1
|
Chen JR, Tsai WH, Su CK. TiO 2 nanoparticle-Coated 3D-Printed porous monoliths enabling highly sensitive speciation of inorganic Cr, As, and Se. Anal Chim Acta 2023; 1271:341489. [PMID: 37328240 DOI: 10.1016/j.aca.2023.341489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Post-printing functionalization can enhance the functionality and applicability of analytical devices manufactured using three-dimensional printing (3DP) technologies. In this study we developed a post-printing foaming-assisted coating scheme-through respective treatments with a formic acid (30%, v/v) solution and a sodium bicarbonate (0.5%, w/v) solution incorporating titanium dioxide nanoparticles (TiO2 NPs; 1.0%, w/v)-for in situ fabrication of TiO2 NP-coated porous polyamide monoliths in 3D-printed solid phase extraction columns, thereby enhancing the extraction efficiencies of Cr(III), Cr(VI), As(III), As(V), Se(IV), and Se(VI) for speciation of inorganic Cr, As, and Se species in high-salt-content samples when using inductively coupled plasma mass spectrometry. After optimizing the experimental conditions, the 3D-printed solid phase extraction columns with the TiO2 NP-coated porous monoliths extracted these species with 5.0- to 21.9-fold enhancements, relative to those obtained with the uncoated monolith, with absolute extraction efficiencies ranging from 84.5 to 98.3% and method detection limits ranging from 0.7 to 32.3 ng L-1. We validated the reliability of this multi-elemental speciation method through determination of these species in four reference materials [CASS-4 (nearshore seawater), SLRS-5 (river water), 1643f (fresh water), and Seronorm Trace Elements Urine L-2 (human urine); relative errors between certified and measured concentrations: 5.6 to +4.0%] and spike analyses of seawater, river water, agriculture waste, and human urine samples (spike recoveries: 96-104%; relative standard deviations of these measured concentrations all below 4.3%). Our results demonstrate that post-printing functionalization has great potential for future applicability in 3DP-enabling analytical methods.
Collapse
Affiliation(s)
- Jyun-Ran Chen
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Wen-Hsiu Tsai
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC.
| |
Collapse
|
2
|
Takata N, Myburgh J, Botha A, Nomngongo PN. The importance and status of the micronutrient selenium in South Africa: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3703-3723. [PMID: 34708333 DOI: 10.1007/s10653-021-01126-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) is a vital micronutrient with widespread biological action but leads to toxicity when taken in excessive amounts. The biological benefits of Se are mainly derived from its presence in active sites of selenoproteins such as glutathione peroxidase (GPx). An enzyme whose role is to protect tissues against oxidative stress by catalysing the reduction of peroxidase responsible for various forms of cellular damage. The benefits of Se can be harvested when proper regulations of its intake are used. In South Africa, Se distribution in people's diets and animals are low with socio-economic factors and heterogeneous spread of Se in soil throughout the country playing a significant role. The possible causes of low Se in soils may be influenced by underlying geological material, climatic conditions, and anthropogenic activities. Sedimentary rock formations show higher Se concentrations compared to igneous and metamorphic rock formations. Higher Se concentrations in soils dominates in humid and sub-humid areas of South Africa. Furthermore, atmospheric acid deposition dramatically influences the availability of Se to plants. The studies reviewed in this article have shown that atomic absorption spectroscopy (AAS) is the most utilised analytical technique for total Se concentration determination in environmental samples and there is a lack of speciation data for Se concentrations. Shortcomings in Se studies have been identified, and the future research directions of Se in South Africa have been discussed.
Collapse
Affiliation(s)
- Nwabisa Takata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa
- National Metrology Institute of South Africa, CSIR Campus, Building 5, Meiring Naude Road, Brummeria, Pretoria, 0182, South Africa
| | - Jan Myburgh
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Angelique Botha
- National Metrology Institute of South Africa, CSIR Campus, Building 5, Meiring Naude Road, Brummeria, Pretoria, 0182, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa.
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
3
|
Losev V, Didukh-Shadrina S, Orobyeva A, Borodina E, Elsuf'ev E, Metelitsa S, Ondar U. Speciation of inorganic selenium in natural water by in situ solid-phase extraction using functionalized silica. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2771-2781. [PMID: 35796237 DOI: 10.1039/d2ay00903j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functionalized adsorbents with poly-(4,9-dioxododecane-1,12-guanidine) (SiO2-PDDG) and mercaptophenyl groups (MPhS) were used for the separation of Se(VI) and Se(IV) for the first time. Fixation of PDDG was characterized by capillary electrophoresis and TGA/DSC. The quantitative extraction of Se(VI) proceeded due to anion exchange at pH 3-7. The adsorption capacity of SiO2-PDDG for Se(VI) was 28 μmol g-1. Silicas with mercaptophenyl groups were used for the extraction of Se(IV) from solutions in the range of 2 M HCl - pH 6.5. The adsorption capacity of MPhS was 35 μmol g-1. A system of columns containing synthesized adsorbents was proposed for the separation of Se(VI) and Se(IV) and their subsequent determination by ICP-MS. Optimal parameters of adsorption include a flow rate of 1 mL min-1, pH of 5, and sample volume of 200 mL. Se(IV) was desorbed with 5 mL of 0.25 M 2,3-dimercapto-1-propanesulphonic acid and Se(VI) with 5 mL of 1 M HNO3. The preconcentration factor was 40. The limits of detection (3s) were 0.75 and 1.25 ng L-1 for Se(VI) and Se(IV), respectively. The proposed method (SPE-ICPMS) was used to determine selenium species in natural water and certified reference materials. The separation was carried out directly at the sampling site.
Collapse
Affiliation(s)
- Vladimir Losev
- Scientific Research Engineering Centre "Kristall", Siberian Federal University, Krasnoyarsk, 660041, Russian Federation.
| | - Svetlana Didukh-Shadrina
- Scientific Research Engineering Centre "Kristall", Siberian Federal University, Krasnoyarsk, 660041, Russian Federation.
| | - Anastasya Orobyeva
- Scientific Research Engineering Centre "Kristall", Siberian Federal University, Krasnoyarsk, 660041, Russian Federation.
| | - Elena Borodina
- Scientific Research Engineering Centre "Kristall", Siberian Federal University, Krasnoyarsk, 660041, Russian Federation.
| | - Evgeniy Elsuf'ev
- Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
| | - Sergey Metelitsa
- Scientific Research Engineering Centre "Kristall", Siberian Federal University, Krasnoyarsk, 660041, Russian Federation.
| | - Urana Ondar
- Tuva State University, Kyzyl, Tuva Republic, 667000, Russian Federation
| |
Collapse
|
4
|
Filip J, Vinter Š, Čechová E, Sotolářová J. Materials interacting with inorganic selenium from the perspective of electrochemical sensing. Analyst 2021; 146:6394-6415. [PMID: 34596173 DOI: 10.1039/d1an00677k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inorganic selenium, the most common form of harmful selenium in the environment, can be determined using electrochemical sensors, which are compact, fast, reliable and easy-to-operate devices. Despite progress in this area, there is still significant room for developing high-performance selenium electrochemical sensors. To achieve this, one should take into account (i) the electrochemical process that selenium undergoes on the electrode; (ii) the valence state of selenium species in the sample and (iii) modification of the sensor surface by a material with high affinity to selenium. The goal of this review is to provide a knowledge base for these issues. After the Introduction section, mechanisms and principles of the electrochemical reduction of selenium are introduced, followed by a section introducing the modification of electrodes with materials interacting with selenium and a section dedicated to speciation methods, including the reduction of non-detectable Se(VI) to detectable Se(IV). In the following sections, the main types of materials (metallic, polymers, hybrid (nano)materials…) interacting with inorganic selenium (mostly absorbents) are reviewed to show the diversity of properties that may be endowed to sensors if the materials were to be used for the modification of electrodes. These features for the main material categories are outlined in the conclusion section, where it is stated that the engineered polymers may be the most promising modifiers.
Collapse
Affiliation(s)
- Jaroslav Filip
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Štěpán Vinter
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Erika Čechová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Jitka Sotolářová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| |
Collapse
|
5
|
LeBlanc KL, Mester Z. Compilation of selenium metabolite data in selenized yeasts. Metallomics 2021; 13:6307519. [PMID: 34156080 DOI: 10.1093/mtomcs/mfab031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/30/2021] [Indexed: 11/12/2022]
Abstract
Selenium-enriched yeast has long been recognized as an important nutritional source of selenium and studies have suggested that supplementation with this material provides chemo-preventative benefits beyond those observed for selenomethionine supplementation, despite the fact that selenomethionine accounts for 60-84% of the total selenium in selenized yeasts. There is much ongoing research into the characterization of the species comprising the remaining 16-40% of the selenium, with nearly 100 unique selenium-containing metabolites identified in aqueous extracts of selenized yeasts (Saccharomyces cerevisiae). Herein, we discuss the analytical approaches involved in the identification and quantification of these metabolites, and present a recently created online database (DOI: 10.4224/40001921) of reported selenium species along with chemical structures and unique mass spectral features.
Collapse
Affiliation(s)
- Kelly L LeBlanc
- National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada
| | - Zoltán Mester
- National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Searching for Low Molecular Weight Seleno-Compounds in Sprouts by Mass Spectrometry. Molecules 2020; 25:molecules25122870. [PMID: 32580370 PMCID: PMC7355765 DOI: 10.3390/molecules25122870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 01/20/2023] Open
Abstract
A fit for purpose analytical protocol was designed towards searching for low molecular weight seleno-compounds in sprouts. Complementary analytical techniques were used to collect information enabling the characterization of selenium speciation. Conceiving the overall characterization of the behavior of selenium, inductively plasma optical mass spectrometry (ICP-MS) was used to determine the total selenium content in entire sprouts as well as in selected extracts or chromatographic fractions. Then, high-performance liquid chromatography combined with ICP-MS (HPLC-ICP-MS) was used to evaluate the presence of inorganic and organic seleno-compounds, with the advantages of being very sensitive towards selenium, but limited by available selenium standard compounds. Finally, ultra-high performance liquid chromatography electrospray ionization triple quadrupole mass spectrometry (UHPLC-ESI-QqQ-MS/MS) and UHPLC-ESI-Orbitrap-MS/MS were used for the confirmation of the identity of selected compounds and identification of several unknown compounds of selenium in vegetable sprouts (sunflower, onion, radish), respectively. Cultivation of plants was designed to supplement sprouts with selenium by using solutions of selenium (IV) at the concentration of 10, 20, 40, and 60 mg/L. The applied methodology allowed to justify that vegetable sprouts metabolize inorganic selenium to a number of organic derivatives, such as seleno-methylselenocysteine (SeMetSeCys), selenomethionine (SeMet), 5′-seleno-adenosine, 2,3-DHP-selenolanthionine, Se-S conjugate of cysteine-selenoglutathione, 2,3-DHP-selenocysteine-cysteine, 2,3-DHP-selenocysteine-cysteinealanine, glutathione-2,3-DHP-selenocysteine, gamma-Glu-MetSeCys or glutamyl-glycinyl-N-2,3-DHP-selenocysteine.
Collapse
|
7
|
Patra AR, Hajra S, Baral R, Bhattacharya S. Use of selenium as micronutrients and for future anticancer drug: a review. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00306-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
8
|
Ding Y, Liu Y, Chen Y, Huang Y, Gao Y. Photochemical Vapor Generation for Colorimetric Speciation of Inorganic Selenium. Anal Chem 2019; 91:3508-3515. [PMID: 30719906 DOI: 10.1021/acs.analchem.8b05117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles (AuNPs) are widely used as optical probes in colorimetric detection, thanks to their high molar extinction coefficient. However, sample matrixes of high salinity or strong acidity/alkalinity often break the electrostatic repulsion of AuNPs suspension, or/and the surface functionality of AuNPs, causing strong and unfavorable interferences. Photochemical vapor generation (PVG) is an efficient technique for the sample matrix separation. Besides, it possesses distinct features of green reducing reagent, reduced interferences from concomitant elements, and direct speciation by the assistance of photocatalyst. Herein, we developed a photochemical vapor generation (PVG) method for the green and direct speciation analysis of inorganic selenium (i.e., Se(IV) and Se(VI)), by colorimetric or visual monitoring of unmodified AuNPs. The generated Se species from PVG were directed into the AuNPs solution for a reaction to take place, which produced a specific new absorption band at 600 nm for detection. The experimental parameters, including the concentration of organic acid, the sample flow rate, the concentration of AuNPs, and the flow rate of carries gas, were optimized in detail. Under optimized conditions, the limits of detection (LOD) for Se(IV) and Se(VI) were 0.007 and 0.006 μg mL-1 by UV-vis detection, respectively. It is worth mentioning that 0.08 μg mL-1 Se can induce an obvious color change, which can be directly observed with the naked eye. Relative standard deviations (RSDs) of 4.5% and 4.3% were obtained from seven replicate measurements of 0.15 μg mL-1 Se(IV) and Se(VI) standard solution, respectively. The developed assay has been successfully applied for the speciation of Se in a dietary supplement sample and environmental water samples including lake water, seawater, simulated water reference materials, and tap water.
Collapse
|
9
|
Fernandes J, Hu X, Ryan Smith M, Go YM, Jones DP. Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med 2018; 127:215-227. [PMID: 29883789 PMCID: PMC6168380 DOI: 10.1016/j.freeradbiomed.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/19/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is a redox-active environmental mineral that is converted to only a small number of metabolites and required for a relatively small number of mammalian enzymes. Despite this, dietary and environmental Se has extensive impact on every layer of omics space. This highlights a need for global network response structures to provide reference for targeted, hypothesis-driven Se research. In this review, we survey the Se research literature from the perspective of the responsive physical and chemical barrier between an organism (functional genome) and its environment (exposome), which we have previously termed the redox interface. Recent advances in metabolomics allow molecular phenotyping of the integrated genome-metabolome-exposome structure. Use of metabolomics with transcriptomics to map functional network responses to supplemental Se in mice revealed complex network responses linked to dyslipidemia and weight gain. Central metabolic hubs in the network structure in liver were not directly linked to transcripts for selenoproteins but were, instead, linked to transcripts for glucose transport and fatty acid β-oxidation. The experimental results confirm the survey of research literature in showing that Se interacts with the functional genome through a complex network response structure. The results imply that systematic application of data-driven integrated omics methods to models with controlled Se exposure could disentangle health benefits and risks from Se exposures and also serve more broadly as an experimental paradigm for exposome research.
Collapse
Affiliation(s)
- Jolyn Fernandes
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Xin Hu
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - M Ryan Smith
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
10
|
Yu X, Chen B, He M, Wang H, Hu B. Chip-based magnetic solid phase microextraction coupled with ICP-MS for the determination of Cd and Se in HepG2 cells incubated with CdSe quantum dots. Talanta 2018; 179:279-284. [DOI: 10.1016/j.talanta.2017.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/12/2023]
|
11
|
He M, Huang L, Zhao B, Chen B, Hu B. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review. Anal Chim Acta 2017; 973:1-24. [DOI: 10.1016/j.aca.2017.03.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 12/17/2022]
|
12
|
Ochsenkühn-Petropoulou M, Tsopelas F, Ruzik L, Bierła K, Szpunar J. Selenium and Selenium Species. Metallomics 2016. [DOI: 10.1002/9783527694907.ch6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Ochsenkühn-Petropoulou
- National Technical University of Athens, School of Chemical Engineering; Laboratory of Inorganic and Analytical Chemistry; Iroon Polytechneiou 9, Zografou Campus 157 80 Athens Greece
| | - Fotios Tsopelas
- Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - Lena Ruzik
- National Technical University of Athens, School of Chemical Engineering; Laboratory of Inorganic and Analytical Chemistry; Iroon Polytechneiou 9, Zografou Campus 157 80 Athens Greece
| | - Katarzyna Bierła
- Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - Joanna Szpunar
- CNRS-UPPA IPREM; , Laboratory of Bioinorganic Analytical and Environmental Chemistry, UMR 5254; 2, Avenue Président Angot 64053 Pau France
| |
Collapse
|
13
|
Zhang Y, Chen B, Wu S, He M, Hu B. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples. Talanta 2016; 154:474-80. [PMID: 27154702 DOI: 10.1016/j.talanta.2016.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022]
Abstract
In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Shaowei Wu
- College of Chemistry and Environmental Engineering, Hubei Institute for Nationalities, Enshi 445000, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Tseng WC, Hsu KC, Shiea CS, Huang YL. Recent trends in nanomaterial-based microanalytical systems for the speciation of trace elements: A critical review. Anal Chim Acta 2015; 884:1-18. [DOI: 10.1016/j.aca.2015.02.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 01/05/2023]
|
15
|
|
16
|
Nanometer-sized materials for solid-phase extraction of trace elements. Anal Bioanal Chem 2015; 407:2685-710. [DOI: 10.1007/s00216-014-8429-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Accepted: 12/18/2014] [Indexed: 12/25/2022]
|
17
|
Peng H, Zhang N, He M, Chen B, Hu B. Simultaneous speciation analysis of inorganic arsenic, chromium and selenium in environmental waters by 3-(2-aminoethylamino) propyltrimethoxysilane modified multi-wall carbon nanotubes packed microcolumn solid phase extraction and ICP-MS. Talanta 2014; 131:266-72. [PMID: 25281102 DOI: 10.1016/j.talanta.2014.07.054] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/25/2022]
Abstract
Speciation analysis of inorganic arsenic, chromium and selenium in environmental waters is of great significance for the monitoring of environmental pollution. In this work, 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS) functionalized multi-wall carbon nanotubes (MWCNTs) were synthesized and employed as the adsorbent for simultaneous speciation analysis of inorganic arsenic, chromium and selenium in environmental waters by microcolumn solid-phase extraction (SPE)-inductively coupled plasma mass spectrometry (ICP-MS). It was found that As(V), Cr(VI) and Se(VI) could be selectively adsorbed on the microcolumn packed with AAPTS-MWCNTs adsorbent at pH around 2.2, while As(III), Cr(III) and Se(IV) could not be retained at this pH and passed through the microcolumn directly. Total inorganic arsenic, chromium and selenium was determined after the oxidation of As(III), Cr(III) and Se(IV) to As(V), Cr(VI) and Se(VI) with 10.0 μmol L(-1) KMnO4. The assay of As(III), Cr(III) and Se(IV) was based on subtracting As(V), Cr(VI) and Se(VI) from the total As, Cr and Se, respectively. Under the optimized conditions, the detection limits of 15, 38 and 16 ng L(-1) with the relative standard deviations (RSDs) of 7.4, 2.4 and 6.2% (c=1 µg L(-1), n=7) were obtained for As(V), Cr(VI) and Se(VI), respectively. The developed method was validated by analyzing four Certified Reference Materials, rainwater, Yangtze River and East Lake waters.
Collapse
Affiliation(s)
- Hanyong Peng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Nan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
18
|
Wei XS, Wu YW, Han LJ, Guo J, Sun HL. Speciation of inorganic selenium in environmental water samples by inductively coupled plasma optical emission spectrometry after preconcentration by using a mesoporous zirconia coating on coal cinder. J Sep Sci 2014; 37:2260-7. [PMID: 24841359 DOI: 10.1002/jssc.201301387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
A simple, novel, and selective flow-injection solid-phase extraction with inductively coupled plasma optical emission spectrometry method was developed for the speciation of inorganic selenium in environmental water samples. A mesoporous zirconia film was simply introduced to coat coal cinder by means of the sol-gel technique, and the adsorptive performance of the coated material for Se(IV)/Se(VI) was investigated in different media. Both Se(IV) and Se(VI) can be retained quantitatively by the material in HCl/NaOH (pH 1.0-9.0) media, while only Se(IV) was adsorbed quantitatively in sodium acetate buffer (pH 3.5-6.0). Thus, the assay of Se(VI) is based on subtracting Se(IV) from total selenium by controlling different adsorptive media without employing any redox procedure. Under the optimum conditions, the detection limit of Se(IV) is 9.0 ng/L with an enrichment factor of 100, and the relative standard deviation is 3.6% (n = 9, C = 5.0 ng/mL). The developed method was successfully applied to the speciation of inorganic selenium in environmental water samples with satisfactory results. In order to further verify the accuracy of the developed method, it was applied to analysis of total selenium in GSBZ 50031-94 certified reference environmental water, and the determined values coincided with the certified values very well.
Collapse
Affiliation(s)
- Xiao-Shu Wei
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technique, Hubei Normal University, Huangshi, P.R. China
| | | | | | | | | |
Collapse
|
19
|
Corona T, Iglesias M, Anticó E. Migration of components from cork stoppers to food: challenges in determining inorganic elements in food simulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5690-5698. [PMID: 24861000 DOI: 10.1021/jf500170w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The inorganic elements potentially migrating from cork to a food simulant [a hydroalcoholic solution containing 12 and 20% (v/v) ethanol] have been determined by means of inductively coupled plasma (ICP) with atomic emission and mass spectrometric detection. The experimental instrumental conditions were evaluated in depth, taking into account spectroscopic and nonspectroscopic interference caused by the presence of ethanol and other components in the sample. We report concentrations ranging from 4 μg kg(-1) for Cd to 28000 μg kg(-1) for Al in the food simulant (concentrations given in kilograms of cork). The values found for Ba, Mn, Fe, Cu, and Zn have been compared with the guideline values stated in EU Regulation 10/2011. In all cases, cork met the general safety criteria applicable to food contact material. Finally, we have proposed water as an alternative to the hydroalcoholic solution to simplify quantification of the tested elements using ICP techniques.
Collapse
Affiliation(s)
- T Corona
- Department of Chemistry, University of Girona , 17071 Girona, Spain
| | | | | |
Collapse
|
20
|
Herrero Latorre C, Barciela García J, García Martín S, Peña Crecente RM. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review. Anal Chim Acta 2013; 804:37-49. [PMID: 24267061 DOI: 10.1016/j.aca.2013.09.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/29/2022]
Abstract
Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed.
Collapse
Affiliation(s)
- C Herrero Latorre
- Universidad de Santiago de Compostela, Dpto. Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo, Spain.
| | | | | | | |
Collapse
|
21
|
Zhang Y, Duan J, He M, Chen B, Hu B. Dispersive liquid liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic selenium in environmental water samples. Talanta 2013; 115:730-6. [DOI: 10.1016/j.talanta.2013.06.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
|
22
|
Nanoparticles and continuous-flow systems combine synergistically for preconcentration. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
|
24
|
Duan J, Hu B, He M. Nanometer-sized alumina packed microcolumn solid-phase extraction combined with field-amplified sample stacking-capillary electrophoresis for the speciation analysis of inorganic selenium in environmental water samples. Electrophoresis 2012; 33:2953-60. [DOI: 10.1002/elps.201200156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/12/2012] [Accepted: 07/11/2012] [Indexed: 11/10/2022]
|
25
|
Mao X, Hu B, He M, Chen B. High polar organic–inorganic hybrid coating stir bar sorptive extraction combined with high performance liquid chromatography–inductively coupled plasma mass spectrometry for the speciation of seleno-amino acids and seleno-oligopeptides in biological samples. J Chromatogr A 2012; 1256:32-9. [DOI: 10.1016/j.chroma.2012.07.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 11/15/2022]
|
26
|
Cloud Point Extraction-Inductively Coupled Plasma Mass Spectrometry for Separation/Analysis of Aqueous-Exchangeable and Unaqueous-Exchangeable Selenium in Tea Samples. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9472-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Arslan Y, Yildirim E, Gholami M, Bakirdere S. Lower limits of detection in speciation analysis by coupling high-performance liquid chromatography and chemical-vapor generation. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2010.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Mao X, Chen B, Huang C, He M, Hu B. Titania immobilized polypropylene hollow fiber as a disposable coating for stir bar sorptive extraction–high performance liquid chromatography–inductively coupled plasma mass spectrometry speciation of arsenic in chicken tissues. J Chromatogr A 2011; 1218:1-9. [DOI: 10.1016/j.chroma.2010.10.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/23/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
29
|
Duan J, Hu B. Speciation of selenomethionine and selenocystine using online micro-column containing Cu(II) loaded nanometer-sized Al2O3 coupled with ICP-MS detection. Talanta 2009; 79:734-8. [DOI: 10.1016/j.talanta.2009.04.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 11/26/2022]
|
30
|
Gonzalvez A, Cervera M, Armenta S, de la Guardia M. A review of non-chromatographic methods for speciation analysis. Anal Chim Acta 2009; 636:129-57. [DOI: 10.1016/j.aca.2009.01.065] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
|
31
|
Monasterio RP, Lascalea GE, Martínez LD, Wuilloud RG. Determination of Cr(VI) and Cr(III) species in parenteral solutions using a nanostructured material packed-microcolumn and electrothermal atomic absorption spectrometry. J Trace Elem Med Biol 2009; 23:157-66. [PMID: 19486825 DOI: 10.1016/j.jtemb.2009.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/06/2009] [Accepted: 03/18/2009] [Indexed: 11/17/2022]
Abstract
A sequential on-line preconcentration and separation system for Cr(VI) and Cr(III) species determination was developed in this work. For this purpose, a microcolumn filled with nanostructured alpha-alumina was used for on-line retention of Cr species in a flow-injection system. The method involves the selective elution of Cr(VI) with concentrated ammonia and Cr(III) with 1mol L(-1) nitric acid for sequential injection into an electrothermal atomic absorption spectrometer (ETAAS). Analytical parameters including pH, eluent type, flow rates of sample and eluent, interfering effects, etc., were optimized. The preconcentration factors for Cr(VI) and Cr(III) were 41 and 18, respectively. The limit of detection (LOD) was 1.9 ng L(-1) for Cr(VI) and 6.1 ng L(-1) for Cr(III). The calibration graph was linear with a correlation coefficient of 0.999. The relative standard deviation (RSD) was 8.6% for Cr(VI) and 6.1% for Cr(III) (c = 10 microg L(-1), n=10, sample volume = 25 mL). Verification of the accuracy was carried out by analysis of a standard reference material (NIST SRM 1643e "Trace elements in natural water") with a reported Cr content of 20.40+/-0.24 microg L(-1). Using the proposed methodology the total Cr content, computed as sum of Cr(III) and Cr(VI), in this SRM was 20.26+/-0.96 microg L(-1). The method was successfully applied to the determination of Cr(VI) and Cr(III) species in parenteral solutions. Concentration of Cr(III) species was found to be in the range of 0.29-3.62 microg L(-1), while Cr(VI) species was not detected in the samples under study.
Collapse
Affiliation(s)
- Romina P Monasterio
- Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martín, CC. 131, M 5502 IRA Mendoza, Argentina
| | | | | | | |
Collapse
|