1
|
Newlin NR, Kanakaraj P, Li T, Pechman K, Archer D, Jefferson A, Landman B, Moyer D. Learning site-invariant features of connectomes to harmonize complex network measures. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12930:129302E. [PMID: 39220624 PMCID: PMC11364372 DOI: 10.1117/12.3009645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Multi-site diffusion MRI data is often acquired on different scanners and with distinct protocols. Differences in hardware and acquisition result in data that contains site dependent information, which confounds connectome analyses aiming to combine such multi-site data. We propose a data-driven solution that isolates site-invariant information whilst maintaining relevant features of the connectome. We construct a latent space that is uncorrelated with the imaging site and highly correlated with patient age and a connectome summary measure. Here, we focus on network modularity. The proposed model is a conditional, variational autoencoder with three additional prediction tasks: one for patient age, and two for modularity trained exclusively on data from each site. This model enables us to 1) isolate site-invariant biological features, 2) learn site context, and 3) re-inject site context and project biological features to desired site domains. We tested these hypotheses by projecting 77 connectomes from two studies and protocols (Vanderbilt Memory and Aging Project (VMAP) and Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD) to a common site. We find that the resulting dataset of modularity has statistically similar means (p-value <0.05) across sites. In addition, we fit a linear model to the joint dataset and find that positive correlations between age and modularity were preserved.
Collapse
Affiliation(s)
- Nancy R Newlin
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | | | - Thomas Li
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kimberly Pechman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Derek Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel Moyer
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Xu H, Newlin NR, Kim ME, Gao C, Kanakaraj P, Krishnan AR, Remedios LW, Khairi NM, Pechman K, Archer D, Hohman TJ, Jefferson AL, Isgum I, Huo Y, Moyer D, Schilling KG, Landman BA. Evaluation of Mean Shift, ComBat, and CycleGAN for Harmonizing Brain Connectivity Matrices Across Sites. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12926:129261X. [PMID: 39310215 PMCID: PMC11415266 DOI: 10.1117/12.3005563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN. The sample comprises 168 age-matched, sex-matched normal subjects from two studies: the Vanderbilt Memory and Aging Project (VMAP) and the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD). First, we plotted the graph measures and used coefficient of variation (CoV) and the Mann-Whitney U test to evaluate different methods' effectiveness in removing site effects on the matrices and the derived graph measures. ComBat effectively eliminated site effects for global efficiency and modularity and outperformed the other two methods. However, all methods exhibited poor performance when harmonizing average betweenness centrality. Second, we tested whether our harmonization methods preserved correlations between age and graph measures. All methods except for CycleGAN in one direction improved correlations between age and global efficiency and between age and modularity from insignificant to significant with p-values less than 0.05.
Collapse
Affiliation(s)
- Hanliang Xu
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Nancy R Newlin
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Michael E Kim
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Chenyu Gao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Aravind R Krishnan
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lucas W Remedios
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Nazirah Mohd Khairi
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kimberly Pechman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Derek Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivana Isgum
- Department of Biomedical Engineering and Physics & Radiology and Nuclear Medicine, University Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Yuankai Huo
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel Moyer
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Kurt G Schilling
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Xu H, Newlin NR, Kim ME, Gao C, Kanakaraj P, Krishnan AR, Remedios LW, Khairi NM, Pechman K, Archer D, Hohman TJ, Jefferson AL, Isgum I, Huo Y, Moyer D, Schilling KG, Landman BA. Evaluation of Mean Shift, ComBat, and CycleGAN for Harmonizing Brain Connectivity Matrices Across Sites. ARXIV 2024:arXiv:2401.06798v2. [PMID: 38344221 PMCID: PMC10854272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN. The sample comprises 168 age-matched, sex-matched normal subjects from two studies: the Vanderbilt Memory and Aging Project (VMAP) and the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD). First, we plotted the graph measures and used coefficient of variation (CoV) and the Mann-Whitney U test to evaluate different methods' effectiveness in removing site effects on the matrices and the derived graph measures. ComBat effectively eliminated site effects for global efficiency and modularity and outperformed the other two methods. However, all methods exhibited poor performance when harmonizing average betweenness centrality. Second, we tested whether our harmonization methods preserved correlations between age and graph measures. All methods except for CycleGAN in one direction improved correlations between age and global efficiency and between age and modularity from insignificant to significant with p-values less than 0.05.
Collapse
Affiliation(s)
- Hanliang Xu
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Nancy R Newlin
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Michael E Kim
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Chenyu Gao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Aravind R Krishnan
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lucas W Remedios
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Nazirah Mohd Khairi
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kimberly Pechman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Derek Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivana Isgum
- Department of Biomedical Engineering and Physics & Radiology and Nuclear Medicine, University Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Yuankai Huo
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel Moyer
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Kurt G Schilling
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Van Dyken PC, MacKinley M, Khan AR, Palaniyappan L. Cortical Network Disruption Is Minimal in Early Stages of Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae010. [PMID: 39144115 PMCID: PMC11207789 DOI: 10.1093/schizbullopen/sgae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Schizophrenia is associated with white matter disruption and topological reorganization of cortical connectivity but the trajectory of these changes, from the first psychotic episode to established illness, is poorly understood. Current studies in first-episode psychosis (FEP) patients using diffusion magnetic resonance imaging (dMRI) suggest such disruption may be detectable at the onset of psychosis, but specific results vary widely, and few reports have contextualized their findings with direct comparison to young adults with established illness. Study Design Diffusion and T1-weighted 7T MR scans were obtained from N = 112 individuals (58 with untreated FEP, 17 with established schizophrenia, 37 healthy controls) recruited from London, Ontario. Voxel- and network-based analyses were used to detect changes in diffusion microstructural parameters. Graph theory metrics were used to probe changes in the cortical network hierarchy and to assess the vulnerability of hub regions to disruption. The analysis was replicated with N = 111 (57 patients, 54 controls) from the Human Connectome Project-Early Psychosis (HCP-EP) dataset. Study Results Widespread microstructural changes were found in people with established illness, but changes in FEP patients were minimal. Unlike the established illness group, no appreciable topological changes in the cortical network were observed in FEP patients. These results were replicated in the early psychosis patients of the HCP-EP datasets, which were indistinguishable from controls in most metrics. Conclusions The white matter structural changes observed in established schizophrenia are not a prominent feature in the early stages of this illness.
Collapse
Affiliation(s)
- Peter C Van Dyken
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael MacKinley
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Ali R Khan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
5
|
Pullens P. Editorial for "Characterizing Streamline Count Invariant Graph Measures of Structural Connectomes". J Magn Reson Imaging 2023; 58:1917. [PMID: 36928933 DOI: 10.1002/jmri.28672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Affiliation(s)
- Pim Pullens
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
- IBiTech-MEDISIP, Faculty of Engineering and Architecture, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|