1
|
Diao X, Huestis MA. New Synthetic Cannabinoids Metabolism and Strategies to Best Identify Optimal Marker Metabolites. Front Chem 2019; 7:109. [PMID: 30886845 PMCID: PMC6409358 DOI: 10.3389/fchem.2019.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/11/2019] [Indexed: 11/21/2022] Open
Abstract
Synthetic cannabinoids (SCs) were initially developed as pharmacological tools to probe the endocannabinoid system and as novel pharmacotherapies, but are now highly abused. This is a serious public health and social problem throughout the world and it is highly challenging to identify which SC was consumed by the drug abusers, a necessary step to tie adverse health effects to the new drug's toxicity. Two intrinsic properties complicate SC identification, their often rapid and extensive metabolism, and their generally high potency relative to the natural psychoactive Δ9-tetrahydrocannabinol in cannabis. Additional challenges are the lack of reference standards for the major urinary metabolites needed for forensic verification, and the sometimes differing illicit and licit status and, in some cases, identical metabolites produced by closely related SC pairs, i.e., JWH-018/AM-2201, THJ-018/THJ-2201, and BB-22/MDMB-CHMICA/ADB-CHMICA. We review current SC prevalence, establish the necessity for SC metabolism investigation and contrast the advantages and disadvantages of multiple metabolic approaches. The human hepatocyte incubation model for determining a new SC's metabolism is highly recommended after comparison to human liver microsomes incubation, in silico prediction, rat in vivo, zebrafish, and fungus Cunninghamella elegans models. We evaluate SC metabolic patterns, and devise a practical strategy to select optimal urinary marker metabolites for SCs. New SCs are incubated first with human hepatocytes and major metabolites are then identified by high-resolution mass spectrometry. Although initially difficult to obtain, authentic human urine samples following the specified SC exposure are hydrolyzed and analyzed by high-resolution mass spectrometry to verify identified major metabolites. Since some SCs produce the same major urinary metabolites, documentation of the specific SC consumed may require identification of the SC parent itself in either blood or oral fluid. An encouraging trend is the recent reduction in the number of new SC introduced per year. With global collaboration and communication, we can improve education of the public about the toxicity of new SC and our response to their introduction.
Collapse
Affiliation(s)
- Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Marilyn A. Huestis
- The Lambert Center for the Study of Medicinal Cannabis and Hemp, Institute for Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Zhang L, Feng R, He R, Liang Q. Detection and Verification of Sibutramine Adulterated in Herbal Slimming Supplements Using Electrospray Ionization Mass Spectrometry. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Li Zhang
- Guangdong Provincial Institute for Drug Control; Guangzhou 510180 China
| | - Rui Feng
- Research Center of Chinese Herbal Resource Science and Engineering; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Ruisi He
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Qi Liang
- Guangdong Provincial Institute for Drug Control; Guangzhou 510180 China
| |
Collapse
|
3
|
Souza Anselmo C, Sardela VF, Matias BF, Carvalho AR, Sousa VP, Pereira HMG, Aquino Neto FR. Is zebrafish
(
Danio rerio
)
a tool for human‐like metabolism study? Drug Test Anal 2017; 9:1685-1694. [DOI: 10.1002/dta.2318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Carina Souza Anselmo
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Vinicius Figueiredo Sardela
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Bernardo Fonseca Matias
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Amanda Reis Carvalho
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Valeria Pereira Sousa
- Federal University of Rio de Janeiro, Faculty of PharmacyDepartment of Drugs and Pharmaceutics Av. Carlos Chagas Filho, 373, bloco Bss, 36 ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐170 Brazil
| | - Henrique Marcelo Gualberto Pereira
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Francisco Radler Aquino Neto
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| |
Collapse
|
4
|
Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species. Toxicol Appl Pharmacol 2017; 314:1-11. [DOI: 10.1016/j.taap.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023]
|
5
|
Acute Poisoning via Consumption of “Natural Max Slimming” Capsule with Complications (Hyperpigmentation and Lower Extremity Edema). Jundishapur J Nat Pharm Prod 2016. [DOI: 10.5812/jjnpp.34602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
6
|
Goudarzi F, Najafi N, Azarpira N, Tavakoli N, Najafi Z. Acute Poisoning via Consumption of “Natural Max Slimming” Capsule with Complications (Hyperpigmentation and Lower Extremity Edema). Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-34602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Han S, Jeon S, Hong T, Lee J, Bae SH, Park WS, Park GJ, Youn S, Jang DY, Kim KS, Yim DS. Exposure-response model for sibutramine and placebo: suggestion for application to long-term weight-control drug development. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5185-94. [PMID: 26392753 PMCID: PMC4573071 DOI: 10.2147/dddt.s85435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
No wholly successful weight-control drugs have been developed to date, despite the tremendous demand. We present an exposure–response model of sibutramine mesylate that can be applied during clinical development of other weight-control drugs. Additionally, we provide a model-based evaluation of sibutramine efficacy. Data from a double-blind, randomized, placebo-controlled, multicenter study were used (N=120). Subjects in the treatment arm were initially given 8.37 mg sibutramine base daily, and those who lost <2 kg after 4 weeks’ treatment were escalated to 12.55 mg. The duration of treatment was 24 weeks. Drug concentration and body weight were measured predose and at 4 weeks, 8 weeks, and 24 weeks after treatment initiation. Exposure and response to sibutramine, including the placebo effect, were modeled using NONMEM 7.2. An asymptotic model approaching the final body weight was chosen to describe the time course of weight loss. Extent of weight loss was described successfully using a sigmoidal exposure–response relationship of the drug with a constant placebo effect in each individual. The placebo effect was influenced by subjects’ sex and baseline body mass index. Maximal weight loss was predicted to occur around 1 year after treatment initiation. The difference in mean weight loss between the sibutramine (daily 12.55 mg) and placebo groups was predicted to be 4.5% in a simulation of 1 year of treatment, with considerable overlap of prediction intervals. Our exposure–response model, which included the placebo effect, is the first example of a quantitative model that can be used to predict the efficacy of weight-control drugs. Similar approaches can help decision-making during clinical development of novel weight-loss drugs.
Collapse
Affiliation(s)
- Seunghoon Han
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Sangil Jeon
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Taegon Hong
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Jongtae Lee
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Soo Hyeon Bae
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Wan-su Park
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Gab-jin Park
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Sunil Youn
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Doo Yeon Jang
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Kyung-Soo Kim
- Department of Family Medicine, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| | - Dong-Seok Yim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea ; Pharmacometrics Institute for Practical Education and Training, Seoul St Mary's Hospital, Seochogu, Seoul, Republic of Korea
| |
Collapse
|
8
|
Liu X, Wang S, Ding L, Chen X, Shen W, Dong X, Yun C, Lin H. Liquid chromatography/quadrupole time-of-flight mass spectrometry in combination with online hydrogen/deuterium exchange technique for structural elucidation of phase I metabolites ofiso-phenylcyclopentylamine in rat bile. Biomed Chromatogr 2014; 28:1335-44. [DOI: 10.1002/bmc.3170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoxue Liu
- Department of Pharmaceutical Analysis; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Suilou Wang
- Department of Pharmaceutical Analysis; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Li Ding
- Department of Pharmaceutical Analysis; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Xiaoping Chen
- Beijing Shiqiao Biological and Pharmaceutical Co. Ltd; Beijing China
| | - Wenbin Shen
- Center for instrumental analysis; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Xin Dong
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 21009 China
| | - Changhong Yun
- Department of Pharmaceutical Analysis; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| | - Hongda Lin
- Department of Pharmaceutical Analysis; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 China
| |
Collapse
|
9
|
Shinde DD, Kim MJ, Jeong ES, Kim YW, Lee JW, Shin JG, Kim DH. Enantioselective N-demethylation and hydroxylation of sibutramine in human liver microsomes and recombinant cytochrome p-450 isoforms. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1419-1430. [PMID: 25343291 DOI: 10.1080/15287394.2014.951758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The enantioselective metabolism of sibutramine was examined using human liver microsomes (HLM) and recombinant cytochrome P-450 (CYP) isoforms. This drug is metabolized to N-mono-desmethyl- (M1) and N,N-di-desmethylsibutramine (M2), and subsequent hydroxylation results in hydroxyl M1 (HM1) and hydroxyl M2 (HM2). No significant difference was noted in formation of M1from sibutramine between R- and S-sibutramine in HLM. However, S-enantiomers of M1 and M2 were preferentially metabolized to M2, HM1, and HM2compared to R-enantiomers in HLM, and intrinsic clearance (Clint) ratios of S-enantiomers/R-enantiomers were 1.97, 4.83, and 9.94 for M2, HM1, and HM2, respectively. CYP3A4 and CYP3A5 were only involved in the formation of M1, whereas CYP2B6 and CYP2C19 were responsible for all metabolic reactions of sibutramine. CYP2C19 and CYP3A5 displayed catalytic preference for S-sibutramine to S-M1, whereas CYP2B6 and CYP3A4 showed little or no stereoselectivity in metabolism of sibutramine to M1. In the case of M2 formation, CYP2B6 metabolized S-M1 more rapidly than R-M1 with a Clint ratio of 2.14. However, CYP2C19 catalyzed less S-M1 than R-M1 and the Clint ratio of S-M1 to R-M1 was 0.65. The most significant enantioselectivity was observed in formation of HM1 from M1, and HM2 from M2. CYP2B6 and CYP2C19 exhibited preferential catalysis of formation of hydroxyl metabolites from S-enantiomers rather than R-enantiomers. These results indicate that S-sibutramine was more rapidly metabolized by CYP isoforms than R-sibutramine, and that enantioselective metabolism needs to be considered in drug interactions involving sibutramine and co-administered drugs.
Collapse
|
10
|
Vrzal R, Knoppová B, Bachleda P, Dvořák Z. Effects of oral anorexiant sibutramine on the expression of cytochromes P450s in human hepatocytes and cancer cell lines. J Biochem Mol Toxicol 2013; 27:515-21. [PMID: 24038852 DOI: 10.1002/jbt.21516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/30/2013] [Accepted: 07/20/2013] [Indexed: 11/09/2022]
Abstract
Sibutramine is a serotonin-norepinephrine reuptake inhibitor that was used for weight-loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight-loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
11
|
Shinde DD, Kim HS, Choi JS, Pan W, Bae SK, Yeo CW, Shon JH, Kim DH, Shin JG. Different effects of clopidogrel and clarithromycin on the enantioselective pharmacokinetics of sibutramine and its active metabolites in healthy subjects. J Clin Pharmacol 2013; 53:550-8. [PMID: 23381968 DOI: 10.1002/jcph.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/09/2012] [Indexed: 11/09/2022]
Abstract
In this study, we assessed the effects of clopidogrel and clarithromycin, known CYP2B6 and CYP3A inhibitors, respectively, on the enantioselective disposition of racemic sibutramine in conjunction with CYP2B6 polymorphisms in humans. Sibutramine showed enantioselective plasma profiles with consistently higher concentrations of R-enantiomers. Clopidogrel and clarithromycin significantly increased the sibutramine plasma concentration, but their effects differed between enantiomers; a 2.2-fold versus 4.1-fold increase in the AUC in S-enantiomer and 1.8-fold versus 2.0-fold for the R-enantiomer, respectively. The AUCs of S- and R-desmethyl metabolites changed significantly during the clopidogrel phase (P < .001 and P < .001, respectively) but not during the clarithromycin phase (P = .099 and P = .090, respectively). Exposure to sibutramine was higher in subjects with the CYP2B6*6/*6 genotype, but no statistical difference was observed among the CYP2B6 genotypes. These results suggest that the enantioselective disposition of sibutramine and its active metabolites are influenced by the altered genetic and environmental factors of CYP2B6 and CYP3A activity in vivo.
Collapse
Affiliation(s)
- Dhananjay D Shinde
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bae JW, Jang CG, Lee SY. Effects of clopidogrel on the pharmacokinetics of sibutramine and its active metabolites. J Clin Pharmacol 2011; 51:1704-11. [PMID: 21209232 DOI: 10.1177/0091270010388651] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sibutramine is metabolized by the enzymes CYP2B6 and CYP2C19 into 2 active metabolites, M1 (mono-desmethyl sibutramine) and M2 (di-desmethyl sibutramine). Clopidogrel is a mechanism-based inhibitor of CYP2B6 and CYP2C19. In this study, 13 extensive metabolizers of CYP2B6 and CYP2C19 were evaluated to clarify whether clopidogrel inhibits the formation of the active metabolites of sibutramine. In the control phase, each subject received a 15-mg oral dose of sibutramine. After a washout period of 2 weeks, in the clopidogrel phase, the subjects received 300 mg of clopidogrel on the first day and then 75-mg once daily for 6 days. One hour after the last dosing of clopidogrel, all subjects received 15-mg of sibutramine. Compared with the control phase, the mean sibutramine and M1 plasma concentrations were higher after clopidogrel treatment. Clopidogrel significantly increased the half-life (242% of control phase) and area under the plasma concentration-time curve from 0 to infinity (AUC(inf)) (227% of control phase) of sibutramine and decreased the apparent oral clearance (31% of control phase) of sibutramine. Pharmacokinetic analysis showed significant increases in the AUC(inf) (162% of control phase) of M1. The CYP2B6 and CYP2C19 inhibitor clopidogrel significantly inhibited the formations of M1 from sibutramine and M2 from sibutramine by 37% and 64%, respectively. Therefore, CYP2B6 and CYP2C19 are in vivo catalysts for the formation of the 2 active metabolites of sibutramine.
Collapse
Affiliation(s)
- Jung-Woo Bae
- School of Pharmacy, Sungkyunkwan University, Chunchun-dong, Suwon 440-746, Republic of Korea
| | | | | |
Collapse
|
13
|
Enantioselective pharmacokinetics of sibutramine in rat. Arch Pharm Res 2010; 33:267-73. [DOI: 10.1007/s12272-010-0212-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/24/2009] [Accepted: 11/27/2009] [Indexed: 11/26/2022]
|
14
|
Talbot PS, Bradley S, Clarke CP, Babalola KO, Philipp AW, Brown G, McMahon AW, Matthews JC. Brain serotonin transporter occupancy by oral sibutramine dosed to steady state: a PET study using (11)C-DASB in healthy humans. Neuropsychopharmacology 2010; 35:741-51. [PMID: 19890256 PMCID: PMC3055601 DOI: 10.1038/npp.2009.182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sibutramine is a centrally acting monoamine reuptake inhibitor prescribed as an appetite suppressant in the management of obesity. Its effects are mostly attributable to serotonin and norepinephrine transporter (SERT and NET, respectively) inhibition by its potent metabolites mono-desmethylsibutramine (M1) and di-desmethylsibutramine (M2). However, there is a paucity of in vivo data in humans about mechanisms underlying both clinical efficacy and the dose-independent non-response observed in a minority of patients. Twelve healthy male patients (mean age 41 years) completed a double-blind, placebo-controlled, within-subject crossover investigation of brain SERT occupancy by sibutramine 15 mg daily at steady state. Correlations were measured between occupancy and (i) plasma concentrations of sibutramine, M1 and M2; (ii) appetite suppression. (11)C-DASB PET scans were performed on the HRRT camera. Binding potentials (BP(ND)) were calculated by the Logan reference tissue (cerebellum) method. SERT occupancy was modest (mean 30+/-10%), was similar across brain regions, but varied widely across subjects (15-46%). Occupancy was correlated positively (p=0.09) with M2 concentration, but not with sibutramine or M1. No significant appetite suppression was seen at <25% occupancy and greatest suppression was associated with highest occupancy (25-46%). However, several subjects with occupancy (36-39%) in the higher range had no appetite suppression. SERT occupancy by clinical doses of sibutramine is of modest magnitude and may be mediated predominantly by M2 in humans. 5-HT reuptake inhibition may be necessary but is not sufficient for sibutramine's efficacy in humans, supporting preclinical data suggesting that the hypophagic effect requires the co-inhibition of both SERT and NET.
Collapse
Affiliation(s)
- Peter S Talbot
- Wolfson Molecular Imaging Centre, The University of Manchester, Manchester, UK.
| | | | | | - Kola O Babalola
- Manchester Academic Health Science Centre, Stopford Building, The University of Manchester, Manchester, UK
| | | | - Gavin Brown
- Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, The University of Manchester, Manchester, UK
| | - Adam W McMahon
- Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, The University of Manchester, Manchester, UK
| | - Julian C Matthews
- Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Enantioselective determination of sibutramine and its active metabolites in human plasma. J Pharm Biomed Anal 2010; 51:264-7. [DOI: 10.1016/j.jpba.2009.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 11/23/2022]
|
16
|
Hakala KS, Link M, Szotakova B, Skalova L, Kostiainen R, Ketola RA. Characterization of metabolites of sibutramine in primary cultures of rat hepatocytes by liquid chromatography-ion trap mass spectrometry. Anal Bioanal Chem 2008; 393:1327-36. [PMID: 19066859 DOI: 10.1007/s00216-008-2540-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Liquid chromatography-ion trap mass spectrometry was used for the detection and structural characterization of metabolites of the anti-obesity drug sibutramine. Metabolites were profiled from incubations of sibutramine in primary cultures of rat hepatocytes. In addition, enantioselectivity of sibutramine metabolism was investigated by carrying out separate incubations with (R)- and (S)-sibutramine. As a result, biotransformation profile for sibutramine with rat hepatocytes is proposed. Nineteen metabolites and several of their isomers formed via demethylation, hydroxylation, dehydrogenation, acetylation, attachment of CO(2), and glucuronidation were identified in MS(2) and MS(3) experiments, though the exact position of the functionality, mostly hydroxylation, could not always be determined from the mass spectrometric information. However, clear enantioselective formation was observed for two hydroxyl derivatives and two glucuronide conjugates, indicating that the hydroxyl/glucuronic acid moiety in those structures is close to the chiral center. Most of the metabolites found in this study are new metabolites of sibutramine, which were not previously reported.
Collapse
Affiliation(s)
- Kati S Hakala
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
17
|
Bae SK, Cao S, Seo KA, Kim H, Kim MJ, Shon JH, Liu KH, Zhou HH, Shin JG. Cytochrome P450 2B6 catalyzes the formation of pharmacologically active sibutramine (N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N,N-dimethylamine) metabolites in human liver microsomes. Drug Metab Dispos 2008; 36:1679-88. [PMID: 18474675 DOI: 10.1124/dmd.108.020727] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We identified cytochrome P450 (P450) isozymes that are involved in the formation of two active sibutramine (N-{1-[1-(4-chlorophenyl)-cyclobutyl]-3-methylbutyl}-N,N-dimethylamine) metabolites, M1 (N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N-methylamine) and M2 (1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine), in humans using a combination chemical inhibition, correlation analyses in human liver microsomes (HLMs), and activity assays using recombinant P450s. Mechanism-based CYP2B6 inhibitors (i.e., clopidogrel, ticlopidine, and triethylenethiophoramide) significantly inhibited the formation of M1 from sibutramine and M2 from M1, respectively; in contrast, no effect was observed when using potent inhibitors of eight P450 isozymes (CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A). In addition, the formations of M1 from sibutramine (r = 0.694, p = 0.0029) and M2 from M1 (r = 0.834, p < 0.0001) were strongly correlated with CYP2B6-catalyzed bupropion hydroxylation in 16 different HLM panels. Furthermore, recombinant CYP2B6 catalyzed M1 and/or M2 formation at the highest rate among 10 P450s. Although recombinant CYP2C19, 3A4, and 3A5 also catalyzed, to a less extent, M1 formation at high substrate concentrations (>5 microM), those contributions might be minor considering usual concentrations of sibutramine and M1 in the clinical setting. The kinetics of M1 and/or M2 formation from sibutramine in HLMs were fitted by a two-enzyme model, and the mean apparent K(m) value (4.79 microM) for high-affinity component was similar to that observed in recombinant CYP2B6 (8.02 microM). In conclusion, CYP2B6 is the primary catalyst for the formation of sibutramine two active metabolites, which may suggest that pharmacogenetics and drug interactions of sibutramine in relation to CYP2B6 activity should be considered in the pharmacotherapy of sibutramine.
Collapse
Affiliation(s)
- Soo Kyung Bae
- Department of Clinical Pharmacology and Clinical Trial Center, Inje University Busan Paik Hospital, Busan, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Holcapek M, Kolárová L, Nobilis M. High-performance liquid chromatography-tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal Bioanal Chem 2008; 391:59-78. [PMID: 18345532 PMCID: PMC2359828 DOI: 10.1007/s00216-008-1962-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 11/27/2022]
Abstract
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well.
Collapse
Affiliation(s)
- M Holcapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Nám. Cs. Legií 565, 53210, Pardubice, Czech Republic.
| | | | | |
Collapse
|
19
|
Zou P, Oh SSY, Kiang KH, Low MY, Bloodworth BC. Detection of sibutramine, its two metabolites and one analogue in a herbal product for weight loss by liquid chromatography triple quadrupole mass spectrometry and time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:614-8. [PMID: 17265544 DOI: 10.1002/rcm.2876] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
|
20
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1520-1531. [PMID: 17103385 DOI: 10.1002/jms.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|