1
|
Abstract
Glycosphingolipids (GSLs) are a subclass of glycolipids made of a glycan and a ceramide that, in turn, is composed of a sphingoid base moiety and a fatty acyl group. GSLs represent the vast majority of glycolipids in eukaryotes, and as an essential component of the cell membrane, they play an important role in many biological and pathological processes. Therefore, they are useful targets for the development of novel diagnostic and therapeutic methods for human diseases. Since sphingosine was first described by J. L. Thudichum in 1884, several hundred GSL species, not including their diverse lipid forms that can further amplify the number of individual GSLs by many folds, have been isolated from natural sources and structurally characterized. This review tries to provide a comprehensive survey of the major GSL species, especially those with distinct glycan structures and modification patterns, and the ceramides with unique modifications of the lipid chains, that have been discovered to date. In particular, this review is focused on GSLs from eukaryotic species. This review has listed 251 GSL glycans with different linkages, 127 glycans with unique modifications, 46 sphingoids, and 43 fatty acyl groups. It should be helpful for scientists who are interested in GSLs, from isolation and structural analyses to chemical and enzymatic syntheses, as well as their biological studies and applications.
Collapse
|
2
|
Podbielska M, O'Keeffe J, Hogan EL. Autoimmunity in multiple sclerosis: role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J Neurol Sci 2017; 385:198-214. [PMID: 29406905 DOI: 10.1016/j.jns.2017.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is classified as being an autoimmune response in the genetically susceptible individual to a persistent but unidentified antigen(s). Both the adaptive and the innate immune systems are likely to contribute significantly to MS pathogenesis. This review summarizes current understanding of the characteristics of MS autoimmunity in the initiation and progression of the disease. In particular we find it timely to classify the autoimmune responses by focusing on the immunogenic features of myelin-derived lipids in MS including molecular mimicry; on alterations of bioactive sphingolipids mediators in MS; and on functional roles for regulatory effector cells, including innate lymphocyte populations, like the invariant NKT (iNKT) cells which bridge adaptive and innate immune systems. Recent progress in identifying the nature of sphingolipids recognition for iNKT cells in immunity and the functional consequences of the lipid-CD1d interaction opens new avenues of access to the pathogenesis of demyelination in MS as well as design of lipid antigen-specific therapeutics.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA; Laboratory of Signal Transduction Molecules, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Joan O'Keeffe
- Department of Biopharmaceutical & Medical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
3
|
O'Keeffe J, Podbielska M, Hogan EL. Invariant natural killer T cells and their ligands: focus on multiple sclerosis. Immunology 2015; 145:468-75. [PMID: 25976210 DOI: 10.1111/imm.12481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/10/2015] [Indexed: 12/11/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are an innate population of T cells identified by the expression of an invariant T-cell receptor and reactivity to lipid-based antigens complexed with CD1d. They account for a small percentage of lymphocytes, but are extremely potent and play central roles in immunity to infection, in some cancers, and in autoimmunity. The list of relevant stimulatory lipids and glycolipid antigens now includes a range of endogenous self-antigens including the myelin-derived acetylated galactosylceramides. Recent progress in studies to identify the nature of lipid recognition for iNKT cells in autoimmune diseases like multiple sclerosis is likely to foster the development of therapeutic strategies aimed at harnessing iNKT cell activity.
Collapse
Affiliation(s)
- Joan O'Keeffe
- Department of Life and Physical Sciences, School of Science, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Maria Podbielska
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA.,Laboratory of Signalling Proteins, Ludwik-Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Edward L Hogan
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA.,Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
4
|
Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 2014; 83:79-98. [PMID: 24606142 DOI: 10.1146/annurev-biochem-060713-035324] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany;
| |
Collapse
|
5
|
Kouzel IU, Pirkl A, Pohlentz G, Soltwisch J, Dreisewerd K, Karch H, Müthing J. Progress in Detection and Structural Characterization of Glycosphingolipids in Crude Lipid Extracts by Enzymatic Phospholipid Disintegration Combined with Thin-Layer Chromatography Immunodetection and IR-MALDI Mass Spectrometry. Anal Chem 2014; 86:1215-22. [DOI: 10.1021/ac4035696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ivan U. Kouzel
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Alexander Pirkl
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Jens Soltwisch
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| |
Collapse
|
6
|
Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 2013; 3:1282-324. [PMID: 24961530 PMCID: PMC4061877 DOI: 10.3390/brainsci3031282] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i) cytokine-based immune-intervention (targeting calpain inhibition), (ii) antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation) and (iii) recombinant monoclonal antibodies-induced remyelination.
Collapse
|
7
|
Gately CM, Podbielska M, Counihan T, Hennessy M, Leahy T, Moran AP, Hogan EL, O'Keeffe J. Invariant Natural Killer T-cell anergy to endogenous myelin acetyl-glycolipids in multiple sclerosis. J Neuroimmunol 2013; 259:1-7. [PMID: 23537888 DOI: 10.1016/j.jneuroim.2013.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
To extend our studies on glycolipid-reactive invariant Natural Killer T-cell (iNKT-cell) function in multiple sclerosis (MS), we investigated the stimulatory activities of two myelin-derived glycolipids that are poly-acetylated derivatives of β-galactosylceramide designated as fast-migrating cerebrosides (FMC) by thin-layer chromatography. In healthy subjects, FMC stimulation of peripheral blood cells significantly expanded iNKT-cells similar to α-GalCer and induced significant increases in Th1, Th2 and Th17 cytokines. In marked contrast, MS patients failed to respond to FMCs or to α-GalCer stimulation indicating an anergic response. We propose that myelin-derived FMC glycolipids stimulate iNKT-cell responses in vivo and this is blocked in MS.
Collapse
Affiliation(s)
- Carol M Gately
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hogan EL, Podbielska M, O'Keeffe J. Implications of Lymphocyte Anergy to Glycolipids in Multiple Sclerosis (MS): iNKT Cells May Mediate the MS Infectious Trigger. ACTA ACUST UNITED AC 2013; 4. [PMID: 26347308 PMCID: PMC4557814 DOI: 10.4172/2155-9899.1000144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunogenic lipids may play key roles in host defenses against infection and in generating autoimmune inflammation and organ-specific damage. In multiple sclerosis (MS) there are unequivocal autoimmune features and vulnerability to aggravation or induction by microbial or viral infection. We have found glycolipid-driven anergy of circulating lymphocytes in MS indicating that this immune response is affected in MS and the robust effects of iNKT activation with potent cellular and cytokine activities emphasizes its potential importance. Diverse glycolipids including the endogenous myelin acetylated-galactosylceramides (AcGalCer) can drive activation that could be critical to the inflammatory demyelination in the central nervous system and clinical consequences. The iNKT cells and their invariant or iTCR (Vα24Jα18Vβ11) receptor an innate defense–a discrete immune arm that is separate from peptide-driven acquired immune responses. This offers new possibilities for insight including a likelihood that the pattern recognition of exogenous microbial and myelin immunogens can overlap and cross-react especially in an inflammatory milieu.
Collapse
Affiliation(s)
- Edward L Hogan
- Georgia Regents University, Institute of Molecular Medicine and Genetics, Department of Neurology, 1120 15 Street, Augusta, 30912-2620 GA, USA ; National University of Ireland Galway, Department of Microbiology, University Road, Galway, Ireland ; Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue, Charleston, SC 29401, USA
| | - Maria Podbielska
- Georgia Regents University, Institute of Molecular Medicine and Genetics, Department of Neurology, 1120 15 Street, Augusta, 30912-2620 GA, USA ; Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Laboratory of Signaling Proteins, R. Weigla Street 12, 53-114 Wrocław, Poland
| | - Joan O'Keeffe
- Department of Life and Physical Sciences, School of Science, Galway-Mayo Institute of Technology, Galway, Ireland
| |
Collapse
|
9
|
Le Ven J, Schmitz-Afonso I, Lewin G, Laprévote O, Brunelle A, Touboul D, Champy P. Comprehensive characterization of Annonaceous acetogenins within a complex extract by HPLC-ESI-LTQ-Orbitrap® using post-column lithium infusion. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1500-1509. [PMID: 23147829 DOI: 10.1002/jms.3092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Annonaceous acetogenins (AAGs) are a homogenous class of polyketides proposed as environmental neurotoxins. Previous dereplication studies of AAGs were limited by the use of low-resolution mass spectrometers. Only poor information in terms of structures was provided due to the limited fragmentation of protonated or sodium cationized species. An innovative approach, using reversed-phase high-performance liquid chromatography coupled to a hybrid linear ion trap/orbitrap mass spectrometer (LTQ-Orbitrap®), was therefore performed. Sensitivity was enhanced by post-column infusion of lithium, since AAGs have a high affinity for this cation. High level of structural information was obtained from low-energy-collision-induced dissociation fragmentation experiments of lithium-cationized AAGs ([M + Li](+) ions) as demonstrated with purified standards. The method was then applied to a total ethyl-acetate extract prepared from commercial soursop nectar (Annona muricata L.). The sensitivity, mass accuracy and specific fragmentation patterns proved to be particularly useful for characterization of the AAGs. Typical structural identification procedure and unexpected observations for specific structural types are illustrated, with major and minor compounds.
Collapse
Affiliation(s)
- Jessica Le Ven
- Laboratoire de Pharmacognosie, CNRS UMR 8076 BioCIS, Labex LERMIT, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Thin-layer chromatography, overlay technique and mass spectrometry: A versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:875-96. [DOI: 10.1016/j.bbalip.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/18/2011] [Accepted: 04/10/2011] [Indexed: 12/16/2022]
|
11
|
Podbielska M, Levery SB, Hogan EL. The structural and functional role of myelin fast-migrating cerebrosides: pathological importance in multiple sclerosis. ACTA ACUST UNITED AC 2011; 6:159-179. [PMID: 22701512 DOI: 10.2217/clp.11.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A family of neutral glycosphingolipids containing a 3-O-acetyl-sphingosine galactosylceramide (3-SAG) has been characterized. Seven new derivatives of galactosylceramide (GalCer), designated as fast-migrating cerebrosides (FMCs) by TLC retention factor, have been identified. The simplest compounds - FMC-1 and FMC-2 - of this series have been characterized as the 3-SAG containing nonhydroxy and hydroxy fatty acyl, respectively. The next two - FMC-3 and FMC-4 - add 6-O-acetyl-galactose and the most complex glycosphingolipids, FMC-5, -6 and -7, are 2,3,4,6-tetra-O-acetyl-3-SAG. These hydrophobic myelin lipid biomarkers coappear with GalCer during myelinogenesis and disappear along with GalCer in de- or dys-myelinating disorders. Myelin lipid antigens, including FMCs, are keys to myelin biology, opening the possibility of new and novel immune modulatory tools for treatment of autoimmune diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Maria Podbielska
- Institute of Molecular Medicine & Genetics, Department of Neurology, Georgia Health Sciences University, 1120 15th Street, Building CB2803, Augusta, GA 30912-2620, USA
| | | | | |
Collapse
|
12
|
Schweppe CH, Hoffmann P, Nofer JR, Pohlentz G, Mormann M, Karch H, Friedrich AW, Müthing J. Neutral glycosphingolipids in human blood: a precise mass spectrometry analysis with special reference to lipoprotein-associated Shiga toxin receptors. J Lipid Res 2010; 51:2282-94. [PMID: 20444989 PMCID: PMC2903809 DOI: 10.1194/jlr.m006759] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/05/2010] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli are the leading cause of hemorrhagic colitis and life-threatening extraintestinal complications in humans. Stx1 and Stx2 are transferred by yet to be delineated mechanisms from the intestine to the circulation where they injure microvascular endothelial cells. The resulting vascular lesions cause renal failure and brain damage. Because lipoproteins are potential carriers of Stx through the circulation, we investigated human lipoprotein-associated neutral glycosphingolipids (GSLs) with emphasis on high (globotriaosylceramide) and low (globotetraosylceramide) affinity Stx-receptors. TLC overlay employing Stx1, Stx2, and anti-GSL antibodies demonstrated preferential distribution of globo-series GSLs to very low- and low-density lipoproteins compared with minor association with high-density lipoproteins. Electrospray ionization quadrupole time-of-flight mass spectrometry portrayed C24:0/C24:1 and C16:0 as the major fatty acid of the ceramide moieties of Stx-receptors carrying nonvarying d18:1 sphingosine. This structural heterogeneity was also found in precursor lactosylceramide, glucosylceramide, and galactosylceramide, the last showing an exceptionally high degree of hydroxylated C24 fatty acids. Our findings provide the basis for exploring the functional role of lipoprotein-associated Stx-receptors in human blood.
Collapse
Affiliation(s)
| | - Petra Hoffmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Jerzy-Roch Nofer
- Institute for Clinical Chemistry and Laboratory Medicine, University of Münster, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Medical Physics and Biophysics, University of Münster, D-48149 Münster, Germany
| | - Michael Mormann
- Institute for Medical Physics and Biophysics, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Alexander W. Friedrich
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF) Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF) Münster, D-48149 Münster, Germany
| |
Collapse
|
13
|
Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules. J Chromatogr A 2010; 1217:3908-21. [DOI: 10.1016/j.chroma.2010.02.049] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/17/2010] [Accepted: 02/22/2010] [Indexed: 11/22/2022]
|
14
|
Valitova YN, Kotlova ER, Novikov AV, Shavarda AL, Artemenko KA, Zubarev RA, Minibayeva FV. Binding of sterols affects membrane functioning and sphingolipid composition in wheat roots. BIOCHEMISTRY (MOSCOW) 2010; 75:554-61. [DOI: 10.1134/s0006297910050032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Podbielska M, Dasgupta S, Levery SB, Tourtellotte WW, Annuk H, Moran AP, Hogan EL. Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: structural characterization and immunoreactivity in cerebrospinal fluid. J Lipid Res 2010; 51:1394-406. [PMID: 20154333 DOI: 10.1194/jlr.m001396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fast migrating cerebrosides (FMC) are derivatives of galactosylceramide (GalCer). The structures of the most hydrophobic FMC-5, FMC-6, and FMC-7 were determined by electrospray ionization linear ion-trap mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy complementing previous NMR spectroscopy and gas chromatography-mass spectrometry to be 3-O-acetyl-sphingosine-GalCer derivatives with galactose O-acetyl modifications. FMC-5 and FMC-6 are 3-O-acetyl-sphingosine-2,3,4,6-tetra-O-acetyl-GalCer with nonhydroxy and hydroxy-N-fatty-acids, while FMC-7 has an additional O-acetylation of the 2-hydroxy-fatty acid. The immuno-reactivity in human cerebrospinal fluid (CSF) to these acetylated glycolipids was examined in central nervous system (CNS) infectious disease, noninflammatory disorders, and multiple sclerosis (MS). Screening for lipid binding in MS and other neurological disease groups revealed that the greatest anti-hydrophobic FMC reactivity was observed in the inflammatory CNS diseases (meningitis, meningo-encephalitis, and subacute sclerosing panencephalitis). Some MS patients had increased reactivity with the hydrophobic FMCs and with glycoglycerophospholipid MfGL-II from Mycoplasma fermentans. The cross-reactivity of highly acetylated GalCer with microbial acyl-glycolipid raises the possibility that myelin-O-acetyl-cerebrosides, bacterial infection, and neurological disease are linked.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Podbielska M, Hogan EL. Molecular and immunogenic features of myelin lipids: incitants or modulators of multiple sclerosis? Mult Scler 2009; 15:1011-29. [PMID: 19692432 DOI: 10.1177/1352458509106708] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myelin lipids have long been thought to play intriguing roles in the pathogenesis of multiple sclerosis (MS). This review summarizes current understanding of the molecular basis of MS with emphasis on the: (i.) physico-chemical properties, organization and accessibility of the lipids and their distribution within the myelin multilayer; (ii.) characterization of myelin lipid structures, and structure-function relationships relevant to MS mechanisms, and; (iii.) immunogenic and other features of lipids in MS including molecular mimicry, lipid enzyme genetic knockouts, glycolipid-reactive NKT cells, and monoclonal antibody-induced remyelination. New findings associate anti-lipid antibodies with pathophysiological biomarkers and suggest clinical utility. The structure of CD1d-lipid complexed with the lipophilic invariant T cell receptor (iTCR) may be crucial to understanding MS pathogenesis, and design of lipid antigen-specific therapeutics. Novel immuno-modulatory tools for treatment of autoimmune diseases including MS in which there is both constraint of inflammation and stimulation of remyelination are now emerging.
Collapse
Affiliation(s)
- M Podbielska
- Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | |
Collapse
|
17
|
Souady J, Soltwisch J, Dreisewerd K, Haier J, Peter-Katalinić J, Müthing J. Structural Profiling of Individual Glycosphingolipids in a Single Thin-Layer Chromatogram by Multiple Sequential Immunodetection Matched with Direct IR-MALDI-o-TOF Mass Spectrometry. Anal Chem 2009; 81:9481-92. [DOI: 10.1021/ac901948h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jamal Souady
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Jens Soltwisch
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Jörg Haier
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Jasna Peter-Katalinić
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute of Medical Physics and Biophysics and Institute for Hygiene, University of Münster, D-48149 Münster, Germany, and Department of General Surgery, Münster University Hospital, D-48149 Münster, Germany
| |
Collapse
|
18
|
Automated normal phase nano high performance liquid chromatography/matrix assisted laser desorption/ionization mass spectrometry for analysis of neutral and acidic glycosphingolipids. Anal Bioanal Chem 2008; 391:289-97. [DOI: 10.1007/s00216-008-1932-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/28/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
|
19
|
Dasgupta S, Bhat NR, Spicer SS, Hogan EL, Furuya S, Hirabayashi Y. Cell-specific expression of neutral glycosphingolipids in vertebrate brain: immunochemical localization of 3-O-acetyl-sphingosine-series glycolipid(s) in myelin and oligodendrocytes. J Neurosci Res 2008; 85:2856-62. [PMID: 17638300 DOI: 10.1002/jnr.21419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tissue- and cell-specific expression of three neutral glycosphingolipids, gangliotetraosylceramide (GA1), gangliopentaosylceramide (GalNAc-GA1), and the novel 3-O-acetyl-sphingosine-series glycolipid (FMC-5), were examined with monospecific polyclonal antibodies. Immunohistochemical studies of rodent brain cross-sections indicated that both GA1 and FMC-5 antibodies stained myelin. In contrast, GalNAc-GA1 antibody distinctly stained neurons in cerebral cortex, but only partially delineated Purkinje cells and other neurons in cerebellum. Preliminary studies of mixed glial cultures suggested the following: 1) both FMC-5 and GA1 antibodies stained oligodendrocytes and oligo progenitors, and 2) GalNAc-GA1 antibody did not stain any cells in the culture. Because the GalNAc-GA1 was associated with neurons, we examined the immunoreactivity of GalNAc-GA1 antibody in primary neuronal cultures. Further studies using primary cultures of rat brain oligodendrocytes, and dissociated cerebellar neuronal cultures indicated that both GA1 and FMC-5 are specifically expressed by oligodendrocytes, whereas GalNAc-GA1 is primarily localized in interneurons and to some extent in Purkinje neurons.
Collapse
Affiliation(s)
- Somsankar Dasgupta
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Dasgupta S, Adams JA, Hogan EL. Maternal alcohol consumption increases sphingosine levels in the brains of progeny mice. Neurochem Res 2007; 32:2217-24. [PMID: 17701351 DOI: 10.1007/s11064-007-9445-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 07/13/2007] [Indexed: 10/23/2022]
Abstract
The effect of 'binge' alcohol upon sphingolipid metabolism in the fetal alcohol syndrome (FAS) was examined in pregnant mice (C57BL/6J) by administering a single dose of alcohol during the third trimester (gestational day 15-16). The control mice were administered a sucrose solution of equal caloric value. Brains from progeny at postnatal days 5, 15, 21 and 30 were dissected into three regions, and sphingolipid concentrations of the brain regions were determined including assay of monoglycosylceramide, ceramide, sphingosine and sphingomyelin. We found that a single dose of ethanol induces an elevation of sphingosine (2-3.5-fold) in the brain of progeny. The level of brain ceramide at a dose of 1.5 g/kg was significantly higher than control. Alcohol consumption during pregnancy induces neuronal loss in progeny brains. Our result suggests that the elevation of sphingosine in progeny brain induced by maternal alcohol consumption may be responsible for observed neuronal loss in FAS.
Collapse
Affiliation(s)
- S Dasgupta
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|