1
|
Li B, Sun Q, Fang X, Yang Y, Li X. A novel metastatic tumor segmentation method with a new evaluation metric in clinic study. Front Med (Lausanne) 2024; 11:1375851. [PMID: 39416869 PMCID: PMC11479867 DOI: 10.3389/fmed.2024.1375851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Background Brain metastases are the most common brain malignancies. Automatic detection and segmentation of brain metastases provide significant assistance for radiologists in discovering the location of the lesion and making accurate clinical decisions on brain tumor type for precise treatment. Objectives However, due to the small size of the brain metastases, existing brain metastases segmentation produces unsatisfactory results and has not been evaluated on clinic datasets. Methodology In this work, we propose a new metastasis segmentation method DRAU-Net, which integrates a new attention mechanism multi-branch weighted attention module and DResConv module, making the extraction of tumor boundaries more complete. To enhance the evaluation of both the segmentation quality and the number of targets, we propose a novel medical image segmentation evaluation metric: multi-objective segmentation integrity metric, which effectively improves the evaluation results on multiple brain metastases with small size. Results Experimental results evaluated on the BraTS2023 dataset and collected clinical data show that the proposed method has achieved excellent performance with an average dice coefficient of 0.6858 and multi-objective segmentation integrity metric of 0.5582. Conclusion Compared with other methods, our proposed method achieved the best performance in the task of segmenting metastatic tumors.
Collapse
Affiliation(s)
- Bin Li
- Department of Neurology, The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Qiushi Sun
- Department of Anesthesiology, Fudan University Affiliated Huashan Hospital, Shanghai, China
| | - Xianjin Fang
- Department of Anesthesiology, Fudan University Affiliated Huashan Hospital, Huainan, China
| | - Yang Yang
- Department of Anesthesiology, Fudan University Affiliated Huashan Hospital, Huainan, China
| | - Xiang Li
- Department of Anesthesiology, Fudan University Affiliated Huashan Hospital, Huainan, China
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
2
|
Felefly T, Francis Z, Roukoz C, Fares G, Achkar S, Yazbeck S, Nasr A, Kordahi M, Azoury F, Nasr DN, Nasr E, Noël G. A 3D Convolutional Neural Network Based on Non-enhanced Brain CT to Identify Patients with Brain Metastases. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01240-5. [PMID: 39187703 DOI: 10.1007/s10278-024-01240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Dedicated brain imaging for cancer patients is seldom recommended in the absence of symptoms. There is increasing availability of non-enhanced CT (NE-CT) of the brain, mainly owing to a wider utilization of Positron Emission Tomography-CT (PET-CT) in cancer staging. Brain metastases (BM) are often hard to diagnose on NE-CT. This work aims to develop a 3D Convolutional Neural Network (3D-CNN) based on brain NE-CT to distinguish patients with and without BM. We retrospectively included NE-CT scans for 100 patients with single or multiple BM and 100 patients without brain imaging abnormalities. Patients whose largest lesion was < 5 mm were excluded. The largest tumor was manually segmented on a matched contrast-enhanced T1 weighted Magnetic Resonance Imaging (MRI), and shape radiomics were extracted to determine the size and volume of the lesion. The brain was automatically segmented, and masked images were normalized and resampled. The dataset was split into training (70%) and validation (30%) sets. Multiple versions of a 3D-CNN were developed, and the best model was selected based on accuracy (ACC) on the validation set. The median largest tumor Maximum-3D-Diameter was 2.29 cm, and its median volume was 2.81 cc. Solitary BM were found in 27% of the patients, while 49% had > 5 BMs. The best model consisted of 4 convolutional layers with 3D average pooling layers, dropout layers of 50%, and a sigmoid activation function. Mean validation ACC was 0.983 (SD: 0.020) and mean area under receiver-operating characteristic curve was 0.983 (SD: 0.023). Sensitivity was 0.983 (SD: 0.020). We developed an accurate 3D-CNN based on brain NE-CT to differentiate between patients with and without BM. The model merits further external validation.
Collapse
Affiliation(s)
- Tony Felefly
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon.
- ICube Laboratory, University of Strasbourg, Strasbourg, France.
- Radiation Oncology Department, Hôtel-Dieu de Lévis, Lévis, QC, Canada.
| | - Ziad Francis
- Physics Department, Saint Joseph University, Beirut, Lebanon
| | - Camille Roukoz
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Fares
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
- Physics Department, Saint Joseph University, Beirut, Lebanon
| | - Samir Achkar
- Radiation Oncology Department, Gustave Roussy Cancer Campus, 94805, Villejuif, France
| | - Sandrine Yazbeck
- Department of Radiology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD, 21201, USA
| | | | - Manal Kordahi
- Pathology Department, Centre Hospitalier Affilié Universitaire Régional, Trois-Rivières, QC, Canada
| | - Fares Azoury
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Dolly Nehme Nasr
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Elie Nasr
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Noël
- Radiotherapy Department, Institut de Cancérologie de Strasbourg (ICANS), 67200, Strasbourg, France
- Radiobiology Department, IMIS Unit, IRIS Platform, ICube, University of Strasbourg, 67085, Strasbourg Cedex, France
- Faculty of Medicine, University of Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
3
|
Park YW, Park JE, Ahn SS, Han K, Kim N, Oh JY, Lee DH, Won SY, Shin I, Kim HS, Lee SK. Deep learning-based metastasis detection in patients with lung cancer to enhance reproducibility and reduce workload in brain metastasis screening with MRI: a multi-center study. Cancer Imaging 2024; 24:32. [PMID: 38429843 PMCID: PMC10905821 DOI: 10.1186/s40644-024-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES To assess whether a deep learning-based system (DLS) with black-blood imaging for brain metastasis (BM) improves the diagnostic workflow in a multi-center setting. MATERIALS AND METHODS In this retrospective study, a DLS was developed in 101 patients and validated on 264 consecutive patients (with lung cancer) having newly developed BM from two tertiary university hospitals, which performed black-blood imaging between January 2020 and April 2021. Four neuroradiologists independently evaluated BM either with segmented masks and BM counts provided (with DLS) or not provided (without DLS) on a clinical trial imaging management system (CTIMS). To assess reading reproducibility, BM count agreement between the readers and the reference standard were calculated using limits of agreement (LoA). Readers' workload was assessed with reading time, which was automatically measured on CTIMS, and were compared between with and without DLS using linear mixed models considering the imaging center. RESULTS In the validation cohort, the detection sensitivity and positive predictive value of the DLS were 90.2% (95% confidence interval [CI]: 88.1-92.2) and 88.2% (95% CI: 85.7-90.4), respectively. The difference between the readers and the reference counts was larger without DLS (LoA: -0.281, 95% CI: -2.888, 2.325) than with DLS (LoA: -0.163, 95% CI: -2.692, 2.367). The reading time was reduced from mean 66.9 s (interquartile range: 43.2-90.6) to 57.3 s (interquartile range: 33.6-81.0) (P <.001) in the with DLS group, regardless of the imaging center. CONCLUSION Deep learning-based BM detection and counting with black-blood imaging improved reproducibility and reduced reading time, on multi-center validation.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, 05505, Seoul, Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea.
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
| | | | - Joo Young Oh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, 05505, Seoul, Korea
| | - Da Hyun Lee
- Department of Radiology, Ajou University Medical Center, Suwon, Korea
| | - So Yeon Won
- Department of Radiology, Samsung Seoul Hospital, Seoul, Korea
| | - Ilah Shin
- Department of Radiology, The Catholic University of Korea, Seoul St. Mary's hospital, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, 05505, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
| |
Collapse
|
4
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RLJ, Liu T, Wang T, Yang X. Deep learning in MRI-guided radiation therapy: A systematic review. J Appl Clin Med Phys 2024; 25:e14155. [PMID: 37712893 PMCID: PMC10860468 DOI: 10.1002/acm2.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new state-of-the-art methods in these fields, we systematically review 197 studies written on or before December 31, 2022, and categorize the studies into the areas of image segmentation, image synthesis, radiomics, and real time MRI. Building from the underlying deep learning methods, we discuss their clinical importance and current challenges in facilitating small tumor segmentation, accurate x-ray attenuation information from MRI, tumor characterization and prognosis, and tumor motion tracking. In particular, we highlight the recent trends in deep learning such as the emergence of multi-modal, visual transformer, and diffusion models.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Richard L. J. Qiu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Tonghe Wang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Wang TW, Hsu MS, Lee WK, Pan HC, Yang HC, Lee CC, Wu YT. Brain metastasis tumor segmentation and detection using deep learning algorithms: A systematic review and meta-analysis. Radiother Oncol 2024; 190:110007. [PMID: 37967585 DOI: 10.1016/j.radonc.2023.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/15/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Manual detection of brain metastases is both laborious and inconsistent, driving the need for more efficient solutions. Accordingly, our systematic review and meta-analysis assessed the efficacy of deep learning algorithms in detecting and segmenting brain metastases from various primary origins in MRI images. METHODS We conducted a comprehensive search of PubMed, Embase, and Web of Science up to May 24, 2023, which yielded 42 relevant studies for our analysis. We assessed the quality of these studies using the QUADAS-2 and CLAIM tools. Using a random-effect model, we calculated the pooled lesion-wise dice score as well as patient-wise and lesion-wise sensitivity. We performed subgroup analyses to investigate the influence of factors such as publication year, study design, training center of the model, validation methods, slice thickness, model input dimensions, MRI sequences fed to the model, and the specific deep learning algorithms employed. Additionally, meta-regression analyses were carried out considering the number of patients in the studies, count of MRI manufacturers, count of MRI models, training sample size, and lesion number. RESULTS Our analysis highlighted that deep learning models, particularly the U-Net and its variants, demonstrated superior segmentation accuracy. Enhanced detection sensitivity was observed with an increased diversity in MRI hardware, both in terms of manufacturer and model variety. Furthermore, slice thickness was identified as a significant factor influencing lesion-wise detection sensitivity. Overall, the pooled results indicated a lesion-wise dice score of 79%, with patient-wise and lesion-wise sensitivities at 86% and 87%, respectively. CONCLUSIONS The study underscores the potential of deep learning in improving brain metastasis diagnostics and treatment planning. Still, more extensive cohorts and larger meta-analysis are needed for more practical and generalizable algorithms. Future research should prioritize these areas to advance the field. This study was funded by the Gen. & Mrs. M.C. Peng Fellowship and registered under PROSPERO (CRD42023427776).
Collapse
Affiliation(s)
- Ting-Wei Wang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Sheng Hsu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Kai Lee
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Huai-Che Yang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Chia Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan; National Yang Ming Chiao Tung University, Brain Research Center, Taiwan; National Yang Ming Chiao Tung University, College Medical Device Innovation and Translation Center, Taiwan.
| |
Collapse
|
6
|
Hsu DG, Ballangrud Å, Prezelski K, Swinburne NC, Young R, Beal K, Deasy JO, Cerviño L, Aristophanous M. Automatically tracking brain metastases after stereotactic radiosurgery. Phys Imaging Radiat Oncol 2023; 27:100452. [PMID: 37720463 PMCID: PMC10500025 DOI: 10.1016/j.phro.2023.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 09/19/2023] Open
Abstract
Background and purpose Patients with brain metastases (BMs) are surviving longer and returning for multiple courses of stereotactic radiosurgery. BMs are monitored after radiation with follow-up magnetic resonance (MR) imaging every 2-3 months. This study investigated whether it is possible to automatically track BMs on longitudinal imaging and quantify the tumor response after radiotherapy. Methods The METRO process (MEtastasis Tracking with Repeated Observations was developed to automatically process patient data and track BMs. A longitudinal intrapatient registration method for T1 MR post-Gd was conceived and validated on 20 patients. Detections and volumetric measurements of BMs were obtained from a deep learning model. BM tracking was validated on 32 separate patients by comparing results with manual measurements of BM response and radiologists' assessments of new BMs. Linear regression and residual analysis were used to assess accuracy in determining tumor response and size change. Results A total of 123 irradiated BMs and 38 new BMs were successfully tracked. 66 irradiated BMs were visible on follow-up imaging 3-9 months after radiotherapy. Comparing their longest diameter changes measured manually vs. METRO, the Pearson correlation coefficient was 0.88 (p < 0.001); the mean residual error was -8 ± 17%. The mean registration error was 1.5 ± 0.2 mm. Conclusions Automatic, longitudinal tracking of BMs using deep learning methods is feasible. In particular, the software system METRO fulfills a need to automatically track and quantify volumetric changes of BMs prior to, and in response to, radiation therapy.
Collapse
Affiliation(s)
- Dylan G. Hsu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Åse Ballangrud
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Kayla Prezelski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Nathaniel C. Swinburne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Robert Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Kathryn Beal
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Laura Cerviño
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Michalis Aristophanous
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
7
|
Akasaka T, Okada T. Editorial for "Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning". J Magn Reson Imaging 2023; 57:882-883. [PMID: 35778673 DOI: 10.1002/jmri.28329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Application of artificial intelligence to stereotactic radiosurgery for intracranial lesions: detection, segmentation, and outcome prediction. J Neurooncol 2023; 161:441-450. [PMID: 36635582 DOI: 10.1007/s11060-022-04234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Rapid evolution of artificial intelligence (AI) prompted its wide application in healthcare systems. Stereotactic radiosurgery served as a good candidate for AI model development and achieved encouraging result in recent years. This article aimed at demonstrating current AI application in radiosurgery. METHODS Literatures published in PubMed during 2010-2022, discussing AI application in stereotactic radiosurgery were reviewed. RESULTS AI algorithms, especially machine learning/deep learning models, have been administered to different aspect of stereotactic radiosurgery. Spontaneous tumor detection and automated lesion delineation or segmentation were two of the promising application, which could be further extended to longitudinal treatment follow-up. Outcome prediction utilized machine learning algorithms with radiomic-based analysis was another well-established application. CONCLUSIONS Stereotactic radiosurgery has taken a lead role in AI development. Current achievement, limitation, and further investigation was summarized in this article.
Collapse
|
9
|
Deep Learning for Detecting Brain Metastases on MRI: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15020334. [PMID: 36672286 PMCID: PMC9857123 DOI: 10.3390/cancers15020334] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Since manual detection of brain metastases (BMs) is time consuming, studies have been conducted to automate this process using deep learning. The purpose of this study was to conduct a systematic review and meta-analysis of the performance of deep learning models that use magnetic resonance imaging (MRI) to detect BMs in cancer patients. A systematic search of MEDLINE, EMBASE, and Web of Science was conducted until 30 September 2022. Inclusion criteria were: patients with BMs; deep learning using MRI images was applied to detect the BMs; sufficient data were present in terms of detective performance; original research articles. Exclusion criteria were: reviews, letters, guidelines, editorials, or errata; case reports or series with less than 20 patients; studies with overlapping cohorts; insufficient data in terms of detective performance; machine learning was used to detect BMs; articles not written in English. Quality Assessment of Diagnostic Accuracy Studies-2 and Checklist for Artificial Intelligence in Medical Imaging was used to assess the quality. Finally, 24 eligible studies were identified for the quantitative analysis. The pooled proportion of patient-wise and lesion-wise detectability was 89%. Articles should adhere to the checklists more strictly. Deep learning algorithms effectively detect BMs. Pooled analysis of false positive rates could not be estimated due to reporting differences.
Collapse
|
10
|
Zhou Z. Editorial for "Automated Segmentation of Brain Metastases on T1-Weighted MRI Using Convolutional Neural Network: Impact of Using Volume Aware Loss and Sampling Strategy". J Magn Reson Imaging 2022; 56:1899-1900. [PMID: 35678418 DOI: 10.1002/jmri.28272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Zijian Zhou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|