). CONCLUSIONS The prediction model incorporating radiomics provided an accurate preoperative estimation of MVI, showing the potential for choosing the more appropriate surgical procedure between AR and NAR.
Collapse
Affiliation(s)
- Xiang-Pan Meng
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Zhi-Min Ding
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jitao Wang
- Hepatic-Biliary-Pancreatic Center, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.,Department of Hepatopancreatobiliary Surgery, Xingtai Institute of Cancer Control, Xingtai People's Hospital, Xingtai, China
| | - Chun-Qiang Lu
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Qian Yu
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Cong Xia
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tao Zhang
- Department of Radiology, The Third Hospital Affiliated of Nantong University, Nantong, China
| | - Xueying Long
- Department of Radiology, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan-Cheng Wang
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
27
|
Xiang F, Wei S, Liu X, Liang X, Yang L, Yan S. Radiomics Analysis of Contrast-Enhanced CT for the Preoperative Prediction of Microvascular Invasion in Mass-Forming Intrahepatic Cholangiocarcinoma. Front Oncol 2021; 11:774117. [PMID: 34869018 PMCID: PMC8640186 DOI: 10.3389/fonc.2021.774117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Microvascular invasion (MVI) has been shown to be closely associated with postoperative recurrence and metastasis in patients with intrahepatic cholangiocarcinoma (ICC). We aimed to develop a radiomics prediction model based on contrast-enhanced CT (CECT) to distinguish MVI in patients with mass-forming ICC. Methods 157 patients were included and randomly divided into training (n=110) and test (n=47) datasets. Radiomic signatures were built based on the recursive feature elimination support vector machine (Rfe-SVM) algorithm. Significant clinical-radiologic factors were screened, and a clinical model was built by multivariate logistic regression. A nomogram was developed by integrating radiomics signature and the significant clinical risk factors. Results The portal phase image radiomics signature with 6 features was constructed and provided an area under the receiver operating characteristic curve (AUC) of 0.804 in the training and 0.769 in the test datasets. Three significant predictors, including satellite nodules (odds ratio [OR]=13.73), arterial hypo-enhancement (OR=4.31), and tumor contour (OR=4.99), were identified by multivariate analysis. The clinical model using these predictors exhibited an AUC of 0.822 in the training and 0.756 in the test datasets. The nomogram combining significant clinical factors and radiomics signature achieved satisfactory prediction efficacy, showing an AUC of 0.886 in the training and 0.80 in the test datasets. Conclusions Both CECT radiomics analysis and radiologic factors have the potential for MVI prediction in mass-forming ICC patients. The nomogram can further improve the prediction efficacy.
Collapse
Affiliation(s)
- Fei Xiang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyuan Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Yang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Radiomics Models for Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Radiomics Quality Score Assessment. Cancers (Basel) 2021. [DOI: 10.3390/cancers13225864
expr 925508420 + 988274397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Preoperative prediction of microvascular invasion (MVI) is of importance in hepatocellular carcinoma (HCC) patient treatment management. Plenty of radiomics models for MVI prediction have been proposed. This study aimed to elucidate the role of radiomics models in the prediction of MVI and to evaluate their methodological quality. The methodological quality was assessed by the Radiomics Quality Score (RQS), and the risk of bias was evaluated by the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Twenty-two studies using CT, MRI, or PET/CT for MVI prediction were included. All were retrospective studies, and only two had an external validation cohort. The AUC values of the prediction models ranged from 0.69 to 0.94 in the test cohort. Substantial methodological heterogeneity existed, and the methodological quality was low, with an average RQS score of 10 (28% of the total). Most studies demonstrated a low or unclear risk of bias in the domains of QUADAS-2. In conclusion, a radiomics model could be an accurate and effective tool for MVI prediction in HCC patients, although the methodological quality has so far been insufficient. Future prospective studies with an external validation cohort in accordance with a standardized radiomics workflow are expected to supply a reliable model that translates into clinical utilization.
Collapse
|
29
|
Wang Q, Li C, Zhang J, Hu X, Fan Y, Ma K, Sparrelid E, Brismar TB. Radiomics Models for Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Radiomics Quality Score Assessment. Cancers (Basel) 2021; 13:5864. [PMID: 34831018 PMCID: PMC8616379 DOI: 10.3390/cancers13225864] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Preoperative prediction of microvascular invasion (MVI) is of importance in hepatocellular carcinoma (HCC) patient treatment management. Plenty of radiomics models for MVI prediction have been proposed. This study aimed to elucidate the role of radiomics models in the prediction of MVI and to evaluate their methodological quality. The methodological quality was assessed by the Radiomics Quality Score (RQS), and the risk of bias was evaluated by the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Twenty-two studies using CT, MRI, or PET/CT for MVI prediction were included. All were retrospective studies, and only two had an external validation cohort. The AUC values of the prediction models ranged from 0.69 to 0.94 in the test cohort. Substantial methodological heterogeneity existed, and the methodological quality was low, with an average RQS score of 10 (28% of the total). Most studies demonstrated a low or unclear risk of bias in the domains of QUADAS-2. In conclusion, a radiomics model could be an accurate and effective tool for MVI prediction in HCC patients, although the methodological quality has so far been insufficient. Future prospective studies with an external validation cohort in accordance with a standardized radiomics workflow are expected to supply a reliable model that translates into clinical utilization.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden;
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Changfeng Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (C.L.); (K.M.)
| | - Jiaxing Zhang
- Department of Pharmacy, Guizhou Provincial People’s Hospital, Guiyang 550002, China;
| | - Xiaojun Hu
- Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China;
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Yingfang Fan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China;
- Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (C.L.); (K.M.)
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Torkel B. Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden;
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| |
Collapse
|
30
|
Hepatocellular Carcinoma Staging: Differences Between Radiologic and Pathologic Systems and Relevance to Patient Selection and Outcomes in Liver Transplantation. AJR Am J Roentgenol 2021; 218:77-86. [PMID: 34406054 DOI: 10.2214/ajr.21.26436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver transplant is indicated with curative intent for patients with early-stage hepatocellular carcinoma (HCC). The radiologic T category is used to determine candidacy and priority of patients on the waiting list. After transplant, the explant liver pathologic TNM stage is used as a predictor of postoperative outcomes and overall prognosis. Although the comparison of radiologic and pathologic T categories for concordance is often considered to be straightforward, the staging conventions significantly differ. Not accounting for these differences is in part the reason for the high rates of radiologic-pathologic discordance reported in the literature, with inconsistent terminology being an additional source of confusion when evaluating concordance. These factors may affect the understanding of important radiopathologic phenotypes of disease and the adequate investigation of their prognostic capabilities. The aims of this article are to provide an overview of the pathologic and radiologic TNM staging systems for HCC while describing staging procedures, emphasize the differences between these staging systems to highlight the limitations of radiologic-pathologic stage correlation, present a review of the literature on the prognostic value of individual features used for HCC staging; and signal significant aspects of preoperative risk stratification that could be improved to positively impact posttransplant outcomes.
Collapse
|
31
|
Gong XQ, Tao YY, Wu YK, Liu N, Yu X, Wang R, Zheng J, Liu N, Huang XH, Li JD, Yang G, Wei XQ, Yang L, Zhang XM. Progress of MRI Radiomics in Hepatocellular Carcinoma. Front Oncol 2021; 11:698373. [PMID: 34616673 PMCID: PMC8488263 DOI: 10.3389/fonc.2021.698373] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively. Objective This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC. Methods A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis. Results Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients. Conclusion Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yao-Kun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Yu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Hua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Dong Li
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gang Yang
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|