1
|
Acquavia MA, Foti L, Pascale R, Nicolò A, Brancaleone V, Cataldi TRI, Martelli G, Scrano L, Bianco G. Detection and quantification of Covid-19 antiviral drugs in biological fluids and tissues. Talanta 2021; 224:121862. [PMID: 33379073 PMCID: PMC7642756 DOI: 10.1016/j.talanta.2020.121862] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Since coronavirus disease 2019 (COVID-19) started as a fast-spreading pandemic, causing a huge number of deaths worldwide, several therapeutic options have been tested to counteract or reduce the clinical symptoms of patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific drugs for COVID-19 are available, but many antiviral agents have been authorised by several national agencies. Most of them are under investigation in both preclinical and clinical trials; however, pharmacokinetic and metabolism studies are needed to identify the most suitable dose to achieve the desired effect on SARS-CoV-2. Therefore, the efforts of the scientific community have focused on the screening of therapies able to counteract the most severe effects of the infection, as well as on the search of sensitive and selective analytical methods for drug detection in biological matrices, both fluids and tissues. In the last decade, many analytical methods have been proposed for the detection and quantification of antiviral compounds currently being tested for COVID-19 treatment. In this review, a critical discussion on the overall analytical procedure is provided, i.e (a) sample pre-treatment and extraction methods such as protein precipitation (PP), solid-phase extraction (SPE), liquid-liquid extraction (LLE), ultrasound-assisted extraction (UAE) and QuEChERS (quick, easy, cheap, effective, rugged and safe), (b) detection and quantification methods such as potentiometry, spectrofluorimetry and mass spectrometry (MS) as well as (c) methods including a preliminary separation step, such as high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) coupled to UV-Vis or MS detection. Further current trends, advantages and disadvantages and prospects of these methods have been discussed, to help the analytical advances in reducing the harm caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Maria A Acquavia
- Università Degli Studi Della Basilicata, Dipartimento di Scienze, Via Dell'Ateneo Lucano, 10-85100, Potenza, Italy; ALMAGISI S.r.l Corso Italia, 27-39100, Bolzano, Italy.
| | - Luca Foti
- Università Degli Studi Della Basilicata, Dipartimento di Scienze, Via Dell'Ateneo Lucano, 10-85100, Potenza, Italy.
| | - Raffaella Pascale
- Università Degli Studi Della Basilicata, Dipartimento di Scienze, Via Dell'Ateneo Lucano, 10-85100, Potenza, Italy.
| | - Antonia Nicolò
- Università Degli Studi Della Basilicata, Dipartimento di Scienze, Via Dell'Ateneo Lucano, 10-85100, Potenza, Italy.
| | - Vincenzo Brancaleone
- Università Degli Studi Della Basilicata, Dipartimento di Scienze, Via Dell'Ateneo Lucano, 10-85100, Potenza, Italy.
| | - Tommaso R I Cataldi
- Università Degli Studi di Bari Aldo Moro, Dipartimento di Chimica, Via E. Orabona, 4-70126, Bari, Italy.
| | - Giuseppe Martelli
- Università Degli Studi Della Basilicata, Dipartimento di Scienze, Via Dell'Ateneo Lucano, 10-85100, Potenza, Italy.
| | - Laura Scrano
- Università Degli Studi Della Basilicata, Dipartimento Delle Culture Europee e Del Mediterraneo: Arch., Ambiente, Patrimoni Culturali, Via Lanera, 20-75100, Matera, Italy.
| | - Giuliana Bianco
- Università Degli Studi Della Basilicata, Dipartimento di Scienze, Via Dell'Ateneo Lucano, 10-85100, Potenza, Italy.
| |
Collapse
|
2
|
Abstract
Drug analysis represents a large field in different disciplines. Plasma is commonly considered to be the biosample of choice for that purpose. However, concentrations often do not represent the levels present within deeper compartments and therefore cannot sufficiently explain efficacy or toxicology of drugs. MALDI-MS in drug analysis is of great interest for high-throughput quantification and particularly spatially resolved tissue imaging. The current perspective article will deal with challenges and opportunities of MALDI-MS drug analysis in different biological samples. A particular focus will be on hair samples. Recent applications were included, reviewed for their instrumental setup and sample preparation and pros and cons as well as future perspectives are critically discussed.
Collapse
|
3
|
Poetzsch M, Steuer AE, Hysek CM, Liechti ME, Kraemer T. Development of a high-speed MALDI-triple quadrupole mass spectrometric method for the determination of 3,4-methylenedioxymethamphetamine (MDMA) in oral fluid. Drug Test Anal 2015; 8:235-40. [DOI: 10.1002/dta.1810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Poetzsch
- Department of Forensic Pharmacology and Toxicology, ZIFM - Zurich Institute of Forensic Medicine; University of Zurich; Zurich Switzerland
| | - Andrea E. Steuer
- Department of Forensic Pharmacology and Toxicology, ZIFM - Zurich Institute of Forensic Medicine; University of Zurich; Zurich Switzerland
| | - Cedric M. Hysek
- Departement of Biomedicine, Division of Clinical Pharmacology and Toxicology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Matthias E. Liechti
- Departement of Biomedicine, Division of Clinical Pharmacology and Toxicology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, ZIFM - Zurich Institute of Forensic Medicine; University of Zurich; Zurich Switzerland
| |
Collapse
|
4
|
Barry JA, Robichaud G, Bokhart MT, Thompson C, Sykes C, Kashuba AD, Muddiman DC. Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q Exactive and comparison with LC-MS/MS SRM assay. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2038-47. [PMID: 24744212 PMCID: PMC4201889 DOI: 10.1007/s13361-014-0884-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/05/2014] [Accepted: 03/08/2014] [Indexed: 05/09/2023]
Abstract
This work describes the coupling of the IR-MALDESI imaging source with the Q Exactive mass spectrometer. IR-MALDESI MSI was used to elucidate the spatial distribution of several HIV drugs in cervical tissues that had been incubated in either a low or high concentration. Serial sections of those analyzed by IR-MALDESI MSI were homogenized and analyzed by LC-MS/MS to quantify the amount of each drug present in the tissue. By comparing the two techniques, an agreement between the average intensities from the imaging experiment and the absolute quantities for each drug was observed. This correlation between these two techniques serves as a prerequisite to quantitative IR-MALDESI MSI. In addition, a targeted MS(2) imaging experiment was also conducted to demonstrate the capabilities of the Q Exactive and to highlight the added selectivity that can be obtained with SRM or MRM imaging experiments.
Collapse
Affiliation(s)
- Jeremy A. Barry
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Guillaume Robichaud
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Mark T. Bokhart
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Corbin Thompson
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Craig Sykes
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Angela D.M. Kashuba
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - David C. Muddiman
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
- Author for Correspondence: David C. Muddiman, Ph.D., W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, Phone: 919-513-0084, Fax: 919-513-7993,
| |
Collapse
|
5
|
Pabst M, Fagerer SR, Köhling R, Eyer K, Krismer J, Jefimovs K, Ibáñez AJ, Zenobi R. Quantification of saquinavir from lysates of peripheral blood mononuclear cells using microarrays and standard MALDI-TOF-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1083-1086. [PMID: 24711229 DOI: 10.1007/s13361-014-0875-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
Drug monitoring is usually performed by liquid chromatography coupled with optical detection or electrospray ionization mass spectrometry. More recently, matrix-assisted laser desorption/ionization (MALDI) in combination with triple quadrupole or Fourier-transform (FT) mass analyzers has also been reported to allow accurate quantification. Here, we present a strategy that employs standard MALDI time-of-flight (TOF) mass spectrometry (MS) for the sensitive and accurate quantification of saquinavir from an extract of blood peripheral mononuclear cells. Unambiguous identification of saquinavir in the mass spectra was possible because of using internal mass calibration and by an overall low chemical noise in the low mass range. Exact mass determination of the constant background peaks of the cell extract, which were used for recalibration, was performed by an initial MALDI-FT-MS analysis. Fast and multiplexed sample analysis was enabled by microarray technology, which provided 10 replicates in the lower nL range for each sample in parallel lanes on a chip. In order to validate the method, we employed various statistical tests, such as confidence intervals for linear regressions, three quality control samples, and inverse confidence limits of the estimated concentration ratios.
Collapse
Affiliation(s)
- Martin Pabst
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Agrahari V, Putty S, Mathes C, Murowchick JB, Youan BBC. Evaluation of degradation kinetics and physicochemical stability of tenofovir. Drug Test Anal 2014; 7:207-13. [PMID: 24817173 DOI: 10.1002/dta.1656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 02/13/2014] [Accepted: 03/11/2014] [Indexed: 11/07/2022]
Abstract
Tenofovir (TFV) has been proven to prevent the transmission of the Human Immunodeficiency Virus (HIV) through the vagina. But, there is little information available about its stability under various storage and stress conditions. Hence, this study aimed to investigate the degradation behavior and physicochemical stability of TFV using liquid chromatography coupled mass spectrometry (LC-MS) and solid state X-ray diffraction (XRD) analyses. The LC-MS analysis was performed on a QTrap mass spectrometer with an enhanced mass spectrum (EMS) scan in positive mode. A reversed phase C18 column was used as the stationary phase. TFV exhibited degradation under acidic and alkaline hydrolytic conditions. The degradation products with m/z 289.2 and 170 amu have been proposed as 6-Hydroxy adenine derivative of TFV, and (2-hydroxypropan-2-yloxy) methylphosphonic acid, respectively. A pseudo-first-order degradation kinetic allowed for estimating the shelf-life, half-life, and time required for 90% degradation of 3.84, 25.34, and 84.22 h in acidic conditions, and 58.26, 384.49, and 1277.75 h in alkaline conditions, respectively. No significant degradation was observed at pH 4.5 (normal cervicovaginal pH) and oxidative stress conditions of 3% and 30% v/v hydrogen peroxide solutions. The shelf life of TFV powder at room temperature was 23 months as calculated by using an Arrhenius plot. The XRD pattern showed that the drug was stable and maintained its original crystallinity under the accelerated and thermal stress conditions applied. Stability analyses revealed that the TFV was stable in various stress conditions; however, formulation strategies should be implemented to protect it in strong acidic and alkaline environments.
Collapse
Affiliation(s)
- Vivek Agrahari
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | | | | | | | | |
Collapse
|
7
|
Liu X, Weaver EM, Hummon AB. Evaluation of therapeutics in three-dimensional cell culture systems by MALDI imaging mass spectrometry. Anal Chem 2013; 85:6295-302. [PMID: 23724927 PMCID: PMC4118837 DOI: 10.1021/ac400519c] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug penetration into solid tumors is critical for the effectiveness of clinical chemotherapy. Failing to consider the efficiency of drug penetration can lead to fatal recurrence in many cancers. Three-dimensional (3D) cell cultures have served as an important model system and have contributed to valuable assays in drug discovery studies. However, limited methodologies result in incomplete evaluation of the distribution of many anticancer drugs. As a proof-of-concept study, we have applied matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) in HCT 116 colon carcinoma multicellular spheroids to assess the distribution of the anticancer drug, irinotecan. The time-dependent penetration of irinotecan was visualized and the localization of three metabolites as well as the parent drug in treated spheroids was mapped. To validate the identities of the metabolites, we analyzed extracts from drug-treated spheroids using nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS). Ten metabolites were identified with nLC-MS/MS, including those detected by MALDI IMS. This novel approach allows the measurement of drug penetration and distribution in 3D culture mimics and provides a more cost and time-effective approach for the testing of new pharmaceuticals compared to animal models.
Collapse
Affiliation(s)
- Xin Liu
- University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Eric M. Weaver
- University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Amanda B. Hummon
- University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Abstract
Strategies to prevent HIV infection using preexposure prophylaxis are required to curtail the HIV pandemic. The mucosal tissues of the genital and rectal tracts play a critical role in HIV acquisition, but antiretroviral (ARV) disposition and correlates of efficacy within these tissues are not well understood. Preclinical and clinical strategies to describe ARV pharmacokinetic-pharmacodynamic relationships within mucosal tissues are currently being investigated. In this review, we summarize the physicochemical and biologic factors influencing ARV tissue exposure. Furthermore, we discuss the necessary steps to generate relevant pharmacokinetic-pharmacodynamic data and the challenges associated with this process. Finally, we suggest how preclinical and clinical data might be practically translated into optimal preexposure prophylaxis dosing strategies for clinical trials testing using mathematical modeling and simulation.
Collapse
Affiliation(s)
- Corbin G. Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
| | - Myron S. Cohen
- University of North Carolina School of Medicine, Center for Infectious Diseases, Chapel Hill, NC
| | - Angela D.M. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
- University of North Carolina School of Medicine, Center for Infectious Diseases, Chapel Hill, NC
| |
Collapse
|
9
|
Hamasaki T, Matsumoto T, Sakamoto N, Shimahara A, Kato S, Yoshitake A, Utsunomiya A, Yurimoto H, Gabazza EC, Ohgi T. Synthesis of ¹⁸O-labeled RNA for application to kinetic studies and imaging. Nucleic Acids Res 2013; 41:e126. [PMID: 23632164 PMCID: PMC3695515 DOI: 10.1093/nar/gkt344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Radioisotopes and fluorescent compounds are frequently used for RNA labeling but are unsuitable for clinical studies of RNA drugs because of the risk from radiation exposure or the nonequivalence arising from covalently attached fluorophores. Here, we report a practical phosphoramidite solid-phase synthesis of 18O-labeled RNA that avoids these disadvantages, and we demonstrate its application to quantification and imaging. The synthesis involves the introduction of a nonbridging 18O atom into the phosphate group during the oxidation step of the synthetic cycle by using 18O water as the oxygen donor. The 18O label in the RNA was stable at pH 3–8.5, while the physicochemical and biological properties of labeled and unlabeled short interfering RNA were indistinguishable by circular dichroism, melting temperature and RNA-interference activity. The 18O/16O ratio as measured by isotope ratio mass spectrometry increased linearly with the concentration of 18O-labeled RNA, and this technique was used to determine the blood concentration of 18O-labeled RNA after administration to mice. 18O-labeled RNA transfected into human A549 cells was visualized by isotope microscopy. The RNA was observed in foci in the cytoplasm around the nucleus, presumably corresponding to endosomes. These methodologies may be useful for kinetic and cellular-localization studies of RNA in basic and pharmaceutical studies.
Collapse
Affiliation(s)
- Tomohiro Hamasaki
- Strategic Headquarters for Research and Development, BONAC Corporation, BIO Factory 4F, 4-1488 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
L.S. Tang N, Poon T, Poon TCW. Advances in MALDI mass spectrometry in clinical diagnostic applications. Top Curr Chem (Cham) 2013; 336:139-75. [PMID: 23563502 PMCID: PMC7121589 DOI: 10.1007/128_2012_413] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concept of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was first reported in 1985. Since then, MALDI MS technologies have been evolving, and successfully used in genome, proteome, metabolome, and clinical diagnostic research. These technologies are high-throughput and sensitive. Emerging evidence has shown that they are not only useful in qualitative and quantitative analyses of proteins, but also of other types of biomolecules, such as DNA, glycans, and metabolites. Recently, parallel fragmentation monitoring (PFM), which is a method comparable to selected reaction monitoring, has been reported. This highlights the potentials of MALDI-TOF/TOF tandem MS in quantification of metabolites. Here we critically review the applications of the major MALDI MS technologies, including MALDI-TOF MS, MALDI-TOF/TOF MS, SALDI-TOF MS, MALDI-QqQ MS, and SELDI-TOF MS, to the discovery and quantification of disease biomarkers in biological specimens, especially those in plasma/serum specimens. Using SELDI-TOF MS as an example, the presence of systemic bias in biomarker discovery studies employing MALDI-TOF MS and its possible solutions are also discussed in this chapter. The concepts of MALDI, SALDI, SELDI, and PFM are complementary to each other. Theoretically, all these technologies can be combined, leading to the next generation of the MALDI MS technologies. Real applications of MALDI MS technologies in clinical diagnostics should be forthcoming.
Collapse
Affiliation(s)
- Nelson L.S. Tang
- grid.10784.3a0000000419370482Dept. of Chemical Pathology and Lab. of Genetics of Disease Suscept., The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Terence Poon
- grid.10784.3a0000000419370482Department of Paediatrics and Proteomics Laboratory, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | | |
Collapse
|
11
|
Ross RS, Stambouli O, Grüner N, Marcus U, Cai W, Zhang W, Zimmermann R, Roggendorf M. Detection of infections with hepatitis B virus, hepatitis C virus, and human immunodeficiency virus by analyses of dried blood spots--performance characteristics of the ARCHITECT system and two commercial assays for nucleic acid amplification. Virol J 2013; 93:309-21. [PMID: 22244848 DOI: 10.1016/j.antiviral.2011.12.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nowadays, dried blood spots (DBS) are primarily used to obtain diagnostic access to risk collectives such as intravenous drug users, who are prone to infections with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV). Before DBS analyses can be used in this diagnostic context, however, a comprehensive evaluation of its performance characteristics must be conducted. To the best of our knowledge, the current study presents for the first time such essential data for the Abbott ARCHITECT system, which is currently the worldwide leading platform in this field of infection diagnostics. METHODS The investigation comprised 1,762 paired serum/DBS samples and a total of 3,524 determinations with the Abbott ARCHITECT HBsAg, anti-HBc, anti-HBs, anti-HCV and HIV-1-p24-antigen/anti-HIV 1/2 assays as well as with the artus HBV LC PCR and VERSANT HCV RNA qualitative (TMA) tests. RESULTS In the context of DBS testing, a specificity of 100% was recorded for the seven serological and molecular biological assays. The analytical sensitivity of HBsAg, anti-HBc, anti-HBs, anti-HCV, HIV-1-p24-antigen/anti-HIV 1/2, HBV DNA, and HCV RNA detections in DBS eluates was 98.6%, 97.1%, 97.5%, 97.8%, 100%, 93%, and 100%, respectively. DISCUSSION/CONCLUSIONS The results obtained indicate that it is today possible to reliably detect HBsAg, anti-HBc, anti-HBs, anti-HCV and HIV-1-p24 antigen/anti-HIV 1/2 with state-of-the-art analytical systems such as the Abbott ARCHITECT in DBS eluates even when a comparatively high elution volume of 1,000 μl is used. They also provide evidence for the inherent analytical limits of DBS testing, which primarily concern the anti-HBc/anti-HBs system for individuals with HIV infections and nucleic acid tests with relatively low analytical sensitivity.
Collapse
Affiliation(s)
- R Stefan Ross
- Institute of Virology, National Reference Centre for Hepatitis C, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ng EWY, Lam HS, Ng PC, Poon TCW. Quantification of citrulline by parallel fragmentation monitoring--a novel method using graphitized carbon nanoparticles and MALDI-TOF/TOF mass spectrometry. Clin Chim Acta 2012; 420:121-7. [PMID: 23123829 DOI: 10.1016/j.cca.2012.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/10/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Selected reaction monitoring (SRM) is a reliable mass spectrometry (MS)-based technique for quantification of small molecules. However, it is not applicable to matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem MS (MALDI-TOF/TOF MS) instruments. This work presents a novel comparable MALDI-TOF/TOF MS technique, "Parallel Fragmentation Monitoring" (PFM), for high-throughput quantification of citrulline. METHOD Calibrator/sample solutions were spiked with internal standard that was a stable isotopic analog with 1 mass unit heavier than citrulline. Both citrulline and internal standard were isolated and fragmented in parallel by MALDI-TOF/TOF MS in the presence of graphitized carbon nanoparticles as matrix. The ratio of the peak intensities of the selected fragment of citrulline to that of internal standard was used to calibrate/calculate the concentrations of citrulline in samples. RESULTS Linear calibration curves were obtained in the range of 10-250 μmol/l citrulline with correlation coefficients ≥0.997. Stored calibration curve and batch-specific calibration curve produced highly similar measurement values. Within- and between-day CVs were 3.1-8.7% and 3.5-10.6%, respectively, illustrating the reliability and robustness of PFM. CONCLUSION Using citrulline for proof-of-concept, we have developed the PFM technique with tremendous potential for high-throughput quantification of amino acids and other small molecules.
Collapse
Affiliation(s)
- Eddy Wing Yin Ng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR, China
| | | | | | | |
Collapse
|
13
|
Notari S, Sergi M, Montesano C, Ivanovic J, Narciso P, Pucillo LP, Ascenzi P. Simultaneous determination of lamivudine, lopinavir, ritonavir, and zidovudine concentration in plasma of HIV-infected patients by HPLC-MS/MS. IUBMB Life 2012; 64:443-9. [DOI: 10.1002/iub.1025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/13/2012] [Indexed: 11/12/2022]
|
14
|
Shi T, Su D, Liu T, Tang K, Camp DG, Qian WJ, Smith RD. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics 2012; 12:1074-92. [PMID: 22577010 PMCID: PMC3375056 DOI: 10.1002/pmic.201100436] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/12/2012] [Indexed: 12/13/2022]
Abstract
Selected reaction monitoring (SRM) - also known as multiple reaction monitoring (MRM) - has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for, e.g. detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein, we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications, as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low- to sub-ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Dian Su
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Keqi Tang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - David G. Camp
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
15
|
Meesters RJW, den Boer E, de Jonge R, Lindemans J, Luider TM. Assessment of intracellular methotrexate and methotrexate-polyglutamate metabolite concentrations in erythrocytes by ultrafast matrix-assisted laser desorption/ionization triple quadrupole tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3063-3070. [PMID: 21953961 DOI: 10.1002/rcm.5202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new ultrafast quantitative and high-throughput mass spectrometric method using matrix-assisted laser desorption/ionization triple quadrupole tandem mass spectrometry has been developed and validated for determination of intracellular erythrocyte concentrations of the antifolate drug methotrexate (MTX) and its polyglutamate metabolites. The method consists of a solid-phase extraction of MTX and MTX-polyglutamate metabolites from deproteinized erythrocyte lysates spiked with aminopterin as internal standard. The newly developed method was validated according to the most recent FDA guidelines on linearity, recovery, within-run and between-run accuracy and precision and stability of the analytes. The low limit of quantification (LLOQ) was 10 nmol/L for all analytes while the limit of detection (LOD) determined at a signal-to-noise (S/N) ratio = 3:1 in drug- free erythrocyte lysate was on average 0.3 nmol/L. After validation, the new method was used in the measurement of intracellular erythrocyte concentrations of MTX and MTX-polyglutamate metabolites (MTXPG2 to MTXPG7) in packed human erythrocyte samples collected from patients with rheumatoid arthritis receiving low-dose oral methotrexate therapy. Mean (SD) intracellular erythrocyte concentrations observed in patient samples were 12.8 (12.6), 12.4 (9.4), 44.4 (30.0), 33.6 (35.9) and 9.4 (8.2) nmol/L for MTX to MTXPG5, respectively, in 10(6) erythrocytes. The highest observed glutamylation degree of MTX was MTXPG5, the very long chain MTX-polyglutamate metabolites MTXPG6 and MTXPG7 were not detected in the packed erythrocyte pellets collected from rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Roland J W Meesters
- Department of Neurology, University Medical Center Rotterdam (ErasmusMC), Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Impact of internal standard addition on dried blood spot analysis in bioanalytical method development. Bioanalysis 2011; 3:2357-64. [DOI: 10.4155/bio.11.202] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Addition of internal standards to dried blood spot (DBS) specimens can be complicated. Therefore, we studied the feasibility of different internal standard addition procedures. Nevirapine and its stable-isotope analogue were used as model compounds and concentrations in DBS specimen were determined by matrix-assisted laser desorption/ionization-triple quadrupole tandem mass spectrometry using selected reaction monitoring. Results: The addition procedure of the stable isotope-labeled internal standard had significant impact on observed nevirapine concentrations. Relative recovery rates depending on the internal standard addition procedure ranged between 11.4 and 107.9%. Experiments with different punch sizes (5 and 7 mm diameter) showed no significant influence on observed nevirapine concentrations. Conclusion: Application of internal standard prior to blood spotting provided good nevirapine recoveries and this procedure is well suited for applying DBS in infectious diseases, especially in HIV-infection treatment.
Collapse
|
17
|
Ultrafast selective quantification of methotrexate in human plasma by high-throughput MALDI-isotope dilution mass spectrometry. Bioanalysis 2011; 3:1369-78. [PMID: 21679031 DOI: 10.4155/bio.11.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A new analytical MS method using isotope dilution combined with MALDI-triple quadrupole MS/MS has been developed and validated for the determination of methotrexate and 7-hydroxymethotrexate in plasma. Methotrexate, methotrexate-d3, 7-hydroxymethotrexate and 7-hydroxymethotrexate-d3 were monitored by selected reaction monitoring using the transitions m/z 455.2→308.2, 458.2→311.2, 471.2→324.2 and 474.2→327.2 for methotrexate, methotrexate-d3, 7-hydroxymethotrexate and 7-hydroxymethotrexate-d3, respectively. RESULTS The LLOQ was 1 nmol/l for methotrexate and 7-hydroxymethotrexate while the limit of detection was 0.3 nmol/l for both analytes. The new developed method was cross-validated by a fluorescence polarization immunoassay and tested for its clinical feasibility by measuring plasma samples from patients suffering from acute lymphoblastic leukemia. Plasma methotrexate concentrations ranged between 66.0 and 954 nmol/l and observed 7-hydroxymethotrexate/methotrexate ratios ranged between 0.1 and 32.4, respectively. CONCLUSION The new method showed comparable analytical performances as the fluorescence polarization immunoassay, but analyte specificity and sensitivity of the newly developed method were significantly better.
Collapse
|