1
|
Rodríguez-Soto AE, Zou J, Loubrie S, Ebrahimi S, Jordan S, Schlein A, Lim V, Ojeda-Fournier H, Rakow-Penner R. Effect of Phase Encoding Direction on Image Quality in Single-Shot EPI Diffusion-Weighted Imaging of the Breast. J Magn Reson Imaging 2024; 60:1340-1349. [PMID: 38418419 DOI: 10.1002/jmri.29304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND In breast diffusion-weighted imaging (DWI), distortion and physiologic artifacts affect clinical interpretation. Image quality can be optimized by addressing the effect of phase encoding (PE) direction on these artifacts. PURPOSE To compare distortion artifacts in breast DWI acquired with different PE directions and polarities, and to discuss their clinical implications. STUDY TYPE Prospective. POPULATION Eleven healthy volunteers (median age: 47 years old; range: 22-74 years old) and a breast phantom. FIELD STRENGTH/SEQUENCE Single-shot echo planar DWI and three-dimensional fast gradient echo sequences at 3 T. ASSESSMENT All DWI data were acquired with left-right, right-left, posterior-anterior, and anterior-posterior PE directions. In phantom data, displacement magnitude was evaluated by comparing the location of landmarks in anatomical and DWI images. Three breast radiologists (5, 17, and 23 years of experience) assessed the presence or absence of physiologic artifacts in volunteers' DWI datasets and indicated their PE-direction preference. STATISTICAL TESTS Analysis of variance with post-hoc tests were used to assess differences in displacement magnitude across DWI datasets and observers. A binomial test and a chi-squared test were used to evaluate if each in vivo DWI dataset had an equal probability (25%) of being preferred by radiologists. Inter-reader agreement was evaluated using Gwet's AC1 agreement coefficient. A P-value <0.05 was considered statistically significant. RESULTS In the phantom study, median displacement was the significantly largest in posterior-anterior data. While the displacement in the anterior-posterior and left-right data were equivalent (P = 0.545). In the in vivo data, there were no physiological artifacts observed in any dataset, regardless of PE direction. In the reader study, there was a significant preference for the posterior-anterior datasets which were selected 94% of the time. There was good agreement between readers (0.936). DATA CONCLUSION This study showed the impact of PE direction on distortion artifacts in breast DWI. In healthy volunteers, the posterior-to-anterior PE direction was preferred by readers. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Ana E Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Jingjing Zou
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Stephane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Sheida Ebrahimi
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Stephan Jordan
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Alexandra Schlein
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Vivian Lim
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Haydee Ojeda-Fournier
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Keenan KE, Jordanova KV, Ogier SE, Tamada D, Bruhwiler N, Starekova J, Riek J, McCracken PJ, Hernando D. Phantoms for Quantitative Body MRI: a review and discussion of the phantom value. MAGMA (NEW YORK, N.Y.) 2024; 37:535-549. [PMID: 38896407 PMCID: PMC11417080 DOI: 10.1007/s10334-024-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
In this paper, we review the value of phantoms for body MRI in the context of their uses for quantitative MRI methods research, clinical trials, and clinical imaging. Certain uses of phantoms are common throughout the body MRI community, including measuring bias, assessing reproducibility, and training. In addition to these uses, phantoms in body MRI methods research are used for novel methods development and the design of motion compensation and mitigation techniques. For clinical trials, phantoms are an essential part of quality management strategies, facilitating the conduct of ethically sound, reliable, and regulatorily compliant clinical research of both novel MRI methods and therapeutic agents. In the clinic, phantoms are used for development of protocols, mitigation of cost, quality control, and radiotherapy. We briefly review phantoms developed for quantitative body MRI, and finally, we review open questions regarding the most effective use of a phantom for body MRI.
Collapse
Affiliation(s)
- Kathryn E Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA.
| | - Kalina V Jordanova
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA
| | - Stephen E Ogier
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | | | - Natalie Bruhwiler
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA
| | | | | | | | | |
Collapse
|
3
|
Basukala D, Mikheev A, Sevilimedu V, Gilani N, Moy L, Pinker-Domenig K, Thakur SB, Sigmund EE. Multisite MRI Intravoxel Incoherent Motion Repeatability and Reproducibility across 3 T Scanners in a Breast Diffusion Phantom: A BReast Intravoxel Incoherent Motion Multisite (BRIMM) Study. J Magn Reson Imaging 2024; 59:2226-2237. [PMID: 37702382 PMCID: PMC10932866 DOI: 10.1002/jmri.29008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Monoexponential apparent diffusion coefficient (ADC) and biexponential intravoxel incoherent motion (IVIM) analysis of diffusion-weighted imaging is helpful in the characterization of breast tumors. However, repeatability/reproducibility studies across scanners and across sites are scarce. PURPOSE To evaluate the repeatability and reproducibility of ADC and IVIM parameters (tissue diffusivity (Dt), perfusion fraction (Fp) and pseudo-diffusion (Dp)) within and across sites employing MRI scanners from different vendors utilizing 16-channel breast array coils in a breast diffusion phantom. STUDY TYPE Phantom repeatability. PHANTOM A breast phantom containing tubes of different polyvinylpyrrolidone (PVP) concentrations, water, fat, and sponge flow chambers, together with an MR-compatible liquid crystal (LC) thermometer. FIELD STRENGTH/SEQUENCE Bipolar gradient twice-refocused spin echo sequence and monopolar gradient single spin echo sequence at 3 T. ASSESSMENT Studies were performed twice in each of two scanners, located at different sites, on each of 2 days, resulting in four studies per scanner. ADCs of the PVP and water were normalized to the vendor-provided calibrated values at the temperature indicated by the LC thermometer for repeatability/reproducibility comparisons. STATISTICAL TESTS ADC and IVIM repeatability and reproducibility within and across sites were estimated via the within-system coefficient of variation (wCV). Pearson correlation coefficient (r) was also computed between IVIM metrics and flow speed. A P value <0.05 was considered statistically significant. RESULTS ADC and Dt demonstrated excellent repeatability (<2%; <3%, respectively) and reproducibility (both <5%) at the two sites. Fp and Dp exhibited good repeatability (mean of two sites 3.67% and 5.59%, respectively) and moderate reproducibility (mean of two sites 15.96% and 13.3%, respectively). The mean intersite reproducibility (%) of Fp/Dp/Dt was 50.96/13.68/5.59, respectively. Fp and Dt demonstrated high correlations with flow speed while Dp showed lower correlations. Fp correlations with flow speed were significant at both sites. DATA CONCLUSION IVIM reproducibility results were promising and similar to ADC, particularly for Dt. The results were reproducible within both sites, and a progressive trend toward reproducibility across sites except for Fp. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dibash Basukala
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Artem Mikheev
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Varadan Sevilimedu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nima Gilani
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Linda Moy
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Katja Pinker-Domenig
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sunitha B. Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric E. Sigmund
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
4
|
Malyarenko D, Amouzandeh G, Pickup S, Zhou R, Manning HC, Gammon ST, Shoghi KI, Quirk JD, Sriram R, Larson P, Lewis MT, Pautler RG, Kinahan PE, Muzi M, Chenevert TL. Evaluation of Apparent Diffusion Coefficient Repeatability and Reproducibility for Preclinical MRIs Using Standardized Procedures and a Diffusion-Weighted Imaging Phantom. Tomography 2023; 9:375-386. [PMID: 36828382 PMCID: PMC9964373 DOI: 10.3390/tomography9010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Relevant to co-clinical trials, the goal of this work was to assess repeatability, reproducibility, and bias of the apparent diffusion coefficient (ADC) for preclinical MRIs using standardized procedures for comparison to performance of clinical MRIs. A temperature-controlled phantom provided an absolute reference standard to measure spatial uniformity of these performance metrics. Seven institutions participated in the study, wherein diffusion-weighted imaging (DWI) data were acquired over multiple days on 10 preclinical scanners, from 3 vendors, at 6 field strengths. Centralized versus site-based analysis was compared to illustrate incremental variance due to processing workflow. At magnet isocenter, short-term (intra-exam) and long-term (multiday) repeatability were excellent at within-system coefficient of variance, wCV [±CI] = 0.73% [0.54%, 1.12%] and 1.26% [0.94%, 1.89%], respectively. The cross-system reproducibility coefficient, RDC [±CI] = 0.188 [0.129, 0.343] µm2/ms, corresponded to 17% [12%, 31%] relative to the reference standard. Absolute bias at isocenter was low (within 4%) for 8 of 10 systems, whereas two high-bias (>10%) scanners were primary contributors to the relatively high RDC. Significant additional variance (>2%) due to site-specific analysis was observed for 2 of 10 systems. Base-level technical bias, repeatability, reproducibility, and spatial uniformity patterns were consistent with human MRIs (scaled for bore size). Well-calibrated preclinical MRI systems are capable of highly repeatable and reproducible ADC measurements.
Collapse
Affiliation(s)
- Dariya Malyarenko
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ghoncheh Amouzandeh
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuro42, Inc., San Francisco, CA 94105, USA
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MDACC, Houston, TX 77030, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MDACC, Houston, TX 77030, USA
| | - Kooresh I. Shoghi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James D. Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Renuka Sriram
- UCSF Department of Radiology & Biomedical Imaging, San Francisco, CA 94158, USA
| | - Peder Larson
- UCSF Department of Radiology & Biomedical Imaging, San Francisco, CA 94158, USA
| | | | | | - Paul E. Kinahan
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|