1
|
Scola E, Desideri I, Bianchi A, Gadda D, Busto G, Fiorenza A, Amadori T, Mancini S, Miele V, Fainardi E. Assessment of brain tumors by magnetic resonance dynamic susceptibility contrast perfusion-weighted imaging and computed tomography perfusion: a comparison study. LA RADIOLOGIA MEDICA 2022; 127:664-672. [PMID: 35441970 DOI: 10.1007/s11547-022-01470-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/11/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To investigate the association and agreement between magnetic resonance dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) and computed tomography perfusion (CTP) in determining vascularity and permeability of primary and secondary brain tumors. MATERIAL AND METHODS DSC-PWI and CTP studies from 97 patients with high-grade glioma, low-grade glioma and solitary brain metastasis were retrospectively reviewed. Normalized cerebral blood flow (nCBF), cerebral blood volume (nCBV), capillary transfer constant (nK2) and permeability surface area product (nPS) values were obtained. Variables among groups were compared, and correlation and agreement between DSC-PWI and CTP were tested. RESULTS All DSC-PWI and CTP parameters were higher in high-grade than in low-grade gliomas (p < 0.01 and p < 0.001). Metastases had greater DSC-PWI nCBV (p < 0.05), nCTP-CBF (p < 0.05), nCTP-CBV (p < 0.01) and nCTP-PS (p < 0.0001) than low-grade gliomas and more elevated nCTP-PS (p < 0.01) than high-grade gliomas. The correlation was strong between DSC-PWI nCBF and CTP nCBF (r = 0.79; p < 0.00001) and between DSC-PWI nCBV and CTP nCBV (r = 0.83; p < 0.00001), weaker between DSC-PWI nK2 and CTP nPS (r = 0.29; p < 0.01). Bland-Altman plots indicated that the agreement was strong between DSC-PWI nCBF and CTP nCBF, good between DSC-PWI nCBV and CTP nCBV and poorer between DSC-PWI nK2 and CTP nPS. CONCLUSION DSC-PWI and CTP CBF and CBV maps were comparable and interchangeable in the assessment of tumor vascularity, unlike DSC-PWI K2 and CTP PS maps that were more discordant in the analysis of tumor permeability. CTP could be an alternative method to quantify tumor neoangiogenesis when MRI is not available or when the patient does not tolerate it.
Collapse
Affiliation(s)
- Elisa Scola
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy.
| | - Ilaria Desideri
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Andrea Bianchi
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Davide Gadda
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Giorgio Busto
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Alessandro Fiorenza
- Radiodiagnostic Unit N. 2, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Tommaso Amadori
- Radiodiagnostic Unit N. 2, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Sara Mancini
- Radiodiagnostic Unit N. 2, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Enrico Fainardi
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Radiologia, Ospedale Universitario Careggi, Largo Brambilla 3, 50134, Florence, Italy.,Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
2
|
Johnson GB, Harms HJ, Johnson DR, Jacobson MS. PET Imaging of Tumor Perfusion: A Potential Cancer Biomarker? Semin Nucl Med 2020; 50:549-561. [PMID: 33059824 DOI: 10.1053/j.semnuclmed.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Perfusion, as measured by imaging, is considered a standard of care biomarker for the evaluation of many tumors. Measurements of tumor perfusion may be used in a number of ways, including improving the visual detection of lesions, differentiating malignant from benign findings, assessing aggressiveness of tumors, identifying ischemia and by extension hypoxia within tumors, and assessing treatment response. While most clinical perfusion imaging is currently performed with CT or MR, a number of methods for PET imaging of tumor perfusion have been described. The inert PET radiotracer 15O-water PET represents the recognized gold standard for absolute quantification of tissue perfusion in both normal tissue and a variety of pathological conditions including cancer. Other cancer PET perfusion imaging strategies include the use of radiotracers with high first-pass uptake, analogous to those used in cardiac perfusion PET. This strategy produces more visually pleasing high-contrast images that provide relative rather than absolute perfusion quantification. Lastly, multiple timepoint imaging of PET tracers such as 18F-FDG, are not specifically optimized for perfusion, but have advantages related to availability, convenience, and reimbursement. Multiple obstacles have thus far blocked the routine use of PET imaging for tumor perfusion, including tracer production and distribution, image processing, patient body coverage, clinical validation, regulatory approval and reimbursement, and finally feasible clinical workflows. Fortunately, these obstacles are being overcome, especially within larger imaging centers, opening the door for PET imaging of tumor perfusion to become standard clinical practice. In the foreseeable future, it is possible that whole-body PET perfusion imaging with 15O-water will be able to be performed in a single imaging session concurrent with standard PET imaging techniques such as 18F-FDG-PET. This approach could establish an efficient clinical workflow. The resultant ability to measure absolute tumor blood flow in combination with glycolysis will provide important complementary information to inform prognosis and clinical decisions.
Collapse
Affiliation(s)
- Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN; Department of Immunology, Mayo Clinic, Rochester, MN.
| | - Hendrik J Harms
- Department of Surgical Sciences, Nuclear Medicine, PET and Radiology, Uppsala University, Uppsala Sweden
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| | - Mark S Jacobson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
3
|
Belliveau JG, Bauman G, Macdonald DR. Detecting tumor progression in glioma: current standards and new techniques. Expert Rev Anticancer Ther 2016; 16:1177-1188. [PMID: 27661768 DOI: 10.1080/14737140.2016.1240621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The post-treatment monitoring of glioma patients remains an area of active research and development. Conventional imaging with MRI is a highly sensitive modality for detecting and monitoring primary and secondary brain tumors and includes multi-parametric sequences to better characterize the disease. Standardized schemes for measuring response to treatment are in wide clinical use; however, the introduction of new therapeutics have introduced new patterns of response that can confound interpretation of conventional MRI and can cause uncertainty in the proper management following therapy. Areas covered: A summary of current and evolving techniques for assessing glioma response in this era of new therapies that address these challenges are presented in this review. While this review focuses more on clinical and early clinical methodologies for MRI and nuclear medicine techniques some promising pre-clinical techniques are also presented. Expert commentary: While successful single institution results have been widely reported in the literature, any new methodologies must be undertaken in multi-center settings. Additionally, the need for standardization of protocols in quantitative measured are an important area that must be addressed for new and promising techniques to be implemented to a wide array of patients.
Collapse
Affiliation(s)
- Jean-Guy Belliveau
- a Department of Medical Biophysics , University of Western Ontario , London , ON , Canada
| | - Glenn Bauman
- b Department of Medical Biophysics and Oncology , University of Western Ontario , London , ON , Canada
| | - David R Macdonald
- c Department of Oncology , University of Western Ontario , London , ON , Canada
| |
Collapse
|
4
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
5
|
Eilaghi A, Yeung T, d'Esterre C, Bauman G, Yartsev S, Easaw J, Fainardi E, Lee TY, Frayne R. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images. BIOMARKERS IN CANCER 2016; 8:47-59. [PMID: 27398030 PMCID: PMC4933536 DOI: 10.4137/bic.s31801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022]
Abstract
Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood-brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented.
Collapse
Affiliation(s)
- Armin Eilaghi
- Department of Radiology, University of Calgary, Calgary, AB, Canada.; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Timothy Yeung
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Christopher d'Esterre
- Department of Radiology, University of Calgary, Calgary, AB, Canada.; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Glenn Bauman
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Slav Yartsev
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Jay Easaw
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, Ferrara, Italy.; Neuroradiology Unit, Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Ting-Yim Lee
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Richard Frayne
- Department of Radiology, University of Calgary, Calgary, AB, Canada.; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
6
|
Yeung TPC, Wang Y, He W, Urbini B, Gafà R, Ulazzi L, Yartsev S, Bauman G, Lee TY, Fainardi E. Survival prediction in high-grade gliomas using CT perfusion imaging. J Neurooncol 2015; 123:93-102. [PMID: 25862005 DOI: 10.1007/s11060-015-1766-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 04/02/2015] [Indexed: 11/24/2022]
Abstract
Patients with high-grade gliomas usually have heterogeneous response to surgery and chemoirradiation. The objectives of this study were (1) to evaluate serial changes in tumor volume and perfusion imaging parameters and (2) to determine the value of these data in predicting overall survival (OS). Twenty-nine patients with World Health Organization grades III and IV gliomas underwent magnetic resonance (MR) and computed tomography (CT) perfusion examinations before surgery, and 1, 3, 6, 9, and 12 months after radiotherapy. Serial measurements of tumor volumes and perfusion parameters were evaluated by receiver operating characteristic analysis, Cox proportional hazards regression, and Kaplan-Meier survival analysis to determine their values in predicting OS. Higher trends in blood flow (BF), blood volume (BV), and permeability-surface area product in the contrast-enhancing lesions (CEL) and the non-enhancing lesions (NEL) were found in patients with OS < 18 months compared to those with OS ≥ 18 months, and these values were significant at selected time points (P < 0.05). Only CT perfusion parameters yielded sensitivities and specificities of ≥ 70% in predicting 18 and 24 months OS. Pre-surgery BF in the NEL and BV in the CEL and NEL 3 months after radiotherapy had sensitivities and specificities >80% in predicting 24 months OS in patients with grade IV gliomas. Our study indicated that CT perfusion parameters were predictive of survival and could be useful in assessing early response and in selecting adjuvant treatment to prolong survival if verified in a larger cohort of patients.
Collapse
|