1
|
Maggioni MB, Sibgatulin R, Krämer M, Güllmar D, Reichenbach JR. Assessment of training-associated changes of the lumbar back muscle using a multiparametric MRI protocol. Front Physiol 2024; 15:1408244. [PMID: 39483751 PMCID: PMC11524875 DOI: 10.3389/fphys.2024.1408244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Adaptations in muscle physiology due to long-term physical training have been monitored using various methods: ranging from invasive techniques, such as biopsy, to less invasive approaches, such as electromyography (EMG), to various quantitative magnetic resonance imaging (qMRI) parameters. Typically, these latter parameters are assessed immediately after exercise. In contrast, this work assesses such adaptations in a set of qMRI parameters obtained at rest in the lumbar spine muscles of volunteers. To this end, we developed a multiparametric measurement protocol to extract quantitative values of (water) T2, fat fraction, T1, and Intra Voxel Incoherent Motion (IVIM) diffusion parameters in the lumbar back muscle. The protocol was applied to 31 healthy subjects divided into three differently trained cohorts: two groups of athletes (endurance athletes and powerlifters) and a control group with a sedentary lifestyle. Significant differences in muscle water T2, fat fraction, and pseudo-diffusion coefficient linked to microcirculatory blood flow in muscle tissue were found between the trained and untrained cohorts. At the same time, diffusion coefficients (resolved along different directions) provided additional differentiation between the two groups of athletes. Specifically, the strength-trained athletes showed lower axial and higher radial diffusion components compared to the endurance-trained cohort, which may indicate muscle hypertrophy. In conclusion, utilizing multiparametric information revealed new insights into the potential of quantitative MR parameters to detect and quantify long-term effects associated with training in differently trained cohorts, even at rest.
Collapse
Affiliation(s)
- Marta B. Maggioni
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Renat Sibgatulin
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
| | - Martin Krämer
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Sollmann N, Fuderer M, Crameri F, Weingärtner S, Baeßler B, Gulani V, Keenan KE, Mandija S, Golay X, deSouza NM. Color Maps: Facilitating the Clinical Impact of Quantitative MRI. J Magn Reson Imaging 2024. [PMID: 39180202 DOI: 10.1002/jmri.29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Presenting quantitative data using non-standardized color maps potentially results in unrecognized misinterpretation of data. Clinically meaningful color maps should intuitively and inclusively represent data without misleading interpretation. Uniformity of the color gradient for color maps is critically important. Maximal color and lightness contrast, readability for color vision-impaired individuals, and recognizability of the color scheme are highly desirable features. This article describes the use of color maps in five key quantitative MRI techniques: relaxometry, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI, MR elastography (MRE), and water-fat MRI. Current display practice of color maps is reviewed and shortcomings against desirable features are highlighted. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Miha Fuderer
- Radiotherapy, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Bettina Baeßler
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Vikas Gulani
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn E Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Stefano Mandija
- Radiotherapy, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xavier Golay
- Queen Square Institute of Neurology, University College London, London, UK
- Gold Standard Phantoms, Sheffield, UK
- Bioxydyn, Manchester, UK
| | - Nandita M deSouza
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Chen J, Huang Y, Yang Y, Wang Z, Zhao D, Luo M, Pu F, Yang J, Zhang Z, He B. Vertebral bone quality score was associated with paraspinal muscles fat infiltration, but not modic classification in patients with chronic low back pain: a prospective cross-sectional study. BMC Musculoskelet Disord 2024; 25:509. [PMID: 38956545 PMCID: PMC11221129 DOI: 10.1186/s12891-024-07626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The lumbar vertebra and paraspinal muscles play an important role in maintaining the stability of the lumbar spine. Therefore, the aim of this study was to investigate the relationship between paraspinal muscles fat infiltration and vertebral body related changes [vertebral bone quality (VBQ) score and Modic changes (MCs)] in patients with chronic low back pain (CLBP). METHODS Patients with CLBP were prospectively collected in four hospitals and all patients underwent 3.0T magnetic resonance scanning. Basic clinical information was collected, including age, sex, course of disease (COD), and body mass index (BMI). MCs were divided into 3 types based on their signal intensity on T1 and T2-weighted imaging. VBQ was obtained by midsagittal T1-weighted imaging (T1WI) and calculated using the formula: SIL1-4/SICSF. The Proton density fat fraction (PDFF) values and cross-sectional area (CSA) of paraspinal muscles were measured on the fat fraction map from the iterative decomposition of water and fat with the echo asymmetry and least-squares estimation quantitation (IDEAL-IQ) sequences and in/out phase images at the central level of the L4/5 and L5/S1 discs. RESULTS This study included 476 patients with CLBP, including 189 males and 287 females. 69% had no Modic changes and 31% had Modic changes. There was no difference in CSA and PDFF for multifidus(MF) and erector spinae (ES) at both levels between Modic type I and type II, all P values>0.05. Spearman correlation analysis showed that VBQ was weakly negatively correlated with paraspinal muscles CSA (all r values < 0.3 and all p values < 0.05), moderately positive correlation with PDFF of MF at L4/5 level (r values = 0.304, p values<0.001) and weakly positively correlated with PDFF of other muscles (all r values<0.3 and all p values<0.001). Multivariate linear regression analysis showed that age (β = 0.141, p < 0.001), gender (β = 4.285, p < 0.001) and VBQ (β = 1.310, p = 0.001) were related to the total PDFF of muscles. For MCs, binary logistic regression showed that the odds ratio values of age, BMI and COD were 1.092, 1.082 and 1.004, respectively (all p values < 0.05). CONCLUSIONS PDFF of paraspinal muscles was not associated with Modic classification. In addition to age and gender, PDFF of paraspinal muscles is also affected by VBQ. Age and BMI are considered risk factors for the MCs in CLBP patients.
Collapse
Grants
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
- (No. 202201AC070669, 202201AU070051, 202301AS070016, 202001AY070001-200)and(No. 82260338). Yunnan Fundamental Research Projects and the National Natural Science Foundation of China
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming, 50032, China
| | - Yilong Huang
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming, 50032, China
| | - Yingjuan Yang
- Department of Radiology, Dali Bai Autonomous Prefecture People's Hospital, Dali, 671099, China
| | - Zhongwei Wang
- Department of Radiology, Baoshan People's Hospital, Baoshan, 678099, China
| | - Derong Zhao
- Department of Radiology, Baoshan People's Hospital, Baoshan, 678099, China
| | - Mingbin Luo
- Department of Radiology, The First People's Hospital of Honghe State, Mengzi, 661199, China
| | - Fushun Pu
- Department of Radiology, The First People's Hospital of Honghe State, Mengzi, 661199, China
| | - Juntao Yang
- Department of Radiology, Dali Bai Autonomous Prefecture People's Hospital, Dali, 671099, China.
| | - Zhenguang Zhang
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming, 50032, China.
| | - Bo He
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming, 50032, China.
| |
Collapse
|
4
|
Zhou X, Liu Y, Chen S, Xiang J, Li J, Li J, You T, Zhong Z, Zhang K. Increased water content in multifidus muscles of young adults with chronic nonspecific low back pain detected by dual-energy CT and MRI. Eur J Radiol 2024; 176:111515. [PMID: 38772163 DOI: 10.1016/j.ejrad.2024.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES To demonstrate the feasibility of better diagnosing young adults with chronic nonspecific low back pain (CNLBP) by measuring water content in paraspinal muscles using water-muscle decomposition technique in dual-energy CT (DECT) and T2-mapping in MRI. METHODS This prospective cross-sectional study included 110 young individuals (56 with CNLBP at age of 25.7 ± 2.0 years and 54 of asymptomatic at age of 25.1 ± 1.9 years) who underwent both MRI and DECT on the spine. T2 values on T2 mapping in MRI and water density (WD) value on water(muscle) images in DECT were generated at the L1-L4 levels for erector spinae muscle and L2-L5 for multifidus muscle. Pain duration time, Oswestry Disability Index (ODI), Visual Analogue Scale (VAS) were recorded for CNLBP patients. Difference of T2 value and WD between the two patient groups, and correlations between T2 value and WD, and T2 value and WD with clinical indicators were analyzed. RESULTS Compared with asymptomatic participants, the mean WD of multifidus muscle at L4-L5 and mean T2 values of multifidus muscle at L5 were significantly higher in CNLBP patients (all P < 0.05). T2 values had moderate to strong positive correlations (r = 0.34-0.60, all P < 0.05) with DECT WD in CNLBP patients and healthy volunteers. There was a weak correlation between VAS and WD in L5-level multifidus muscle (r = 0.29, P < 0.05). CONCLUSIONS The T2 values in MRI and WD in DECT are higher in multifidus muscles of lower vertebra levels for young CNLBP patients, and there exists positive correlation between WD and T2 values, providing useful information for diagnosing CNLBP.
Collapse
Affiliation(s)
- Xiaona Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China; First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, Hunan 410208, PR China
| | - Yinqi Liu
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Suping Chen
- GE Healthcare (Shanghai) Co., Ltd., Shanghai 201203, PR China
| | - Jian Xiang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China; First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, Hunan 410208, PR China
| | - Jianying Li
- GE Healthcare (Shanghai) Co., Ltd., Shanghai 201203, PR China
| | - Jianyu Li
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Tian You
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Zeya Zhong
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China
| | - Kun Zhang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha 410007, PR China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China.
| |
Collapse
|
5
|
Zhang W, Fu C, Yan D, Yuan Y, Zhang W, Gu D, Wu Y, Zhang D, Wang L, Cheng X. Quantification of volumetric thigh and paravertebral muscle fat content: comparison of quantitative Dixon (Q-Dixon) magnetic resonance imaging (MRI) with high-speed T 2-corrected multiecho MR spectroscopy. Quant Imaging Med Surg 2024; 14:4490-4505. [PMID: 39022270 PMCID: PMC11250322 DOI: 10.21037/qims-24-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
Background Muscle fat infiltration (MFI) is increasingly recognized as a critical factor influencing muscle function and metabolic health. Accurate quantification of MFI is essential for diagnosing and monitoring various muscular and metabolic disorders. Quantitative Dixon (Q-Dixon) magnetic resonance imaging (MRI) and high-speed T2-corrected multi-echo (HISTO) magnetic resonance spectroscopy (MRS) are both advanced imaging techniques that offer potential for detailed assessment of MFI. However, the validity and reliability of these methods in measuring volumetric changes in muscle composition, particularly in both thigh and paravertebral muscles, have not been thoroughly compared. This study aims to validate volumetric measurements using Q-Dixon MRI against HISTO MRS in thigh and paravertebral muscles, taking into account the heterogeneity of MFI. Methods A retrospective study was conducted with 54 subjects [mean age, 60 years; 38 male (M)/16 female (F)] for thigh muscle and 56 subjects (mean age, 50 years; 22 M/34 F) for paravertebral muscle assessment using a 3-Tesla MRI. The proton density fat fraction (PDFF) was measured with Q-Dixon MRI and HISTO MRS within the upper-middle part of quadriceps femoris and paravertebral muscles at L4/5 level in volumes-of-interest (VOIs). The corresponding volumetric Q-Dixon freehand VOI PDFF was measured. Scatterplots, Bland-Altman plots, Spearman correlation coefficients, and Wilcoxon signed rank test with Bonferroni correction were employed. The Kruskal-Wallis H tests followed by Bonferroni-corrected post hoc tests were analyzed to compare parameter differences with visual MFI grades. Results Q-Dixon cubic VOI PDFF correlated positively with HISTO MRS PDFF in thigh (r=0.96, P<0.001) and paravertebral groups (r=0.98, P<0.001), with insignificant differences (P=0.29, 0.82, respectively). Both PDFF values from cubic VOIs in Q-Dixon and HISTO MRS differed from the freehand Q-Dixon PDFF (all P<0.001). Only for <5% HISTO MRS PDFF, there was a difference between HISTO MRS PDFF and Q-Dixon cubic VOI PDFF (P=0.002). Conclusions Volumetric Q-Dixon cubic VOI PDFF exhibited good correlation and consistency with HISTO MRS PDFF for quantitative fat assessment in thigh and paravertebral muscles except for muscles with fat fraction <5%, and the Q-Dixon freehand VOI PDFF offers a more comprehensive assessment of the actual MFI compared to cubic VOI.
Collapse
Affiliation(s)
- Wenshuang Zhang
- Department of Radiology, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chen Fu
- Department of Nephrology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Dong Yan
- Department of Radiology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yi Yuan
- Department of Radiology, Peking University Fourth School of Clinical Medicine, Beijing, China
- Department of Radiology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Radiology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Dalong Gu
- Department of Radiology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yanglei Wu
- MR Research Collaboration, Siemens Healthineers, Beijing, China
| | - Dongliang Zhang
- Department of Nephrology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ling Wang
- Department of Radiology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Cheng
- Department of Radiology, Peking University Fourth School of Clinical Medicine, Beijing, China
- Department of Radiology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Ornowski J, Dziesinski L, Hess M, Krug R, Fortin M, Torres‐Espin A, Majumdar S, Pedoia V, Bonnheim NB, Bailey JF. Thresholding approaches for estimating paraspinal muscle fat infiltration using T1- and T2-weighted MRI: Comparative analysis using water-fat MRI. JOR Spine 2024; 7:e1301. [PMID: 38222819 PMCID: PMC10782057 DOI: 10.1002/jsp2.1301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024] Open
Abstract
Background Paraspinal muscle fat infiltration is associated with spinal degeneration and low back pain, however, quantifying muscle fat using clinical magnetic resonance imaging (MRI) techniques continues to be a challenge. Advanced MRI techniques, including chemical-shift encoding (CSE) based water-fat MRI, enable accurate measurement of muscle fat, but such techniques are not widely available in routine clinical practice. Methods To facilitate assessment of paraspinal muscle fat using clinical imaging, we compared four thresholding approaches for estimating muscle fat fraction (FF) using T1- and T2-weighted images, with measurements from water-fat MRI as the ground truth: Gaussian thresholding, Otsu's method, K-mean clustering, and quadratic discriminant analysis. Pearson's correlation coefficients (r), mean absolute errors, and mean bias errors were calculated for FF estimates from T1- and T2-weighted MRI with water-fat MRI for the lumbar multifidus (MF), erector spinae (ES), quadratus lumborum (QL), and psoas (PS), and for all muscles combined. Results We found that for all muscles combined, FF measurements from T1- and T2-weighted images were strongly positively correlated with measurements from the water-fat images for all thresholding techniques (r = 0.70-0.86, p < 0.0001) and that variations in inter-muscle correlation strength were much greater than variations in inter-method correlation strength. Conclusion We conclude that muscle FF can be quantified using thresholded T1- and T2-weighted MRI images with relatively low bias and absolute error in relation to water-fat MRI, particularly in the MF and ES, and the choice of thresholding technique should depend on the muscle and clinical MRI sequence of interest.
Collapse
Affiliation(s)
- Jessica Ornowski
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Lucas Dziesinski
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Madeline Hess
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Roland Krug
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Maryse Fortin
- Department of Health, Kinesiology, and Applied PhysiologyConcordia UniversityMontrealQuébecCanada
| | - Abel Torres‐Espin
- School of Public Health SciencesFaculty of HealthUniversity of WaterlooWaterlooOntarioCanada
- Department of Physical TherapyUniversity of AlbertaEdmontonAlbertaCanada
- Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Valentina Pedoia
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Noah B. Bonnheim
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jeannie F. Bailey
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
7
|
Suo M, Zhang J, Sun T, Wang J, Liu X, Huang H, Li Z. The association between morphological characteristics of paraspinal muscle and spinal disorders. Ann Med 2023; 55:2258922. [PMID: 37722876 PMCID: PMC10512810 DOI: 10.1080/07853890.2023.2258922] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Spinal disorders affect millions of people worldwide, and can cause significant disability and pain. The paraspinal muscles, located on either side of the spinal column, play a crucial role in the movement, support, and stabilization of the spine. Many spinal disorders can affect paraspinal muscles, as evidenced by changes in their morphology, including hypertrophy, atrophy, and degeneration. OBJECTIVES The objectives of this review were to examine the current literature on the relationship between the paraspinal muscles and spinal disorders, summarize the methods used in previous studies, and identify areas for future research. METHODS We reviewed studies on the morphological characteristics of the paravertebral muscle and discussed their relationship with spinal disorders, as well as the current limitations and future research directions. RESULTS The paraspinal muscles play a critical role in spinal disorders and are important targets for the treatment and prevention of spinal disorders. Clinicians should consider the role of the paraspinal muscles in the development and progression of spinal disorders and incorporate assessments of the paraspinal muscle function in clinical practice. CONCLUSION The findings of this review highlight the need for further research to better understand the relationship between the paraspinal muscles and spinal disorders, and to develop effective interventions to improve spinal health and reduce the burden of spinal disorders.
Collapse
Affiliation(s)
- Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, P.R. China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, P.R. China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, P.R. China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, P.R. China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, P.R. China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, P.R. China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, P.R. China
| |
Collapse
|
8
|
Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo JD, Schett G, Nagel AM. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art. J Orthop Translat 2023; 42:57-72. [PMID: 37654433 PMCID: PMC10465967 DOI: 10.1016/j.jot.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty. Methods This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail. Examples of clinical applications are outlined. For comparison 31P-and 13C-MR Spectroscopy are also addressed. Results MRI technology provides a rich toolset to assess muscle deterioration. In addition to classical measures such as muscle atrophy using T1 weighted imaging and fat infiltration using Dixon sequences, parameters characterizing inflammation from T2 maps, tissue sodium using non-proton MRI techniques or concentration or fiber architecture using diffusion tensor imaging may be useful for an even earlier diagnosis of the impairment of muscle quality. Conclusion Quantitative MRI provides new options for muscle research and clinical applications. Current limitations that also impair its more widespread use in clinical trials are lack of standardization, ambiguity of image segmentation and analysis approaches, a multitude of outcome parameters without a clear strategy which ones to use and the lack of normal data.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Clario Inc, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lena Gast
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jean-Denis Laredo
- Service d’Imagerie Médicale, Institut Mutualiste Montsouris & B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris-Cité, Paris, France
| | - Georg Schett
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Chen R, Lu Y, Xiao Z, Zhang Z, Lv F, Lv F. Effect of body mass index (BMI) on image contrast in the hepatobiliary phase of Gd-EOB-DTPA-enhanced-MRI and the feasibility of the application of half-dose Gd-EOB-DTPA to hepatobiliary phase imaging in patients with a BMI less than 24: a comparative study. Quant Imaging Med Surg 2023; 13:6176-6192. [PMID: 37711824 PMCID: PMC10498238 DOI: 10.21037/qims-23-653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023]
Abstract
Background Gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) can detect more lesions through the image contrast of hepatobiliary phase. Body mass index (BMI) reflects the composition ratio of human tissue, which is an influencing factor of magnetic resonance image contrast. Meanwhile, Gd-EOB-DTPA is recommended to use the minimum dose when the diagnosis demands could be met. The aim of this paper was to investigate the effect of BMI on hepatobiliary phase image contrast and explore the feasibility of using low-dose Gd-EOB-DTPA to obtain good hepatobiliary phase image contrast in patients with normal and lean BMI. Methods Eighty-two patients who had previously undergone Gd-EOB-DTPA-enhanced MRI (0.025 mmol/kg) were collected and divided into group A (BMI <24 kg/m2) and group B (BMI ≥24 kg/m2) according to Chinese BMI standards. Liver-to-portal vein contrast ratio (LPC20) and liver-to-spleen contrast ratio (LSC20) in hepatobiliary phase (20 min after injection) were calculated. Thirty patients with a BMI <24 kg/m2 who were about to receive Gd-EOB-DTPA-enhanced MRI were randomly divided into group C (0.0125 mmol/kg) and group D (0.025 mmol/kg). Image acquisition was performed at 10, 15, and 20 min after injection. LPC10, LPC15, LPC20 and LSC10, LSC15, LSC20 in corresponding phases were calculated. Results In retrospective grouping study, compared with group B, group A's LPC20 was significantly higher [2.63 (2.42-3.00) vs. 2.22 (1.97-2.67); P<0.01]. In prospective grouping study, there were no differences in LPC15, LSC15, LPC20 and LSC20 between group C and group D. Intragroup comparison in each group showed that LPC15 (group C: 2.67±0.33; group D: 2.61±0.21) and LPC20 (group C: 2.74±0.37; group D: 2.72±0.27) were higher than LPC10 (group C: 2.19±0.18; group D: 1.94±0.17) (all P<0.01), while there were no changes between LPC15 and LPC20. Conclusions Under conventional dose, hepatobiliary phase image contrast in patients with a BMI <24 was higher, which was mainly manifested in the high LPC. For patients with a BMI <24 kg/m2, using a half conventional dose (0.0125 mmol/kg), good hepatobiliary phase image contrast can still be obtained at 15-20 min after administration.
Collapse
Affiliation(s)
- Rongsheng Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfeng Lu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibo Xiao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Furong Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Jakimovski D, Bergsland N. Editorial for "Paraspinal Muscle in Chronic Low Back Pain: Comparison Between Standard Parameters and Chemical Shift Encoding-Based Water-Fat MRI". J Magn Reson Imaging 2022; 56:1609-1610. [PMID: 35253949 DOI: 10.1002/jmri.28144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
11
|
Editorial on Special Issue “Spine Imaging: Novel Image Acquisition Techniques and Analysis Tools”. Diagnostics (Basel) 2022; 12:diagnostics12061361. [PMID: 35741171 PMCID: PMC9221602 DOI: 10.3390/diagnostics12061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022] Open
|
12
|
Engelke K, Ghasemikaram M, Chaudry O, Uder M, Nagel AM, Jakob F, Kemmler W. The effect of ageing on fat infiltration of thigh and paraspinal muscles in men. Aging Clin Exp Res 2022; 34:2089-2098. [PMID: 35633478 PMCID: PMC9464152 DOI: 10.1007/s40520-022-02149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Background Myosteatosis, skeletal muscle fat infiltration, is associated with inflammation and fibrosis. The age-related increase of myosteatosis is an important characteristic of sarcopenia and contributes to fragility. Aims To investigate the impact of healthy aging on intermuscular adipose tissue (IMAT) and muscle fat fraction (FF) in the thigh and the paraspinal muscles in males. Methods In 54 healthy males (age 20–70), all active hobby golfers, magnetic resonance imaging was performed to determine volume of IMAT, volume of muscle tissue (MT) and of percentage of FF. Results Between ages 20–70, at the thigh, IMAT/MT volume and MT FF increased annually by 2.9% and 1.3%, respectively. At the psoas IMAT/Psoas volume did not change with age. MT FF increased by 1.5% annually. At the erector spinae IMAT/Erector volume decreased by 0.3% and MT FF increased by 2.8% annually. Discussion With increasing age, in males, thigh muscle atrophied, muscle tissue was partly replaced by adipose tissue and remaining muscle tissue also contained more fat. Similar effects were observed in the erector spinae. The psoas muscle did not atrophy, although MT FF also increased with age. Overall correlations with age were weak to moderate with higher correlations observed in the paraspinal muscles. Conclusions Age-related increases of muscle fat infiltration were observed in the thigh and in the spine. Muscle atrophy did not occur in the psoas. In cross-sectional studies, an adjustment of volumetric parameters by muscle volume is advisable when comparing age-dependent results. Supplementary Information The online version contains supplementary material available at 10.1007/s40520-022-02149-1.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany.
| | - Mansour Ghasemikaram
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Franz Jakob
- Bernhard-Heine-Center for Locomotion Research, University of Würzburg, Brettreichstrasse 11, 97074, Würzburg, Germany
| | - Wolfgang Kemmler
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| |
Collapse
|