1
|
Chen Y, Ma S, Zhou M, Yao Y, Gao X, Fan X, Wu G. Advancements in the preparation technology of small molecule artificial antigens and their specific antibodies: a comprehensive review. Analyst 2024; 149:4583-4599. [PMID: 39140248 DOI: 10.1039/d4an00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Small molecules find extensive application in medicine, food safety, and environmental studies, particularly in biomedicine. Immunoassay technology, leveraging the specific recognition between antigens and antibodies, offers a superior alternative to traditional physical and chemical analysis methods. This approach allows for the rapid and accurate detection of small molecular compounds, owing to its high sensitivity, specificity, and swift analytical capabilities. However, small molecular compounds often struggle to effectively stimulate an immune response due to their low molecular weight, weak antigenicity, and limited antigenic epitopes. To overcome this, coupling small molecule compounds with macromolecular carriers to form complete antigens is typically required to induce specific antibodies in animals. Consequently, the preparation of small-molecule artificial antigens and the production of efficient specific antibodies are crucial for achieving precise immunoassays. This paper reviews recent advancements in small molecule antibody preparation technology, emphasizing the design and synthesis of haptens, the coupling of haptens with carriers, the purification and identification of artificial antigens, and the preparation of specific antibodies. Additionally, it evaluates the current technological shortcomings and limitations while projecting future trends in artificial antigen synthesis and antibody preparation technology.
Collapse
Affiliation(s)
- Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xiaobo Fan
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
2
|
An insight on type I collagen from horse tendon for the manufacture of implantable devices. Int J Biol Macromol 2020; 154:291-306. [DOI: 10.1016/j.ijbiomac.2020.03.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
|
3
|
Long Z, Li M, Dahl J, Guo Z, Li Y, Hao H, Li Y, Li C, Mao Q, Huang T. Determination of glycosylation degree for glycoconjugate vaccines using a solid‐phase extraction combined with liquid chromatography and tandem mass spectrometry method. J Sep Sci 2020; 43:2880-2888. [DOI: 10.1002/jssc.202000075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Long
- Shimadzu (China) Co. Ltd Beijing P. R. China
| | - Maoguang Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech ProductsNational Institutes for Food and Drug Control Beijing P. R. China
| | | | - Zhimou Guo
- Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Yanan Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech ProductsNational Institutes for Food and Drug Control Beijing P. R. China
| | | | - Yueqi Li
- Shimadzu (China) Co. Ltd Beijing P. R. China
| | - Changkun Li
- Shimadzu (China) Co. Ltd Beijing P. R. China
| | - Qiqi Mao
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech ProductsNational Institutes for Food and Drug Control Beijing P. R. China
| | | |
Collapse
|
4
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Risoluti R, Napoli A. Protein Extraction, Enrichment and MALDI MS and MS/MS Analysis from Bitter Orange Leaves ( Citrus aurantium). Molecules 2020; 25:E1485. [PMID: 32218285 PMCID: PMC7181213 DOI: 10.3390/molecules25071485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Citrus aurantium is a widespread tree in the Mediterranean area, and it is mainly used as rootstock for other citrus. In the present study, a vacuum infiltration centrifugation procedure, followed by solid phase extraction matrix-assisted laser desorption ionization tandem mass spectrometry (SPE MALDI MS/MS) analysis, was adopted to isolate proteins from leaves. The results of mass spectrometry (MS) profiling, combined with the top-down proteomics approach, allowed the identification of 78 proteins. The bioinformatic databases TargetP, SignalP, ChloroP, WallProtDB, and mGOASVM-Loc were used to predict the subcellular localization of the identified proteins. Among 78 identified proteins, 20 were targeted as secretory pathway proteins and 36 were predicted to be in cellular compartments including cytoplasm, nucleus, and cell membrane. The largest subcellular fraction was the secretory pathway, accounting for 25% of total proteins. Gene Ontology (GO) of Citrus sinensis was used to simplify the functional annotation of the proteins that were identified in the leaves. The Kyoto Encyclopedia of Genes and Genomes (KEGG) showed the enrichment of metabolic pathways including glutathione metabolism and biosynthesis of secondary metabolites, suggesting that the response to a range of environmental factors is the key processes in citrus leaves. Finally, the Lipase GDSL domain-containing protein GDSL esterase/lipase, which is involved in plant development and defense response, was for the first time identified and characterized in Citrus aurantium.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy;
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Leonardo Di Donna
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Roberta Risoluti
- Department of Chemistry, Università degli Studi di Roma La Sapienza, 00185 Rome, Italy;
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| |
Collapse
|
5
|
MS-based proteomic analysis of cardiac response to hypoxia in the goldfish (Carassius auratus). Sci Rep 2019; 9:18953. [PMID: 31831848 PMCID: PMC6908699 DOI: 10.1038/s41598-019-55497-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
The exceptional hypoxia tolerance of the goldfish heart may be achieved through the activation of an alternative mechanism recruiting the first product of the anaerobic glycolysis (i.e. piruvate). This hypothesis led to design a classical mass spectrometry based proteomic study to identify in the goldfish cardiac proteins that may be associated with maintaining heart function under normoxia and hypoxia. A selective protein solubilization, SDS PAGE, trypsin digestion and MALDI MS/MS analysis allowed the identification of the 12 most stable hypoxia-regulated proteins. Among these proteins, five are enzymes catalyzing reversible steps of the glycolysis/gluconeogenesis network. Protein composition reveals the presence of fructose-1,6-bisphosphate aldolase B as a specific hypoxia-regulated protein. This work indicated that the key enzyme of reversible steps of the glycolysis/gluconeogenesis network is fructose-1,6-bisphosphate, aldolase B, suggesting a role of gluconeogenesis in the mechanisms involved in the goldfish heart response to hypoxia.
Collapse
|
6
|
Trattnig N, Mayrhofer P, Kunert R, Mach L, Pantophlet R, Kosma P. Comparative Antigenicity of Thiourea and Adipic Amide Linked Neoglycoconjugates Containing Modified Oligomannose Epitopes for the Carbohydrate-Specific anti-HIV Antibody 2G12. Bioconjug Chem 2019; 30:70-82. [PMID: 30525492 PMCID: PMC6340131 DOI: 10.1021/acs.bioconjchem.8b00731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Indexed: 11/29/2022]
Abstract
Novel neoglycoproteins containing oligomannosidic penta- and heptasaccharides as structural variants of oligomannose-type N-glycans found on human immunodeficiency virus type 1 gp120 have been prepared using different conjugation methods. Two series of synthetic ligands equipped with 3-aminopropyl spacer moieties and differing in the anomeric configuration of the reducing mannose residue were activated either as isothiocyanates or as adipic acid succinimidoyl esters and coupled to bovine serum albumin. Coupling efficiency for adipic acid connected neoglycoconjugates was better than for the thiourea-linked derivatives; the latter constructs, however, exhibited higher reactivity toward antibody 2G12, an HIV-neutralizing antibody with exquisite specificity for oligomannose-type glycans. 2G12 binding avidities for the conjugates, as determined by Bio-Layer Interferometry, were mostly higher for the β-linked ligands and, as expected, increased with the numbers of covalently linked glycans, leading to approximate KD values of 10 to 34 nM for optimized ligand-to-BSA ratios. A similar correlation was observed by enzyme-linked immunosorbent assays. In addition, dendrimer-type ligands presenting trimeric oligomannose epitopes were generated by conversion of the amino-spacer group into a terminal azide, followed by triazole formation using "click chemistry". The severe steric bulk of the ligands, however, led to poor efficiency in the coupling step and no increased antibody binding by the resulting neoglycoconjugates, indicating that the low degree of substitution and the spatial orientation of the oligomannose epitopes within these trimeric ligands are not conducive to multivalent 2G12 binding.
Collapse
Affiliation(s)
- Nino Trattnig
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Patrick Mayrhofer
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Renate Kunert
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Lukas Mach
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ralph Pantophlet
- Faculty
of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | - Paul Kosma
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
7
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Athanassopoulos CM, Napoli A. Molecular species fingerprinting and quantitative analysis of saffron ( Crocus sativus L.) for quality control by MALDI mass spectrometry. RSC Adv 2018; 8:36104-36113. [PMID: 35558493 PMCID: PMC9088749 DOI: 10.1039/c8ra07484d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
Herein we describe a rapid, simple, and reliable method for the quantitative analysis and molecular species fingerprinting of saffron (Crocus sativus L.) by direct MS and MS/MS analysis. Experimentally, powdered saffron was subjected to a brief treatment with a 0.3% TFA water/acetonitrile solution, and the resulting mixture was directly placed on the MALDI plate for analysis. This approach allowed the detection of the commonly observed crocins C-1-C-6 and flavonols, together with the identification of the unknown highly glycosylated crocins C-7, C-8 and C-9, and carotenoid-derived metabolites. The strategy endorsed the simultaneous detection and characterization of saffron and adulterant markers using crude extracts of the adulterant itself and synthetic sets of adulterated authentic saffron samples. The implementation of the strategy was to measure the amount of an unknown adulterant from the crude extract using curcumin as a non-isotopic isobaric internal standard. The relationship between the saffron and curcumin molar ratios were established with a correlation coefficient of 0.9942. The ANOVA regression model was significant, F(1, 72) = 13 595.82, p < 0.001, y = (0.0116 ± 0.0001)x + (-0.1214 ± 0.0086). No matrix effects were observed and good results were obtained with respect to instrumental repeatability (*RSD% < 2%) and LOD (1.1%). The analysis of commercial samples of saffron using the proposed approach showed the suitability of the method for routine analysis (minimal sample preparation and very short measuring time per sample).
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Italy
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| | - Leonardo Di Donna
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| | | | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| |
Collapse
|
8
|
Aiello D, Casadonte F, Terracciano R, Damiano R, Savino R, Sindona G, Napoli A. Targeted proteomic approach in prostatic tissue: a panel of potential biomarkers for cancer detection. Oncoscience 2016; 3:220-241. [PMID: 27713912 PMCID: PMC5043072 DOI: 10.18632/oncoscience.313] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is the sixth highest causes of cancer-related deaths in men. The molecular events underlying its behavior and evolution are not completely understood. Prostate-specific antigen (PSA) is the only approved Food and Drug Administration biomarker. A panel of ten stage-specific tumoral and adjacent non tumoral tissues from patients affected by PCa (Gleason score 6, 3+3; PSA 10 ÷19 ng/ml) was investigated by MS-based proteomics approach. The proposed method was based on identifying the base-soluble proteins from tissue, established an efficient study, which lead to a deeper molecular perspective understanding of the PCa. A total of 164 proteins were found and 132 of these were evaluated differentially expressed in tumoral tissues. The Ingenuity Pathway Analysis (IPA) showed that among all dataset obtained, 105 molecules were involved in epithelial neoplasia with a p-value of 3.62E-05, whereas, only 11 molecules detected were ascribed to sentinel tissue and bodily fluids.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, Italy
| | - Francesca Casadonte
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Rocco Damiano
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Rocco Savino
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Giovanni Sindona
- Department of Chemistry and Chemical Technologies, University of Calabria, Italy
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, Italy
| |
Collapse
|
9
|
Ambigaipalan P, Al-Khalifa AS, Shahidi F. Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
11
|
Demian WLL, Kottari N, Shiao TC, Randell E, Roy R, Banoub JH. Direct targeted glycation of the free sulfhydryl group of cysteine residue (Cys-34) of BSA. Mapping of the glycation sites of the anti-tumor Thomsen-Friedenreich neoglycoconjugate vaccine prepared by Michael addition reaction. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1223-1233. [PMID: 25476939 DOI: 10.1002/jms.3448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/22/2014] [Indexed: 06/04/2023]
Abstract
We present in this manuscript the characterization of the exact glycation sites of the Thomsen-Friedenreich antigen-BSA vaccine (TF antigen:BSA) prepared using a Michael addition reaction between the saccharide antigen as an electrophilic acceptor and the nucleophilic thiol and L-Lysine ε-amino groups of BSA using different ligation conditions. Matrix laser desorption ionization time-of-flight mass spectrometry of the neoglycoconjugates prepared with TF antigen:protein ratios of 2:1 and 8:1, allowed to observe, respectively, the protonated molecules for each neoglycoconjugates: [M + H](+) at m/z 67,599 and 70,905. The measurements of these molecular weights allowed us to confirm exactly the carbohydrate:protein ratios of these two synthetic vaccines. These were found to be closely formed by a TF antigen:BSA ratios of 2:1 and 8:1, respectively. Trypsin digestion and liquid chromatography coupled with electrospray ionization mass spectrometry allowed us to identify the series of released glycopeptide and peptide fragments. De novo sequencing affected by low-energy collision dissociation tandem mass spectrometry was then employed to unravel the precise glycation sites of these neoglycoconjugate vaccines. Finally, we identified, respectively, three diagnostic and characteristic glycated peptides for the synthetic glycoconjugate possessing a TF antigen:BSA ratio 2:1, whereas we have identified for the synthetic glycoconjugate having a TF:BSA ratio 8:1 a series of 14 glycated peptides. The net increase in the occupancy sites of these neoglycoconjugates was caused by the large number of glycoforms produced during the chemical ligation of the synthetic carbohydrate antigen onto the protein carrier.
Collapse
Affiliation(s)
- Wael L L Demian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's Newfoundland, A1B 3X9, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Crotti S, Zhai H, Zhou J, Allan M, Proietti D, Pansegrau W, Hu QY, Berti F, Adamo R. Defined Conjugation of Glycans to the Lysines of CRM197Guided by their Reactivity Mapping. Chembiochem 2014; 15:836-43. [DOI: 10.1002/cbic.201300785] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 11/10/2022]
|
13
|
Demian WLL, Jahouh FM, Stansbury D, Randell E, Brown RJ, Banoub JH. Characterizing changes in snow crab (Chionoecetes opilio) cryptocyanin protein during molting using matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:355-369. [PMID: 24395503 DOI: 10.1002/rcm.6788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE We report the matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) characterization of the cryptocyanin proteins of the juvenile Chionoecetes opilio crabs during their molting and non-molting phases. In order to assess the structural cryptocyanin protein differences between the molting and non-molting phases, the obtained peptides were sequenced by MALDI low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS). METHODS The cryptocyanin protein was isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by MALDI-TOF/TOF-MS. The purified cryptocyanin protein was sequenced, using the 'bottom-up' approach. After tryptic digestion, the peptide mixture was analyzed by MALDI-QqTOF-MS/MS and the data obtained were used for the peptide mass fingerprinting (PMF) identification by means of the Mascot database. RESULTS It was demonstrated using MALDI-TOF/TOF-MS that the actual molecular weights of the non-molting and molting cryptocyanin proteins were different; these were, respectively, 67.6 kDa and 68.1 kDa. Using low-energy CID-MS/MS we have sequenced the trytic peptides to monitor the differences and similarities between the cryptocyanin molecular structures during the molting and non-molting stages. CONCLUSIONS We have demonstrated for the first time that the actual molecular masses of the cryptocyanin protein during the molting and non-molting phases were different. The MALDI-CID-MS/MS analyses allowed the sequencing of the cryptocyanins after tryptic digestion, during the molting and non-molting stages, and showed some similarities and staggering differences between the identified cryptocyanin peptides.
Collapse
Affiliation(s)
- Wael L L Demian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, 232 Elizabeth Avenue, A1B 3X9, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Glycoconjugate Vaccines Used for Prevention from Biological Agents: Tandem Mass Spectrometric Analysis. DETECTION OF CHEMICAL, BIOLOGICAL, RADIOLOGICAL AND NUCLEAR AGENTS FOR THE PREVENTION OF TERRORISM 2014. [DOI: 10.1007/978-94-017-9238-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Jahouh F, Xu P, Vann WF, Kováč P, Banoub JH. Mapping the glycation sites in the neoglycoconjugate from hexasaccharide antigen of Vibrio cholerae, serotype Ogawa and the recombinant tetanus toxin C-fragment carrier. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1083-1090. [PMID: 24130011 PMCID: PMC4155328 DOI: 10.1002/jms.3258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
We report herein the glycation sites in a vaccine candidate for cholera formed by conjugation of the synthetic hexasaccharide fragment of the O-specific polysaccharide of Vibrio cholerae, serotype Ogawa, to the recombinant tetanus toxin C-fragment (rTT-Hc) carrier. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of the vaccine revealed that it is composed of a mixture of neoglycoconjugates with carbohydrate : protein ratios of 1.9 : 1, 3.0 : 1, 4.0 : 1, 4.9 : 1, 5.9 : 1, 6.9 : 1, 7.9 : 1 and 9.1 : 1. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the tryptic and GluC V8 digests allowed identification of 12 glycation sites in the carbohydrate-protein neoglycoconjugate vaccine. The glycation sites are located exclusively on lysine (Lys) residues and are listed as follows: Lys 22, Lys 61, Lys 145, Lys 239, Lys 278, Lys 318, Lys 331, Lys 353, Lys 378, Lys 389, Lys 396 and Lys 437. Based on the 3-D representation of the rTT-Hc protein, all the glycation sites correspond to lysines located at the outer surface of the protein.
Collapse
Affiliation(s)
- Farid Jahouh
- Memorial University Biochemistry Department, St John’s, NL, Canada, A1B 3X7
| | - Peng Xu
- NIH, NIDDK, LBC Bethesda, MD, 20892-0815, USA
| | - Willie F. Vann
- Laboratory of Bacterial Toxins OVRR, CBER, FDA, 8800 Rockville Pike, Bethesda, MD, 20892, USA
| | - Pavol Kováč
- Fisheries and Oceans Canada, Science Branch, Special Projects, St John’s, NL, Canada, A1C 5X1
| | - Joseph H. Banoub
- Memorial University Biochemistry Department, St John’s, NL, Canada, A1B 3X7
- Fisheries and Oceans Canada, Science Branch, Special Projects, St John’s, NL, Canada, A1C 5X1
| |
Collapse
|
16
|
Jahouh F, Saksena R, Kováč P, Banoub J. Revealing the glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1, serotype Ogawa with the BSA protein carrier using LC-ESI-QqTOF-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:890-900. [PMID: 22791257 PMCID: PMC3427934 DOI: 10.1002/jms.2974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this manuscript, we present the determination of glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1 serotype Ogawa to BSA using nano- liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectroscopy (LC-ESI-QqTOF-MS/MS). The matrix-assisted laser desorption/ionization-TOF/TOF-MS/MS analyses of the tryptic digests of the glycoconjugates having a hapten:BSA ratio of 4.3:1, 6.6:1 and 13.2:1 revealed only three glycation sites, on the following lysine residues: Lys 235, Lys 437 and Lys 455. Digestion of the neoglycoconjugates with the proteases trypsin and GluC V8 gave complementary structural information and was shown to maximize the number of recognized glycation sites. Here, we report identification of 20, 27 and 33 glycation sites using LC-ESI-QqTOF-MS/MS analysis of a series of synthetic neoglycoconjugates with a hapten:BSA ratio of, respectively, 4.3:1, 6.6:1 and 13.2:1. We also tentatively propose that all the glycated lysine residues are located mainly near the outer surface of the protein.
Collapse
Affiliation(s)
- Farid Jahouh
- Department of Chemistry, Memorial University of Newfoundland, Saint John’s NL, Canada
| | - Rina Saksena
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, 20892-0815, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, 20892-0815, USA
| | - Joseph Banoub
- Department of Chemistry, Memorial University of Newfoundland, Saint John’s NL, Canada
- Department of Fisheries and Oceans Canada, Science Branch, Special Projects, Saint John’s NL, A1C 5X1, Canada
| |
Collapse
|
17
|
Jahouh F, Hou SJ, Kováč P, Banoub JH. Determination of glycation sites by tandem mass spectrometry in a synthetic lactose-bovine serum albumin conjugate, a vaccine model prepared by dialkyl squarate chemistry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:749-58. [PMID: 22368054 PMCID: PMC3417241 DOI: 10.1002/rcm.6166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE Neoglycoconjugate vaccines synthesized by the squaric acid spacer method allow single point attachment of the carbohydrate antigen to the protein carrier. However, the localization of the carbohydrate antigen sites of conjugation on the protein carrier has been an elusive task difficult to achieve. METHOD Covalent attachment of the lactose antigen to the bovine serum albumin (BSA) was prepared by the squaric acid method using a hapten:BSA ratio of 20:1. Different reaction times were used during the conjugation reaction and two different lactose-BSA glycoconjugate vaccines were obtained. The carbohydrate antigen hapten:BSA ratios of these lactose-BSA glycoconjugate vaccines were determined by MALDI-TOF/RTOF-MS and the glycation sites in the neoglycoconjugates were determined using nano-LC/ESI-QqTOF-MS/MS analysis of the trypsin and GluC V8 digests of the conjugates. RESULTS We have identified a total of 15 glycation sites located on the BSA lysine residues for the neoglycoconjugate vaccine formed with a hapten:BSA ratio of 5.1:1, However, the tryptic and GluC V8 digests of the hapten-BSA glycoconjugate with a hapten:BSA ratio of 19.0:1 allowed identification of 30 glycation sites located on the BSA. These last results seem to indicate that this conjugation results in formation of various glycoforms. CONCLUSIONS It was observed that the number of identified glycation sites increased when the hapten:BSA ratio of glycoconjugate formation increased, and that the location of the glycation sites appears to be mainly on the outer surface of the BSA carrier molecule which is in line with the assumption that the sterically more accessible lysine residues, namely those located on the outer surface of the BSA, would be conjugated preferentially.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cattle
- Chromatography, Liquid
- Glycosylation
- Haptens/chemistry
- Haptens/metabolism
- Lactose/chemistry
- Lactose/immunology
- Lactose/metabolism
- Lysine/chemistry
- Lysine/metabolism
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Serum Albumin, Bovine/chemistry
- Serum Albumin, Bovine/immunology
- Serum Albumin, Bovine/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tandem Mass Spectrometry/methods
- Vaccines, Conjugate/chemistry
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/metabolism
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/metabolism
Collapse
Affiliation(s)
- Farid Jahouh
- Department of Chemistry, Memorial University of Newfoundland, Saint John's, NL, Canada
| | - Shu-jie Hou
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Joseph H. Banoub
- Department of Chemistry, Memorial University of Newfoundland, Saint John's, NL, Canada
- Department of Fisheries and Oceans Canada, Science Branch, Special Projects, Saint John's, NL, A1C 5X1, Canada
| |
Collapse
|
18
|
Jahouh F, Hou SJ, Kováč P, Banoub JH. Determination of the glycation sites of Bacillus anthracis neoglycoconjugate vaccine by MALDI-TOF/TOF-CID-MS/MS and LC-ESI-QqTOF-tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:993-1003. [PMID: 22012665 PMCID: PMC3427925 DOI: 10.1002/jms.1980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present herein an efficient mass spectrometric method for the localization of the glycation sites of a model neoglycoconjugate vaccine formed by a construct of the tetrasaccharide side chain of the Bacillus anthracis exosporium and the protein carrier bovine serum albumin. The glycoconjugate was digested with both trypsin and GluC V8 endoproteinases, and the digests were then analyzed by MALDI-TOF/TOF-CID-MS/MS and nano-LC-ESI-QqTOF-CID-MS/MS. The sequences of the unknown peptides analyzed by MALDI-TOF/TOF-CID-MS/MS, following digestion with the GluC V8 endoproteinase, allowed us to recognize three glycopeptides whose glycation occupancies were, respectively, on Lys 235, Lys 420, and Lys 498. Similarly, the same analysis was performed on the tryptic digests, which permitted us to recognize two glycation sites on Lys 100 and Lys 374. In addition, we have also used LC-ESI-QqTOF-CID-MS/MS analysis for the identification of the tryptic digests. However, this analysis identified a higher number of glycopeptides than would be expected from a glycoconjugate composed of a carbohydrate-protein ratio of 5.4:1, which would have resulted in glycation occupancies of 18 specific sites. This discrepancy was due to the large number of glycoforms formed during the synthetic carbohydrate-spacer-carrier protein conjugation. Likewise, the LC-ESI-QqTOF-MS/MS analysis of the GluC V8 digest also identified 17 different glycation sites on the synthetic glycoconjugate.
Collapse
Affiliation(s)
- Farid Jahouh
- Department of Chemistry, Memorial University of Newfoundland, Saint John’s, NL, Canada
| | - Shu-jie Hou
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Joseph H. Banoub
- Department of Chemistry, Memorial University of Newfoundland, Saint John’s, NL, Canada
- Science Branch, Special Projects, Department of Fisheries and Oceans Canada, Saint John’s, NL A1C 5X1, Canada
| |
Collapse
|