1
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
2
|
Ma Q, Ran B, Wu J, Zhang R, Wei Z, Wang H. A novel fluorescent "on-off-on" sensor for monohydrogen phosphate based on the 5, 10, 15, 20-(4-sulphonatophenyl) porphyrin (TSPP) in nutrient solution and DFT calculation. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424622500055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Detection of Cadmium-related ions by MALDI TOF mass spectrometry correlates with physicochemical properties of Cadmium/matrix adducts. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Qiao Z, Lissel F. MALDI Matrices for the Analysis of Low Molecular Weight Compounds: Rational Design, Challenges and Perspectives. Chem Asian J 2021; 16:868-878. [PMID: 33657276 PMCID: PMC8251880 DOI: 10.1002/asia.202100044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Indexed: 02/03/2023]
Abstract
The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and "MALDI silent", i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode.
Collapse
Affiliation(s)
- Zhi Qiao
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
| |
Collapse
|
5
|
Calvano CD, Monopoli A, Cataldi TRI, Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem 2018; 410:4015-4038. [DOI: 10.1007/s00216-018-1014-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
6
|
Kempe H, Yamamoto J, Ishida M, Takahashi N, Yoshino J, Hayashi N, Higuchi H. Cooperative Effect of Spacer and Lewis Base on Highly Reversible Spectral Changes of the Octaethylporphyrin Chromatic System in Sensitivity, Stability, and Visibility to Trifluoroacetic Acid. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Kiss A, Hopfgartner G. Laser-based methods for the analysis of low molecular weight compounds in biological matrices. Methods 2016; 104:142-53. [DOI: 10.1016/j.ymeth.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/28/2016] [Accepted: 04/13/2016] [Indexed: 01/26/2023] Open
|
8
|
Hitzenberger JF, Dammann C, Lang N, Lungerich D, García-Iglesias M, Bottari G, Torres T, Jux N, Drewello T. Making the invisible visible: improved electrospray ion formation of metalloporphyrins/-phthalocyanines by attachment of the formate anion (HCOO(-)). Analyst 2016; 141:1347-55. [PMID: 26753183 DOI: 10.1039/c5an02148k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.
Collapse
Affiliation(s)
- Jakob Felix Hitzenberger
- Physical Chemistry I, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Claudia Dammann
- Physical Chemistry I, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Nina Lang
- Organic Chemistry II, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Henkestraße 42, 91054 Erlangen, Germany.
| | - Dominik Lungerich
- Organic Chemistry II, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Henkestraße 42, 91054 Erlangen, Germany.
| | - Miguel García-Iglesias
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Giovanni Bottari
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. and IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. and IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Norbert Jux
- Organic Chemistry II, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Henkestraße 42, 91054 Erlangen, Germany.
| | - Thomas Drewello
- Physical Chemistry I, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| |
Collapse
|
9
|
Dong Y, Li B, Malitsky S, Rogachev I, Aharoni A, Kaftan F, Svatoš A, Franceschi P. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review. FRONTIERS IN PLANT SCIENCE 2016; 7:60. [PMID: 26904042 PMCID: PMC4748743 DOI: 10.3389/fpls.2016.00060] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.
Collapse
Affiliation(s)
- Yonghui Dong
- Biostatistics and Data Management, Research and Innovation Centre - Fondazione Edmund MachS. Michele all'Adige, Italy
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Bin Li
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Filip Kaftan
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| | - Pietro Franceschi
- Biostatistics and Data Management, Research and Innovation Centre - Fondazione Edmund MachS. Michele all'Adige, Italy
- *Correspondence: Pietro Franceschi
| |
Collapse
|
10
|
Mangione G, Sambi M, Carlotto S, Vittadini A, Ligorio G, Timpel M, Pasquali L, Giglia A, Nardi MV, Casarin M. Electronic structure of CuTPP and CuTPP(F) complexes: a combined experimental and theoretical study II. Phys Chem Chem Phys 2016; 18:24890-904. [DOI: 10.1039/c6cp03956a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CuTPP and CuTPP(F) thick films deposited on Au(111) have been studied by coupling NEXAFS spectroscopy at the C/N/FK-edges and CuL2,3-edges and spin-unrestricted TD-DFT calculations.
Collapse
Affiliation(s)
- Giulia Mangione
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Mauro Sambi
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Silvia Carlotto
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Andrea Vittadini
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia – ICMATE
- 35131 Padova
- Italy
| | - Giovanni Ligorio
- Institute for Physics
- Supramolecular Systems Division “SMS” Humboldt Universität zu Berlin
- 12489 Berlin
- Germany
| | - Melanie Timpel
- Institute for Physics
- Supramolecular Systems Division “SMS” Humboldt Universität zu Berlin
- 12489 Berlin
- Germany
- Istituto dei Materiali per l'Elettronica ed il Magnetismo
| | - Luca Pasquali
- Dipartimento di Ingegneria “E. Ferrari”
- Università degli Studi di Modena e Reggio Emilia
- 41125 Modena
- Italy
- Istituto Officina dei Materiali
| | - Angelo Giglia
- Istituto Officina dei Materiali
- IOM-CNR
- Trieste
- Italy
- Istituto di Struttura della Materia
| | - Marco Vittorio Nardi
- Institute for Physics
- Supramolecular Systems Division “SMS” Humboldt Universität zu Berlin
- 12489 Berlin
- Germany
- Istituto dei Materiali per l'Elettronica ed il Magnetismo
| | - Maurizio Casarin
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia – ICMATE
| |
Collapse
|
11
|
Arnold A, Persike M, Gorka J, Dommett EJ, Zimmermann M, Karas M. Fast quantitative determination of methylphenidate levels in rat plasma and brain ex vivo by MALDI-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:963-971. [PMID: 28338275 DOI: 10.1002/jms.3605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 06/06/2023]
Abstract
This study presents a simple and sensitive high-throughput matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-MS/MS) method for ex vivo quantification of methylphenidate (MPH) in rat plasma and brain. The common MALDI matrix alpha-cyano-4-hydroxycinnamic acid was used to obtain an optimal dried droplet preparation. For method validation, standards diluted in plasma and brain homogenate prepared from untreated (control) rats were used. MPH was quantified within a concentration range of 0.1-40 ng/ml in plasma and 0.4-40 ng/ml in brain homogenate with an excellent linearity (R2 ≥ 0.9997) and good precision. The intra-day and inter-day accuracies fulfilled the FDA's ±15/20 critera. The recovery of MPH ranged from 93.8 to 98.5% and 87.2 to 99.8% in plasma and homogenate, respectively. We show that MPH is successfully quantified in plasma and brain homogenate of rats pre-treated with this drug using the internal standard calibration method. By means of this method, a linear correlation between plasma and brain concentration of MPH in rodents pre-treated with MPH was detected. The simple sample preparation based on liquid-liquid extraction and MALDI-MS/MS measurement requires approximately 10 s per sample, and this significantly reduces analysis time compared with other analytical methods. To the best of our knowledge, this is the first MALDI-MS/MS method for quantification of MPH in rat plasma and brain. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anne Arnold
- Cluster of Excellence 'Macromolecular Complexes', Department of Pharmaceutical Chemistry, School of Pharmacy, Goethe University, Frankfurt, Germany
| | - Markus Persike
- Cluster of Excellence 'Macromolecular Complexes', Department of Pharmaceutical Chemistry, School of Pharmacy, Goethe University, Frankfurt, Germany
| | - Jan Gorka
- Cluster of Excellence 'Macromolecular Complexes', Department of Pharmaceutical Chemistry, School of Pharmacy, Goethe University, Frankfurt, Germany
| | - Eleanor J Dommett
- Brain and Behavioural Sciences, Department of Life, Health and Chemical Sciences, Biomedical Research Network, The Open University, Milton Keynes, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Martina Zimmermann
- Department of Pharmacology, School of Pharmacy, Goethe University, Frankfurt, Germany
| | - Michael Karas
- Cluster of Excellence 'Macromolecular Complexes', Department of Pharmaceutical Chemistry, School of Pharmacy, Goethe University, Frankfurt, Germany
| |
Collapse
|
12
|
Tzeli D, Petsalakis ID, Theodorakopoulos G. Theoretical study on the electronic structure, formation and absorption spectra of lithium, sodium and potassium complexes of N-confused tetraphenylporphyrin. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Radisavljević M, Kamceva T, Vukićević I, Nisavić M, Milovanović M, Petković M. Sensitivity and accuracy of organic matrix-assisted laser desorption and ionisation mass spectrometry of FeCl3 is higher than in in matrix-free approach. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2013; 19:77-89. [PMID: 24261080 DOI: 10.1255/ejms.1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We compare the quality and reliability of laser desorption and ionisation mass spectra of FeCl3 acquired without the assistance of the matrix with the spectra acquired with different organic matrix molecules. Generally, inorganic salts tend to form clusters upon laser irradiation, the signals of which can be easily distinguished from ions arising from the matrix. In the presence of a matrix, cluster ions are, however, mostly suppressed. We have compared the number of analyte signals, accuracy of determination of isotope composition of the analyte and the sensitivity of FeCl3 detection between different approaches. The results obtained imply that the sensitivity of mass spectrometric analysis of FeCl3 is somewhat higher when matrices are applied than in the matrix-free approach. Among all matrices tested in this work, F20TPP seems to be the most promising for further applications as a matrix for mass spectrometry of inorganic salts.
Collapse
Affiliation(s)
- Maja Radisavljević
- Laboratory of Physical Chemistry, Vinća, Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
14
|
Nardi M, Verucchi R, Aversa L, Casarin M, Vittadini A, Mahne N, Giglia A, Nannarone S, Iannotta S. Electronic properties of tetrakis(pentafluorophenyl)porphyrin. NEW J CHEM 2013. [DOI: 10.1039/c3nj40910d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Tzeli D, Petsalakis ID, Theodorakopoulos G. Computational insight into the electronic structure and absorption spectra of lithium complexes of N-confused tetraphenylporphyrin. J Phys Chem A 2011; 115:11749-60. [PMID: 21899374 DOI: 10.1021/jp204298q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present work is a theoretical investigation on lithium complexes of N-confused tetraphenylporphyrins (aka inverted) employing density functional theory (DFT) and time-dependent DFT, using the B3LYP, CAM-B3LYP, and M06-2X functionals in conjunction with the 6-31G(d,p) basis set. The purpose of the present study is to calculate the electronic structure and the bonding of the complexes to explain the unusual coordination environment in which Li is found experimentally and how the Li binding affects the Q and the Soret bands. The calculations show that, unlike a typical tetrahedral Li(+) cation, this Li forms a typical bond with one N and interacts with the remaining two N atoms, and it is located in the right place to form an agostic-like interaction with the internal C atom. The reaction energy, the enthalpy for the formation of the lithium complexes of N-confused porphyrins, and the effect of solvation are also calculated. The insertion of Li into N-confused porphyrin, in the presence of tetrahydrofuran, is exothermic with a reaction energy calculated to be as high as -72.4 kcal/mol using the lithium bis(trimethylsilyl)amide reagent. Finally, there is agreement in the general shape among the vis-UV spectra determined with different functionals and the experimentally available ones. The calculated geometries are in agreement with crystallographic data, where available.
Collapse
Affiliation(s)
- Demeter Tzeli
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece.
| | | | | |
Collapse
|
16
|
van Kampen JJA, Burgers PC, de Groot R, Gruters RA, Luider TM. Biomedical application of MALDI mass spectrometry for small-molecule analysis. MASS SPECTROMETRY REVIEWS 2011; 30:101-120. [PMID: 20169623 DOI: 10.1002/mas.20268] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented.
Collapse
Affiliation(s)
- Jeroen J A van Kampen
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Serra VV, Andrade SM, Neves MGPMS, Cavaleiro JAS, Costa SMB. J-aggregate formation in bis-(4-carboxyphenyl)porphyrins in water : pH and counterion dependence. NEW J CHEM 2010. [DOI: 10.1039/c0nj00201a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|